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Single- or few-layer black phosphorus (FLBP) has attracted great attentions in scienti¯c com-
munity with its excellent properties, including biodegradability, unique puckered lattice con¯g-
uration, attractive electrical properties and direct and tunable band gap. In recent years, FLBP
has been widely studied in bio-photonic ¯elds such as photothermal and photodynamic therapy,
drug delivery, bioimaging and biosensor, showing attractive clinical potential. Because of the
marked advantages of FLBP nanomaterials in bio-photonic ¯elds, this review article reviews the
latest advances of biomaterials based on FLBP in biomedical applications, ranging from bio-
compatibility, medical diagnosis to treatment.

Keywords: Black phosphorus; biosensing; drug delivery; biocompatibility; photothermal and
photodynamic therapies.

1. Introduction

Two-dimensional (2D) materials, such as graphene,1–9

transition metal dichalcogenides (TMDs, e.g.,
MoS2,

10–19 WS2,
20–25 TiS2) and black phosphorus

(BP), have been applied in various ¯elds because of

their distinctive physicochemical properties,26–39

including easy surface modi¯cation, electrical con-

ductivity and strong light response.40–50 Especially,

2D materials own more advantages in bio-photonic

applications such as biosensing,51–61 cancer imaging62–68
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and drug delivery platform.69–73 However, each 2D
material has its own shortcoming which hinders its
clinical applications.74–77 Graphene displays an
extremely high carrier mobility, but it has no
bandgap,78–88 which limits its applications in bio-
sensing and bioimaging. In spite of possessing a
¯nite bandgap,17,89–96 the low carrier mobility of
TMDs prevents their practical applications.97–107

Taken together, it is important to ¯nd a new 2D
material with a well-balanced performance.

BP is a novel nanoplatform with potential
applications in such as energy storage,35 sensor108

and bio-photonic because of its excellent
properties.109–120 The bandgap of BP is tunable in a
large range (from 0.3 eV to 2 eV) under di®erent
thicknesses.121–124 As the result of the direct and
tunable bandgap, few-layer black phosphorus
(FLBP) processes a widely light absorption indi-
cating a great potential in photothermal and pho-
todynamic therapy. FLBP also shows high carrier
mobility125–130 while preserving large ON/OFF
ratio.131–137 Due to the balance of these features, BP
is often occurred in biosensing and bioimaging ¯eld.
FLBP, with the unique puckered lattice con¯gura-
tion, possesses much larger surface area-to-volume
ratio than other 2D materials, which results in
extremely high drug loading capacity.138 Further-
more, FLBP displays negligible toxicity and out-
standing biodegradability in the biological
environment which distinguishes it from other
common 2D materials. FLBP is completely de-
gradable in vivo, and the products, such as phosphite
ions, phosphate ions and other PxOy, are nontoxic
and can be easily exhibited a desire renal ¯ltration.
In addition, FLBP possesses attractive electrical
characteristics, unique band structure and natural
biocompatibility, indicating that FLBP has a great
potential for biomedical ¯eld.37

BP has aroused more and more research interest
on its biomedicine applications with its unique
physical and chemical properties. However, there
is still a lot of problems needs to be solved to achieve
the requirements of clinical applications, such
as stability,139–144 in vivo toxicity,145 biodegrada-
tion,146 excretion,147 etc. In order to meet the
urgent demand for the novel 2D materials used in
biomedical ¯eld, it is necessary to summarize the
latest achievement of BP in bio-photonic ¯elds. In
this paper, we mainly review the biomedical re-
search of BP in biological diagnosis and therapy.

