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Recent studies in oncology have addressed the importance of detecting circulating tumor cell
clusters because circulating tumor cell clusters might survive and metastasize more easily than
single circulating tumor cells. Signals with larger peak widths detected by in vivo °ow cytometer
(IVFC) have been used to identify cell clusters in previous studies. However, the accuracy of this
criterion might be greatly degraded by variance in blood °ow and the rolling behaviors of cir-
culating tumor cells. Here, we propose a criterion and algorithm to distinguish cell clusters from
single cells. In this work, we ¯rst used area-based and volume-based models for single °uorescent
cells. Simulating each model, we analyzed the corresponding morphology of IVFC signals from
cell clusters. According to the Rayleigh criterion, the valley between two adjacent peak signals
from two distinguishable cells should be lower than 73.5% of the peak values. A novel signal
processing algorithm for IVFC was developed based on this criterion. The results showed that cell
clusters can be reliably identi¯ed using our proposed algorithm. Intravital imaging was also
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performed to further support our algorithm. With enhanced accuracy, IVFC is a powerful tool to
study circulating cell clusters.

Keywords: In vivo °ow cytometer; circulating tumor cell; cell clusters; signal processing algo-
rithm; computer simulation; Rayleigh criterion.

1. Introduction

Circulating tumor cells (CTCs) have been consid-
ered an important biomarker for tumor diagnosis
and prognosis.1,2 Recent studies in oncology have
emphasized the importance of detecting circulating
tumor cell clusters.3–5 These results indicated that
circulating tumor cell clusters might survive and
metastasize more easily than individual circulating
tumor cells. The ability to detect circulating tumor
cell clusters is necessary for studies of tumor me-
tastasis. However, conventional in vitro detection
methods are insu±cient.6–9 The circulating tumor
cell clusters may not be present in blood samples
due to limited blood sample volumes. In addition,
blood sample treatments may alter the properties of
circulating cell clusters.10,11 For example, the addi-
tion of an anticoagulant may disperse the cell
clusters, which may be a reason that little attention
has previously been paid to circulating cell clusters.

The in vivo °ow cytometer (IVFC) has been used
to detect and enumerate CTCs in many reported
studies.12–32 With longer detection times in vivo, a
larger volume of blood is examined, and CTCs are
more likely to be detected with IVFC compared to
conventional in vitro detection methods. To accu-
rately identify these cell clusters, we propose a new
signal processing criterion and algorithm. Signals
with larger peak widths, as detected by IVFC, have
been used as a criterion to identify cell clusters in
previous studies.3 However, the accuracy of this
criterion might be greatly degraded by changes in
blood °ow and the rolling behaviors of circulating
tumor cells.

Here, we propose a criterion and algorithm to
distinguish cell clusters from single cells, based on
computer simulation and intravital imaging. In this
work, we established two models of °uorescent
molecule distribution for two kinds of °uorescently
labeled cells. To better analyze the signals from cell
clusters, we ¯rst used area-based and volume-based
models for single °uorescent cells. Using simulations
of each model, we analyzed the morphology of
IVFC signals from single cells and cell clusters.

According to the Rayleigh criterion, the valley be-
tween two adjacent peak signals, from two distin-
guishable cells, should be lower than 73.5% of the
peak values, and a novel signal processing algorithm
for IVFC was developed based on this criterion. Our
results showed that cell clusters could be reliably
identi¯ed using our proposed algorithm. The results
from intravital imaging also supported the use of
our method.

2. Materials and Methods

2.1. Cell preparation

The 4T1 breast cancer cells were transfected with
green °uorescent protein (GFP). They were cul-
tured and expanded in an incubator, which main-
tained a temperature of 37�C and 5% CO2. The cells
were used after the sixth passage with stable GFP
expression and then the cells were prepared for the
simulation using the volume-based cell model.

2.2. Animal preparation

Balb/c mice (20� 2 g, 5 week-old) were purchased
from Shanghai SLAC Laboratory Animal Co. Ltd.
The animal treatment procedures were approved
and monitored by the Ethical Committee of Animal
Experiments in the School of Biomedical Engineer-
ing, Shanghai Jiao Tong University. The mice were
anesthetized with 1% pentobarbital sodium salt
(0.01mL/g mouse weight) during the experiment.
To remove hair on the mouse ear, depilatory cream
(sensitive hair removal cream; Veet) was topically
applied.

