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Traditionally, optical microscopy is used to visualize the morphological features of pathogenic
bacteria, of which the features are further used for the detection and identi¯cation of the bacteria.
However, due to the resolution limitation of conventional optical microscopy as well as the lack of
standard pattern library for bacteria identi¯cation, the e®ectiveness of this optical microscopy-
based method is limited. Here, we reported a pilot study on a combined use of Structured
Illumination Microscopy (SIM) with machine learning for rapid bacteria identi¯cation. After
applying machine learning to the SIM image datasets from three model bacteria (including
Escherichia coli, Mycobacterium smegmatis, and Pseudomonas aeruginosa), we obtained a
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classi¯cation accuracy of up to 98%. This study points out a promising possibility for rapid
bacterial identi¯cation by morphological features.

Keywords: Structured illumination microscopy; bacterial classi¯cation; principal component
analysis; support vector machine; random forest.

1. Introduction

Bacteria are microorganisms with typical length of
several micrometers and di®erent shapes (sphere,
rod, spiral, etc.).1 Some bacteria are harmful to
man by causing serious infections and diseases
(thus called pathogenic bacteria). Bacteria detec-
tion and identi¯cation are critical for the diagnosis
and treatment of infectious diseases. Currently,
pathogenic bacteria are usually identi¯ed by: mor-
phological features, physiological and biochemical
characteristics (such as nutritional type and antibi-
otic sensitivity), immunological markers (bacterial
antigen, capsular antigen, etc.), chemical composi-
tion characteristics (for example, fatty acid compo-
sition, ribosomal protein) and genetic markers (such
as 16S rDNA).2 With the advancement in biochem-
ical analysis technology and the progress of nucleic
acid sequencing, a number of bacteria identi¯cation
methods have been commercialized, leading to gen-
eration of commercial products such as assay kits,
equipment and technical services. Although the ac-
curacy of bacteria identi¯cation has been improved
drastically, there are still some limitations in the
practical applications of these methods. For exam-
ple, it requires the use of microbiological techniques
for isolation of pure culture before applying the
physiological and biochemical identi¯cation meth-
ods. On the other hand, the methods based on high-
throughput sequencing technology are usually ex-
pensive, complicated and time-consuming. Hence we
want to eliminate these issues by directly applying
optical microscopy for simplicity and cost e®ective
procedure with high accuracy.

The traditional method based on microscopic
morphology seems to be a simple, fast and eco-
nomical way for bacteria identi¯cation, especially
for some bacteria with unique structural features.3

However, the development of this method is slow,
mainly due to the limited morphological features
visualized by conventional optical microscopy
and the absence of standard pattern image data-
base. Furthermore, this microscopy-based method
usually relies on manual bacteria identi¯cation

which su®ers from time-consuming and training-
dependent identi¯cation.

In recent years, the advent of super-resolution
microscopy techniques, such as Stimulated Emission
Depletion (STED) Microscopy, Stochastic Optical
Reconstruction Microscopy (STORM), Photo-
activated Localization Microscopy (PALM) and
Structured Illumination Microscopy (SIM), has ex-
tended the application range of conventional optical
microscopy beyond the di®raction limit and achieved
more structural details for di®erent applications.4 It
is noteworthy that SIM technology is advantageous
for imaging bacterial morphology without any fur-
ther requirements of biological sample preparation.
In the meantime, the rapid development of machine
learning is helpful for a lot of applications, including
but not just limited to the applications in the bio-
medical ¯eld.5 Therefore, it is highly possible that
combining SIM technology with machine learning
could provide a rapid and automatic way for bacte-
rial identi¯cation with higher accuracy than the
conventional microscopy-based method.

Here we reported a pilot study of combining SIM
technology with machine learning for rapid bacteria
identi¯cation. We ¯rstly used SIM technology to
image the ¯ne structures of three model bacteria,
including Escherichia coli (E. coli), Mycobacterium
smegmatis, and Pseudomonas aeruginosa. Then, we
applied classical algorithms in the ¯eld of machine
learning to extract morphological features of these
bacteria. Finally, we established a machine learning
system for rapid bacteria detection and identi¯ca-
tion. This study might open a new avenue for rapid
clinical diagnosis of pathogenic bacteria by addres-
sing the limitation in available morphological fea-
tures and identi¯cation accuracy.