2. Biocompatibility of BP

Lati® et al.145 established human lung carcinoma
cancer epithelial cells (A549) model to study the
toxicity of FLBP. To ensure the credibility of the
results, graphene and MoS2 are used as comparison
and two similar methods based on similar principles
were used to assess cell viabilities. In this work, the
toxicity of FLBP increases with increasing concen-
tration, when the concentration of FLBP is below
50 ppm. They found that toxicity of FLBP is lower
than that of graphene but higher than that of MoS2.
Due to the limitations of the test method and the
size of FLBP used in the paper, there are still a lot
of toxicity assessments to do before the clinical
applications of FLBP. Zhang et al.148 studied the
dependence of FLBP toxicity on size, concentration,
exposure time and cell type, as presented in Fig. 1.
FLBP was fabricated in oxygen-free Millipore
water, and centrifugation at di®erent speeds was
used to obtain FLBP with three di®erent sizes,
named BP-1, BP-2 and BP-3, from large to small.
The results of this paper indicate that FLBP with
the BP-3 dimensions is appropriate for biomedical
applications. They proposed and veri¯ed two pos-
sible mechanisms of the cytotoxicity of FLBP: (1)
FLBP produces reactive oxygen species (ROS) to
kill cells and (2) FLBP destroys cell membrane
integrity. The cytotoxicity of BP-1 is much higher
than that of BP-3. Fortunately, the size of BP-3
happens to be the most widely used size of FLBP
nanosheets in the biomedical ¯eld. The results of
this paper indicate that FLBP is appropriate for
biomedical applications. Mu et al.149 explored tox-
icological studies on BP quantum dots (BPQDs),
which underwent faster renal ¯ltration than BP
nanosheets, systemically with cell and animal
model. Comparing the cells viability and the endo-
cellular ROS levels in experimental group with dif-
ferent concentrations of BPQDs and the control
group, they found that the cytotoxicity of BPQDs
is mainly derived from ROS produced by itself.
The results of in vivo assays indicated that catalase
activity in liver will reduce 24 h after injection,
but there was no obvious adverse e®ect after a week
without recurrence after a month. Song et al.150

studied the dependence of FLBP cytotoxicity on
dose and time. When the concentration exceeded
4 ppm, FLBP showed signi¯cant cytotoxicity,
which con°icts with other works probably for
the reason of the di®erence in the size of FLBP.
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The percentage of live cells was detected within 12 h
at a dose of 10 ppm and was signi¯cantly reduced
after 6 h, indicating the need for e®ective modi¯ca-
tion before BP achieves clinical applications.

3. Medical Diagnosis

3.1. Biomolecular biosensors

With a high carrier mobility and large switching
ratios, FLBP has great applications potential
on highly sensitive and selective biosensors.151–160

Chen et al.161 investigated FLBP for human im-
munoglobulin G (IgG) detection. FLBP was fabri-
cated by a mechanical exfoliation method and
passivated with Al2O3. The FLBP-based device
showed rapid response performances and excellent
sensitivity (�10 ngmL�1) to human IgG. Further-
more, the FLBP-based device exhibited good
stability without obvious changes in performance.
Mayorga-Martinez et al.162 obtained FLBP with the
size of 40 � 200 nm by electrochemical exfoliation.
The as-fabricated FLBP showed active electro-
catalytic performances for the hydrogen evolution

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. The dependence of cell viability on size, concentration of BP, exposure time and cell lines. Cell lines: NIH 3T3 (a–c),
HCoEpiC (d–f) and 293T cells (g–i). Exposure time: 12 h (a, d, g), 24 h (b, e, h) and 48 h (c, f, i).
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reaction and IgG detection. In addition, FLBP with
poly-L-lysine (PLL) displays a great potential in
label-free detection of myoglobin (Mb), which is an
important signal of cardiovascular events.163 FLBP
was created by liquid-phase exfoliation (LPE) with
an aqueous surfactant solution in argon atmo-
sphere, and PLL was used to functionalize FLBP in
order to accelerate binding with anti-Mb DNA
aptamers. The PLL-BP dispersed stability in
aqueous medium and showed a stable detection
performance in phosphate-bu®ered saline (PBS)
and serum samples, indicating successful surface
modi¯cation. The FLBP-based device possesses a
high sensitivity (36�Apg�1 mL cm�2) and a low
detection limit (0.524 pgmL�1), with a widely dy-
namic response range (1 pgmL�1 to 16�gmL�1).

In addition to excellent electrical properties, the
unique °uorescence properties of FLBP were also ap-
plied to biological detection. Gu et al.164 investigated
BPQDs with a sonication-assisted solvothermal meth-
od for the applications of acetylcholinesterase activity
sensing probes. The BPQDs showed strong green
°uorescence at 497nm and an extremely high quantum
yield (8.4%). Furthermore, pH relevant °uorescence
property with reliable photostability had been ob-
served in this work. Lee et al.165 prepared BPQDs with
a strong visible blue-emitting performance by LPE in
various organic solvents. They used catechol-grafted
poly(ethylene glycol) (CA-PEG) to functionalize
BPQDs in basic bu®er to achieve a stable dispersible in
water and an extremely low cytotoxicity. The photo-
luminescence emission centered of PEG-BPQDs is
428nm and the photoluminescence quantum yield is
�5% when the excitation wavelength is 365nm. Yew
et al.166 demonstrated FLBP as a platform in °uores-
cence-based DNA biosensors. BP crystals transformed
from red phosphorus allotrope in the high pressure,
and FLBP was synthesized by share force milling
at 17,000 rpm. FLBP showed an obvious photo-
luminescence emission centered at 527nm with an ex-
citation wavelength of 200 nm, indicating potential
applications as °uorescent sensing platform. This bio-
sensor shows a low detection limit (5.9pM) and
quanti¯cation limit (19.7pM). In addition, an excellent
linearity (r ¼ 0:91) and a widely dynamic response
range (4–4000pM) were observed in this work.