2.3. IVFC

To simulate the proposed cell model, IVFC was
used to collect signals from GFP-labeled cells. The
schematic of IVFC was shown in supplementary
Fig. S1. Brie°y, the mouse was anesthetized and
placed on the sample stage. With a 535 nm LED as
the light source, live images of the mouse's ear were
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captured. These images were used to guide naviga-
tion of the laser beam onto a blood vessel for de-
tection. Typically, 50–70�m-wide blood vessels
were selected as the detection site. The 488 nm laser
beams were modulated into slit-shaped beams using
cylindrical lens. The size of the laser slit was ap-
proximately 5� 72�m at the focal plane. Under the
guidance of the ear imaging by CCD camera, the
laser slit was placed across the selected blood vessel.
Fluorescently labeled cells were introduced into the
blood by tail vein injection. When a cell passed
through the laser beam, °uorescence was monitored
by the detection system. After photo-electrical
conversion via a photomultiplier tube (PMT), the
signals were digitized (100KHz) and recorded on a
computer.

2.4. Computer simulation and data
processing

Computer simulations were performed on the
MATLAB (2015a, Mathworks) computing plat-
form. The plots were generated according to the
area-based cell model or volume-based cell model.
Data processing was performed according to the
criterion and algorithm proposed using homemade
MATLAB scripts.

2.5. Intravital imaging

Intravital imaging was performed with a Leica
DM5500 system with a 10� objective (water
immersion, NA ¼ 0:6). The frame rate was 30 fps.

3. Results

3.1. Area-based model of single cell

To better analyze a situation where multi-cells pass
through the laser slit, models for single cells were
¯rst constructed. Two di®erent models for single
cells corresponded to di®erent °uorescent labeling
methods and °uorescent dyes.

The area-based single cell model was studied
¯rst. This model could be applied to °uorescent
dyes that attached surface membrane of the cells,
such as DiD. To simplify the simulation model, the
laser power within the laser slit beam was consid-
ered uniform. The emitted °uorescence was pro-
portional to the area that was irradiated by the
laser beam.

In this model of peak signals, key parameters
included the cell radius (R), width of the excitation
laser (W), °ow speed of the cells (v) and time (t).
When the cell size was larger than the width of laser
beam, the relationship between the parameters was
as follows: R � 1

2 W. The process of the cell passing
through the laser beam was divided into three
phases (Fig. 1(a)). The relationship between °uo-
rescence (F ) and t during the whole procedure is
plotted in Fig. 1(b).

For the ¯rst phase, the front of the cell reached
the front of the excitation laser beam, but the front
of the cell had not reached the back of the excitation
laser beam. This section was described as follows:
0 � vt � W . The °uorescence (F ) detected within
this time was described as follows:

F ¼ kS: ð1Þ
k is the ratio between the detected °uorescence and
excited area, and S is the laser irradiated area.
During this period, S could be described as 2�Rvt.
Based on these equations, the °uorescence intensity
increased proportionally within this time as

F ¼ k�Rvt: ð2Þ
For the second phase, the front of the cell passed the
back of the excitation laser beam, but the back of
the cell had not reached the front end of the exci-
tation laser beam. This section was described as
follows: W � vt � 2R. In the second section, the
excitation area in the cell equaled half the di®erence
between the two ball crowns intercepted by the
entire excitation laser beam. The °uorescence (F )
within this time was described as

F ¼ k�RW : ð3Þ
The °uorescence intensity was consistent during the
second section.

For the third phase, the back of the cell passed
the front of the excitation laser beam, but the
back of the cell had not reached the back of the
excitation laser beam. This section was described as
2R � vt � 2RþW . The excitation area of the cell
equaled �Rð2RþW � vtÞ. The °uorescence (F )
over time was described as follows:

F ¼ k�Rð2RþW � vtÞ: ð4Þ
From the equation above, the °uorescence intensity
decreased proportionally during this section.
Figures 1(c) and 1(d) depicts the F–t relationship at
di®erent °ow velocities (v) and radii of cells (R),
respectively.
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3.2. Volume-based model of single cell

The volume-based peak model indicated that the
intensity of the emitted °uorescence was propor-
tional to volume of cells excited by the laser. In this
model, °uorescence peaks corresponded to cells
expressing °uorescence proteins in the cytosol, such
as GFP.