3.2. Tumor imaging

Cancer is a malignant disease that kills millions
of people every year.38,167–177 With the enhanced

permeability and retention (EPR) e®ect,178–188

FLBP can be passively enriched to the tumor site,
so the tumor imaging based on FLBP has received
extensive attention. Shao et al.147 investigated that
BPQDs, which manufactured by the simple liquid
exfoliation method, with poly lactic-co-glycolic acid
(PLGA) were used to modify BPQDs in order to
enhance the stability and solubility of BPQDs in
water. As-fabricated BP-PLGA can e®ectively
passively accumulate to the tumor region with tail
vein injection because of the EPR e®ect. Figure 2(a)
demonstrates the infrared thermographic images of
the mice irradiated by near-infrared (NIR) laser
24 h after injection. Drawing a comparison between
the tumor temperature of the test groups and of the
control groups under the same power irradiation, it
is obvious that the tumor temperature of the test
groups (26.3�C of BP-PLGA) increased much more
than that of the control groups (6.2�C, 7.8�C and
10.8�C of PBS, PLGA and bare BPQDs, respec-
tively), indicating the excellent photothermal per-
formance of BP-PLGA. In addition, many other
researchers also have achieved extremely good
photothermal imaging by di®erent modi¯cations of
FLBP.189,190

Sun et al.191 investigated BPQDs with excellent
photostability for the applications of photoacoustic
(PA) imaging, as shown in Fig. 2(b). The PEGy-
lated BPQDs with a uniform size were fabricated by
a simple high energy mechanical milling method.
When the concentration of the PEGylated BPQDs
is in the range of 0–250�gmL�1, the intensity of the
PA signal rises linearly as the concentration
increases. Furthermore, the PA signal intensity in
tumor was still higher than that of liver and kidney,
24 h after injection, representing a long retention
time and EPR e®ect. Sun et al.192 reported BPQDs
loaded with titanium ligand (TiL4) as PA imaging
agent. Dispersibility and stability of TiL4@BPQDs
in water are much better than those of bare BPQDs.
With increasing wavelength of the irradiation, the
intensity of the PA signal decreased because the
optical absorption of wavelength range from 680 nm
to 808 nm reduces.

Yang et al.193 prepared FLBP coated with Au
nanoparticles for surface-enhanced Raman scatter-
ing (SERS) imaging. BP–Au NSs were fabricated
with a facile re°ux method, and mPEG-SH was
added to improve the dispersion and stability in
water. The molecular mechanism of photothermal
therapy (PTT) was investigated by SERS analysis.

T. Fan et al.
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The SERS analysis illustrates that PTT damages
the membrane microstructure in tumor, and some
BP–Au NSs appear in the nucleus region.

4. Medical Therapy

4.1. Phototherapy

Phototherapy, mainly including PTT194,195 and
photodynamic therapeutic (PDT),196,197 has be-
come a potential alternative to traditional cancer
therapy with its advantages of little double
consequences,198–205 excellent targeting206–215 and
intelligent controllability.216–222 The principle of
PTT is based on the heat energy generated by the
photothermal agent under irradiation to achieve the
therapeutic e®ect. PDT agent can generate ROS to
kill cancer cells under laser irradiation. FLBP has
broadband absorption characteristics because of its
tunable direct band gap, indicating great potential
for the applications of cancer phototherapy.

4.1.1. PTT

Sun et al.223 fabricated BPQDs by liquid exfolia-
tion method as photothermal agent. BPQDs were

functionalized with PEG to prevent BPQDs from
aggregating in PBS. As-fabricated PEG-BPQDs pos-
sessed a large extinction coe±cient (14.8Lg�1 cm�1

at 808 nm), which is much more larger than that of
Au nanorods. In addition, PEG-BPQDs showed a
high photothermal conversion e±ciency (28.4%) and
favorable photostability. The aqueous solutions of
PEG-BPQDs rise 31.5�C in 10min at the concen-
tration of 50 ppm when the power density of NIR
laser irradiation is 1.0Wcm�2, indicating an excel-
lent photothermal performance. The percentage of
live cells had no signi¯cant decrease even with a high
incubation concentration of PEG-BPQDs (200 ppm)
without NIR laser. The PEG-BPQDs killed the most
of the cancer cells with a low concentration after the
NIR irradiation for 10min, as shown in Fig. 3. The
results of this work illustrate the good biocompati-
bility and photothermal performance of BPQDs.

Shao et al.147 demonstrated BPQDs coated with
PLGA for PTT. PLGA enhanced the stability of
BPQDs and adjusted the degradation rate of
nanoparticles by adjusting the chemical composi-
tion. PLGA-BPQDs maintained stable photo-
thermal properties within 8 days, and it degraded
by almost 80% after 8 weeks, indicating a balance of

(a) (b)

Fig. 2. (a) Infrared thermographic images in the nude mice bearing MCF7 breast tumor under NIR laser irradiation (808 nm,
1Wcm�2) after intravenous injection at 24 h with di®erent treatments. (b) PA maps of PEGylated BP nanoparticles dispersions
with di®erent concentrations (¯rst column), and time-lapsed PA images of liver, kidney and tumor of female BALB/c mice after
intravenous injection with PEGylated BP nanoparticles (200mL, 2mgmL�1).
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therapeutic and biodegradable. In vitro experiments
showed that PLGA-BPQDs killed the most of
cancer cells at an extremely low concentration
(10 ppm). What's more, the ¯nal degradation pro-
ducts of PLGA-BPQDs are carbon dioxide, water,
phosphate and phosphonate, which normally exist
both in vivo and in vitro and result in little side
e®ects. Fu et al.224 prepared three types of FLBP
with average size of 394� 75 nm, 118� 22 nm and
4:5� 0:6 nm by LPE method, named as L-BP,
M-BP and S-BP. The temperature of L-BP solution

with a concentration of 25ppm was able to rise by
24�C under NIR laser irradiation for 10min, whereas
temperatures of M-BP and S-BP solutions with the
equal concentration could only rise by 21.8�C and
19.2�C, indicating that L-BP has the best photo-
thermal performance. In addition, there are some
studies dedicated to improving the photothermal
stability of FLBP.225–227 Some researchers explored
new applications for the thermal performance of BP,
such as post-surgical treatment of cancer, 3D-printed
sca®olds and neuroprotective nanomedicine.189,228,229

(a)

(b) (c)

Fig. 3. The dependence of cell viability on concentration of BPQDs and cell lines. The irradiation time is 10min and power density
of 808 nm laser is 1.0W cm�2. (a) Fluorescence images of cancer cells incubated with BPQDs after irradiation of 808 nm laser. (b) C6
cells viability after treatments with di®erent concentrations of BPQDs. (c) MCF7 cells viability after treatments with di®erent
concentrations of BPQDs.
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4.1.2. PDT

FLBP for PDT was fabricated by LPE in an
aqueous solvent.230 At a wavelength of 530 nm, the
quantum yield of FLBP producing singlet oxygen is
very high (0.91). In vitro and in vivo FLBP
experiments showed good PDT e®ects, as shown in
Fig. 4. BPQDs were synthesized by LPE in
N-methyl pyrrolidone and coated with PEG to
achieve enhanced stability in water. Guo et al.231

used BP dispersion to incubate cancer cells
under 670 nm laser irradiation and researched the

dependence of cell survival rate on BPQD con-
centrations, illumination time and laser intensity.
The ROS generated by FLBPwas able to kill the cancer
cells e±ciently at very low concentration (1.6ppm) and
at very weak laser power (160mWcm�2). Furthermore,
65% of BPQDs was found excreted with urine
within 8 h, probably for the reason of the ultra-small
hydrodynamic size of BPQDs, indicating that
BPQDs have a good biocompatibility. Chen et al.232

found that the bleaching signal of BPQDs is built
up rapidly (<2 ns) and lasts a long time (100�s).