In this model, key parameters included the cell
radius (R), width of the excitation laser (l), °ow
speed of the cells (v) and time (t). When cells were
larger than the excitation laser area, the relation-
ship between the parameters was as follows:
R � 1

2 W . Based on the relative positions of the cell
and excitation laser beam, the cell passed through
the excitation laser in three phases (Fig. 2(a)). The
relationship between F and t during this process is
plotted in Fig. 2(b).

For the ¯rst phase, the front of the cell reached
the front of the excitation laser beam, but the front
of the cell had not reached the back end of the ex-
citation laser beam: 0 � vt � W . Here, the excita-
tion volume of the cell is the volume of the ball

crown that is intercepted by the front end of the
excitation laser beam. The °uorescence (F ) during
this time is

F ¼ kV : ð5Þ
Here, k is the ratio between the °uorescence inten-
sity and excited volume, and V is the volume irra-
diated by the laser. Finally, F could be described by
the following equation:

F ¼ k �Rv2t2 � 1

3
�v3t3

� �
: ð6Þ

Based on the above equation, the °uorescence in-
tensity increased gradually during the ¯rst phase.

For the second phase, the front of the cell had
passed the back of the excitation laser beam, but
the back of the cell has not reached the front of the
excitation laser beam. This section is described as
follows: W � vt � 2R. Here, the excitation volume
in the cell equals the di®erence between the volumes
of two ball crowns intercepted by the two ends of
the excitation laser beam. After integrating, the

(a) (b)

(c) (d)

Fig. 1. Area-based single cell model. (a) Phases of cell passing the laser beam in area-based model. (b) Typical area-based model of
single cell. In this model, R ¼ 10�m, W ¼ 5�m, v ¼ 5mm/s and k ¼ 1mV/�m2. (c) Area-based model of single cell with di®erent
velocities. In this model, R ¼ 10�m, W ¼ 5�m and k ¼ 1mV/�m2. (d) Area-based model of single cell with di®erent radiuses. In
this model, W ¼ 5�m, v ¼ 5mm/s and k ¼ 1mV/�m2. A.U. denotes arbitrary unit.
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°uorescence (F ) within the time was as follows:

F ¼ k �R½v2t2 � ðvt�WÞ2� � 1

3
�½v3t3 � ðvt�WÞ3�

� �
:

ð7Þ
Based on this equation, the °uorescence intensity
¯rst increased to the local maximum and then
began to fall.

For the third phase, the back of the cell has
passed the front of the excitation laser beam, but
the back of the cell has not reached the back of the
excitation laser. This is described as follows: v, t and
l:2R � vt � 2RþW . In the third phase, the exci-
tation volume in the cell equals the volume of the
ball crown intercepted by the back of the excitation
laser beam. After integrating, the °uorescence (F )
within this time was as follows:

F ¼ k �Rð2RþW � vtÞ2 � 1

3
�ð2RþW � vtÞ3

� �
:

ð8Þ
The °uorescence intensity decreased over time
during the third phase. Figures 2(c) and 2(d) depict

the F–t relationship at di®erent °ow velocities (v)
and radii (R) of cells, respectively.

3.3. Models of dual-cell cluster

To better analyze the complex cases when clusters
with multiple cells pass through the excitation laser
beam, models of dual-cell clusters were designed,
based on the single cell models above. For the dual-
cell models, additional parameters were added, in-
cluding the radii of the two cells (R1 and R2) and
the distance between the front ends of the two cells
at the horizontal axis (d). The horizontal axis cor-
responded to blood °ow in the vessels. The dis-
tances are all referred to base on this horizontal
axis. If the distance between the two cells was larger
than the sum of both radii and the slit, the resulting
peaks would not overlap in the time domain. This
condition was the same as that of two separate
single peaks. The relative sizes and positions of the
two cells is the key concept here.

For the ¯rst cell, the process was similar to that
in the single cell model. For the second cell, the
starting time changed to tþ d

v, where d is the

(a) (b)

(c) (d)

Fig. 2. Volume-based single cell model. (a) Phases of cell passing the laser beam in volume-based model. (b) Typical volume-based
model of single cell. In this model, R ¼ 10�m, W ¼ 5�m, v ¼ 5mm/s and k ¼ 1mV/�m2. (c) Volume-based model of single cell
with di®erent velocities. In this model, R ¼ 10�m, W ¼ 5�m and k ¼ 1mV/�m2. (d) Volume-based model of a single cell with
di®erent radii of cells. In this peak model, W ¼ 5�m, v ¼ 5mm/s and k ¼ 1mV/�m2. A.U. denotes arbitrary unit.

Algorithm to identify circulating tumor cell clusters

1850024-5

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
8.

11
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

71
.4

3.
25

3.
25

3 
on

 1
0/

16
/1

8.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



distance between the fronts of the two cells and v is
the velocity of the °owing cells.

We simulated the area-based dual-cell model,
and then we studied the characteristics of the dual-
cell model that corresponded to di®erent distances
between the two cells, as depicted in Figs. 3(a)

and 3(c). To distinguish two cells in the °uorescent
signals, a local minimum should exist between two
adjacent local maxima, and the valley should be
lower.33 Similar results could be observed using
the volume-based dual-cell model, as shown in
Figs. 3(b) and 3(d).

(a) (b)

(c) (d)

Fig. 3. Area-based and volume-based dual-cell models. (a) Phases of dual cells passing the laser beam in area-based model. (b)
Phases of dual cells passing the laser beam in volume-based model. (c) Area-based dual-cell models with di®erent cell distances. In
this peak model, v ¼ 5mm/s, k ¼ 1mV/�m2, R1 ¼ R2 ¼ 10�m and W ¼ 5�m. (d) Volume-based dual-cell model with di®erent
cell distances. In this model, V ¼ 5mm/s, k ¼ 1mV/�m2, R1 ¼ R2 ¼ 10�m and W ¼ 5�m. A.U. denotes arbitrary unit.
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3.4. Rayleigh criterion and algorithm
to identify cell clusters

The resolution of in vivo °ow cytometry was based
on optical imaging. To distinguish two adjacent
points, there should be some di®erences in the
brightness of an overlapping area between the two
di®raction spots. According to the Rayleigh crite-
rion,34–36 the minimum value of brightness in the
overlapping area should be 73.5% of the maximum
value.

The algorithm to identify cell clusters was pro-
posed based on the criterion. Brie°y, the raw °uo-
rescence data were denoised using a wavelet ¯lter
(Sym6, level 3). Then, the smoothed data trace was
scanned to identify all local maxima, and a thresh-
old was calculated according to the following
equation:

Threshold ¼medianðdataÞ þmadðdataÞ
�MadFactor; ð9Þ

where median(data) represents the median value of
the data; mad(data) indicated the absolute devia-
tion from the mean of the data; and MadFactor was
a multiplier factor to control the rigidness of the
threshold, usually selected as 6.37,38 The adjacent
local maxima were clustered in a group if no local
minima fell below the threshold. E®ective signals
from cells occurred when the local minimum be-
tween two adjacent local maxima was below 73.5%
of the lower maximum.

As shown in Fig. 4(a), the e®ective signal for a
cell was indicated by a circle. This group of signals
contained only one single cell. In Fig. 4(b), there
were two local maxima in this signal °ock. However,
the local minimum between these two local maxima
was higher than 73.5% of the lower local maxima,
indicated by the square. The lower peak was not
regarded as an e®ective signal for the cell. Thus,
one single cell was identi¯ed in this group of signals.
A dual-cell cluster was identi¯ed, as shown in
Fig. 4(c). The local minimum satis¯ed the Rayleigh

(a) (b)

(c) (d)

Fig. 4. Cell cluster identi¯cation using proposed algorithm based on Rayleigh criterion. (a) Typical data trace for single circulating
tumor cell. Circle indicates position of local maximum. (b) Single cell signal identi¯ed by proposed algorithm. Square indicates local
maximum, which is not considered an e®ective signal for cell. (c) Typical signal of cell cluster with dual cells. (d) Another typical
signal of CTC cluster identi¯ed with proposed algorithm. This group of peaks indicates that this cell cluster consists of four cells.
A.U. denotes arbitrary unit.
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criterion. A cell luster with four cells was identi¯ed
in a signal group, as depicted in Fig. 4(d). This
suggested that the proposed criterion and algorithm
were e®ective in identifying cell cluster signals.