(a) (b)

(c)

Fig. 4. In vivo PDT. (a) Tumor volume of di®erent time post-injections. (b) Tumor pictures of experimental group and control
group after treatments. (c) PCNA and TUNEL analysis of tumor tissues.
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The triplet generation attributed to intersystem
crossing was observed and may be the reason of the
highly e±cient singlet oxygen generation of BPQDs.
Tan et al.233 achieved in situ disinfection with PDT
based on FLBP. FLBP was modi¯ed with poly(4-
pyridonemethylstyrene) endoperoxide (PPMS-
EPO). PPMS not only enhances the stability of
FLBP, but also stores singlet oxygen. The PPMS-
EPO/BPS showed good photodynamic perfor-
mance even in the absence of light, indicating a
good clinical potential.

4.2. Therapeutic agent delivery

Chemotherapy is an e®ective cancer treat-
ment,234,235 but the high toxicity,236 low target-
ing237,238 and drug resistance239 limit its therapeutic
e®ect. In order to solve the aforementioned pro-
blems, researchers load therapeutic agents onto
drug delivery systems (DDSs) to enhance chemo-
therapeutic e®ect. With large surface area-to-vol-
ume radio, unique pleated structure and excellent
light response characteristics, FLBP has great po-
tential for DDSs. Tao et al.240 ¯rst applied FLBP to
DDSs, as shown in Fig. 5. PEG-FA/Cy7-functio-
nalized FLBP exhibited good biocompatibility, ob-
vious tumor targeting and strong °uorescence signal
and was loaded with doxorubicin (DOX) via elec-
trostatic adsorption. In addition, the endocytosis
pathway of the FLBP nanoparticle had also been
screened. Chen et al.138 prepared a drug loading

platform with a pH/photo response based on FLBP.
Their results showed that FLBP has a very high
DOX loading (980%) due to its puckered lattice
con¯guration, large interlay distance 0.524 nm and
negative charge. They used the therapeutic system
to achieve synergistic treatment of PTT/PDT/
chemotherapy and achieved good anti-tumor
e®ects. Wang et al.241 used one-pot method to
prepare HSA-modi¯ed FLBP, which can e®ectively
load paclitaxel by hydrophobic interactions. Qiu
et al.190 fabricated a BP@hydrogel-based DDS. The
DDSs enable intelligent light-controlled drug
release and degradation, and the degradation pro-
ducts are completely nontoxic and easily metabo-
lized. Yin et al.242 fabricated FLBP loaded with
interfering RNA as the applications of gene delivery
systems. Compared with the commercial delivery
reagents, the BPQDs exhibited a higher transfec-
tion e±ciency and low toxicity.

5. Summary

This paper summarizes the latest progress in FLBP
research from three aspects, including biocompati-
bility of BP, medical diagnosis and medical thera-
peutic based on BP. Various factors such as
size, concentration and test cell line can a®ect the
toxicity of FLBP, but overall, FLBP shows rela-
tively low toxic at e®ective dosing dose. Due to
its attractive electrical properties, °uorescence
characteristics and large surface area-to-volume

(a) (b)

Fig. 5. (a) Schematic representation of the FLBP nanoparticle. 1: PEG-NH2 (surface modi¯cation), 2: DOX (therapeutic agents),
3: Cy7-NH2 (NIR imaging agents), 4: FA-PEG-NH2 (targeting agents), 5: FITC-PEG-NH2 (°uorescent imaging agents). (b) The
endocytosis pathway of the FLBP nanoparticle.
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ratio, FLBP shows a great potential for biosensors
and imaging. In terms of biological therapy, FLBP
mainly achieves therapeutic e®ects through its ex-
cellent optical response characteristics and as a drug
delivery platform.

Although studies on the biomedical applications
of FLBP have made a lot of progress, there are still
some problems that need to be solved before its
clinical translation. First of all, because the size of
the FLBP has a great impact on toxicity and
treatment e®ects, it is very important to ¯nd a
novel method to fabricate FLBP with uniform size
and high production. Secondly, other treatments
such as chemotherapy, immunotherapy, etc. could
be combined with BP to achieve synergistic e®ect.
Finally, the targeted treatments based on FLBP
should be developed for speci¯c diseases to achieve
smaller side e®ects and better therapeutic e®ects.
This requires multidisciplinary researchers to
work together. FLBP has great potential in bio-
medicine. To promote the clinical applications of
FLBP, we summarized the progress of FLBP in
biomedical ¯eld.
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