3.5. In vivo validation of proposed

algorithm with intravital imaging

Intravital imaging was performed to validate the
proposed algorithm. The GFP-labeled 4T1 breast
cancer cells were injected into the blood of a mouse
via the tail vein. Fluorescence images of blood ves-
sels on the mouse ear were continuously captured
in real-time. A representative image is shown in

Fig. 5(a). Due to light absorption by hemoglobin,
blood vessels appear dark in the image. The nar-
rower vessel on the left is an artery, while the wider
vessel on the right is a vein. A cell cluster consisting
of two cells was observed in the vein. The part of the
image within the dashed box was extracted to an-
alyze the °uorescence pro¯le. The °uorescence
pro¯le was calculated by integrating the °uores-
cence intensity within the black dotted box, which
we then moved along the horizontal axis. The width
of the box was 	 5�m, which was comparable to
the laser slit in IVFC. Sliding the box mimicked a
cell °owing through the laser slit. After getting the
whole pro¯le, it was normalized by the second

Fig. 5. In vivo validation of proposed algorithm with intravital °uorescence imaging. (a) Typical image of a 4T1 cell cluster with
two GFP-labeled cells. (b) Normalized °uorescence pro¯le of the cell cluster in (a). Fluorescence pro¯les were calculated by
integrating the °uorescence intensity within the black dotted box, which slid along the horizontal axis. Width of box was 	 5�m,
which was comparable to the laser slit in IVFC. Sliding the box mimicking the movement of a cell °owing through the laser slit.
After obtaining the entire pro¯le, it was normalized by the second largest pro¯le value, indicated by a black circle. Normalized valley
pro¯le value between two peak pro¯le values was below 0.735, indicating that the °ock of signal represented a dual-cell cluster and
complied with the Rayleigh criterion. (c) Image of cell cluster in succeeding frame. (d) Normalized °uorescence pro¯le of cell cluster
in (c). A.U. denotes arbitrary unit.

K. Pang et al.

1850024-8

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
8.

11
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

71
.4

3.
25

3.
25

3 
on

 1
0/

16
/1

8.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



largest pro¯le value indicated by a black circle. The
normalized valley pro¯le value between the two
peak pro¯le values was below 0.735. This indicated
that the group of signals represented a dual-cell
cluster, complying with the Rayleigh criterion. An
image of the cell cluster in the succeeding frame was
shown in Fig. 5(c). Though intravital imaging was
somewhat limited by motion blur, similar results
were also observed. As shown in Fig. 5(d), the
°uorescence pro¯le of the cell cluster also complied
with our proposed criterion.

4. Discussion

In this work, we established two cell models for two
di®erent °uorescently labeled cells. The area-based
model corresponds to cells with °uorescent mole-
cules distributed on the surface of cell membrane,
like DiD. The volume-based model can be applied to
cells producing a °uorescent protein, such as GFP.
Based on these two cell models, we analyzed dual-
cell cluster signals, which represent the simplest
type of cell clusters. Using the Rayleigh criterion,
we developed a new algorithm to identify cell cluster
signals. The e®ectiveness of the algorithm was
veri¯ed with experiments.

A potential limitation of IVFC is that the col-
lected signals provide no spatial resolution in the
direction perpendicular to the blood °ow. Two cells
could pass through the laser slit side by side. The
signals generated by these two patterns are barely
distinguishable from single cell signals. In these
situations, some cell clusters will be missed by
IVFC. To obtain the spatial resolution, two possible
solutions have been proposed and tested. One so-
lution is to perform a line scan during data collec-
tion. The laser beam could be reshaped into a circle,
and then the size of the laser beam could be reduced
to generate a higher spatial resolution. A scanner
could be used to move the laser spot along the di-
rection perpendicular to the blood °ow. The other
solution is intravital imaging. By capturing images
of °owing cells, single CTCs and cell clusters can be
distinguished based on distinct morphological in-
formation. However, this solution also su®ers from a
limited frame rate.

Con°ict of Interest

All authors declare no potential con°icts of interest.

Acknowledgments

This work was supported by a grant from the
National Science Fund for Distinguished Young
Scholars (Grant No. 61425006) and Program of
Shanghai Technology Research Leader (Grant No.
17XD1402200).

References

1. M. Cristofanilli et al., \Circulating tumor cells, dis-
ease progression, and survival in metastatic breast
cancer," N. Engl. J. Med. 351(8), 781–791 (2004).

2. J.-M. Hou et al., \Circulating tumor cells as a win-
dow on metastasis biology in lung cancer," Am. J.
Pathol. 178(3), 989–996 (2011).

3. N. Aceto et al., \Circulating tumor cell clusters are
oligoclonal precursors of breast cancer metastasis,"
Cell 158(5), 1110–1122 (2014).

4. M. Balic et al., \Circulating tumor cells: From bench
to bedside," Annu. Rev. Med. 64, 31–44 (2013).

5. B. Molnar et al., \Circulating tumor cell clusters in
the peripheral blood of colorectal cancer patients,"
Clin. Cancer Res. 7(12), 4080–4085 (2001).

6. C. Alix-Panabières, K. Pantel, \Challenges in cir-
culating tumour cell research," Nat. Rev. Cancer
14(9), 623–631 (2014).

7. S. L. Stott et al., \Isolation of circulating tumor
cells using a microvortex-generating herringbone-
chip," Proc. Nat. Acad. Sci. 107(43), 18392–18397
(2010).

8. A. van de Stolpe et al., \Circulating tumor cell iso-
lation and diagnostics: Toward routine clinical use,"
Cancer Res. 71(18), 5955–5960 (2011).

9. M. Yu et al., \Circulating tumor cells: Approaches
to isolation and characterization," J. Cell Biol.
192(3), 373–382 (2011).

10. H. W. Hou et al., \Isolation and retrieval of circu-
lating tumor cells using centrifugal forces," Sci. Rep.
3, 1259 (2013).

11. A. F. Sarioglu et al., \A micro°uidic device for label-
free, physical capture of circulating tumor cell
clusters," Nat. Meth. 12(7), 685–691 (2015).

12. Y. Suo et al., \Near infrared in vivo °ow cytometry
for tracking °uorescent circulating cells," Cytometry
A 87(9), 878–884 (2015).

13. D. A. Sipkins et al., \In vivo imaging of specialized
bone marrow endothelial microdomains for tumour
engraftment," Nature 435(7044), 969–973 (2005).

14. J. Novak et al., \In vivo °ow cytometer for real-time
detection and quanti¯cation of circulating cells,"
Opt. Lett. 29(1), 77–79 (2004).

15. I. Georgakoudi et al., \In vivo °ow cytometry a new
method for enumerating circulating cancer cells,"
Cancer Res. 64(15), 5044–5047 (2004).

Algorithm to identify circulating tumor cell clusters

1850024-9

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
8.

11
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

71
.4

3.
25

3.
25

3 
on

 1
0/

16
/1

8.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



16. Z. Fan et al., \In vivo tracking of'color-code-
d'e®ector, natural and induced regulatory T cells in
the allograft response," Nat. Med. 16(6), 718 (2010).

17. Z. Fan and X. Wei, \In vivo °ow cytometry: A
powerful optical technology to detect circulating
tumor cells and diagnose cancer metastasis in vivo/
In-vivo-Durch°usszytometrie: Ein leistungsstarkes
optisches Verfahren zur Detektion zirkulierender
Tumorzellen und zur In-vivo-Diagnose von Metasta-
sen," Photonics Lasers Med. 2(1), 27–35 (2013).

18. E. I. Galanzha et al., \In vivo magnetic enrichment
and multiplex photoacoustic detection of circulating
tumour cells," Nat. Nanotechnol. 4(12), 855 (2009).

19. E. I. Galanzha et al., \In vivo, noninvasive, label-
free detection and eradication of circulating meta-
static melanoma cells using two-color photoacoustic
°ow cytometry with a diode laser," Cancer Res. 69
(20), 7926–7934 (2009).

20. E. I. Galanzha et al., \In vivo acoustic and photo-
acoustic focusing of circulating cells," Sci. Rep. 6,
21531 (2016).

21. I. Georgakoudi et al., \In vivo °ow cytometry: A
new method for enumerating circulating cancer
cells," Cancer Res. 64(15), 5044–5047 (2004).

22. M. V. Khodakovskaya et al., \Complex genetic,
photothermal, and photoacoustic analysis of nano-
particle-plant interactions," Proc. Nat. Acad. Sci.
108(3), 1028–1033 (2011).

23. J.-W. Kim et al., \Golden carbon nanotubes as
multimodal photoacoustic and photothermal
high-contrast molecular agents," Nat. Nanotechnol.
4(10), 688 (2009).

24. S. Lee et al., \Real-time in vivo imaging of the
beating mouse heart at microscopic resolution,"
Nat. Commun. 3, 1054 (2012).

25. Y. Li et al., \Circulation times of hepatocellular
carcinoma cells by in vivo °ow cytometry," Chin.
Opt. Lett. 8(10), 953–956 (2010).

26. Y. A. Menyaev et al., \Optical clearing in photo-
acoustic °ow cytometry," Biomed. Opt. Exp. 4(12),
3030–3041 (2013).

27. Z. A. Nima et al., \Circulating tumor cell identi¯-
cation by functionalized silver-gold nanorods with
multicolor, super-enhanced SERS and photothermal
resonances," Sci. Rep. 4, 4752 (2014).

28. J. Shao et al., \Photothermal nanodrugs: Potential
of TNF-gold nanospheres for cancer theranostics,"
Sci. Rep. 3, 1293 (2013).

29. Y. Suo et al., \Proportion of circulating tumor cell
clusters increases during cancer metastasis," Cyto-
metry A 91(3), 250–253 (2017).

30. X. Wang et al., \Cell counting for in vivo °ow
cytometry signals with baseline drift," J. Innov.
Opt. Health Sci. 10(03), 1750008 (2017).

31. J. Yan et al., \Circulating tumor cells are correlated
with disease progression and treatment response in
an orthotopic hepatocellular carcinoma model,"
Cytometry A 87(11), 1020–1028 (2015).

32. M.-C. Zhong et al., \Trapping red blood cells in
living animals using optical tweezers," Nat. Com-
mun. 4, 1768 (2013).

33. M. Sarimollaoglu et al., \In vivo photoacoustic time-
of-°ight velocity measurement of single cells and
nanoparticles," Opt. Lett. 36(20), 4086–4088 (2011).

34. P. Lasch, D. Naumann, \Spatial resolution in in-
frared microspectroscopic imaging of tissues," Bio-
chim. Biophys. Acta, Biomembr. 1758(7), 814–829
(2006).

35. S. Ram, E. S. Ward, R. J. Ober, \Beyond Rayleigh's
criterion: A resolution measure with application to
single-molecule microscopy," Proc. Nat. Acad. Sci.
USA 103(12), 4457–4462 (2006).

36. F. Tamburini et al., \Overcoming the Rayleigh cri-
terion limit with optical vortices," Phys. Rev. Lett.
97(16), 163903 (2006).

37. Y. Li et al., \Circulation times of prostate cancer
and hepatocellular carcinoma cells by in vivo °ow
cytometry," Cytometry A 79(10), 848–854 (2011).

38. Y. Ding et al., \Signal and depth enhancement for in
vivo °ow cytometer measurement of ear skin by
optical clearing agents," Biomed. Opt. Exp. 4(11),
2518–2526 (2013).

K. Pang et al.

1850024-10

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
8.

11
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

71
.4

3.
25

3.
25

3 
on

 1
0/

16
/1

8.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.


	Algorithm to identify circulating tumor cell clusters using in vivo flow cytometer
	1. Introduction
	2. Materials and Methods
	2.1. Cell preparation
	2.2. Animal preparation
	2.3. IVFC
	2.4. Computer simulation and data processing
	2.5. Intravital imaging

	3. Results
	3.1. Area-based model of single cell
	3.2. Volume-based model of single cell
	3.3. Models of dual-cell cluster
	3.4. Rayleigh criterion and algorithm to identify cell clusters
	3.5. In vivo validation of proposed algorithm with intravital imaging

	4. Discussion
	Conflict of Interest
	Acknowledgments
	References