2. Materials and Methods

2.1. Bacterial culture and sample

preparation

Three di®erent bacteria, E. coli MG1655, Myco-
bacterium smegmatis MC155, and Pseudomonas
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aeruginosa PAO1, were used in this study.
MG1655 and PAO1 were cultured in Luria–Bertani
(LB) broth. MC1552 was grown in 7H9 (Mid-
dlebrook) supplemented with 10% OADC(BD).
Cells were grown overnight to attain OD600 of 0.5,
then 200�l of broth culture harvested, and sus-
pended in 50�l PBS. Staining of the bacterial
membrane was performed by incubating with
NanoOrange (Invitrogen, 1/10 v/v) for 30min at
room temperature.6 Because NanoOrange exhibits
very-weak °uorescence when it is not binded to
membrane, we directly spot 3�l of this suspension
onto a poly-L-lysine-treated glass coverslip without
washing.

2.2. SIM imaging

A Nikon Structured Illumination Microscope
(N-SIM) was used for super-resolution microscopy
imaging of the bacteria. Images were captured with
an EMCCD camera (Andor iXon DU-897) and a
100 � 1.49 NA TIRF objective (Nikon CFI Apo
TIRF). The °uorescence was excited by a 488 nm
laser and cleaned by a bandpass emission ¯lter
(500–545 nm). Image acquisition and reconstruction
were performed with Nikon NIS-Elements software
in SIM and wide-¯eld mode, respectively.

2.3. Methods for machine learning

2.3.1. Image segmentation and negative

samples generation

Firstly, we used the watershed algorithm7 in the
open-source computer vision library — OpenCV8 to
segment the SIM images into several target bacte-
rium regions. Then, we reproduced standard images
with a size of 250 � 250 pixels, consisting of a seg-
mented target bacterium in a noise-free back-
ground, for model training. In addition, since some
nonbacterial images were needed in the negative
regions during the model training process, we
manually selected some sub-regions in the SIM
images as a reference area. These sub-regions in-
cluded as much noise types as possible and do not
contain any bacteria. Finally, a su±cient number of
negative samples with the same size (250 � 250
pixels) were generated by random selection from
these sub-regions.

2.3.2. Algorithm for feature extraction

Feature extraction determines the e±ciency of
model selection. If an image is input directly as a
vector rather than extracted features in the classi-
¯er training process, extra computing time and
resources will be required due to the high data
dimension. And, for most classi¯cation models, high
data dimension usually reduces the e±ciency of
classi¯cation. After considering the characteristics
of our SIM images, we selected Principal Compo-
nent Analysis (PCA)9 method to extract the alge-
braic features of the images. This method reduces
the dimension of the SIM images to acceptable sizes
for classi¯er training.

2.3.3. Algorithm for classi¯cation

We selected three classi¯er models in this study:
Support Vector Machine (SVM), K-Nearest
Neighbors (KNN) and Random Forest. SVM is a
widely used classi¯er model in computer vision with
excellent classi¯cation performance.10 KNN is a
relatively simple classi¯er, where the main idea is to
classify a new data point from the nearest K data
points.11 Random Forest is based on voting from
a combination of multiple decision trees,12 and is
capable of reducing the impact of noise and the
possibility of over-¯tting.13

Among the three classi¯ers, Random Forest and
KNN support multi-classi¯cation, while the stan-
dard SVM is a two-class model and thus needs to
combine with a suitable strategy to become appli-
cable for multi-classi¯cation tasks. Here we apply
one-vs-rest14 strategy to SVM for this purpose.
All of the three classi¯ers are derived from the open-
source Python machine learning library — sklearn15

that provides the classi¯er codes.

2.4. Evaluating the classi¯cation

models

Accuracy and F1-Score were used to evaluate the
classi¯cation performance of the classi¯er models.
For binary-classi¯cation, the Accuracy and F1-Score
were calculated from Eqs. (1)–(4), where \TP",
\FP", \TN", and \FN" represent True Positive,
False Positive, True Negative, and False Negative,
respectively:

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
; ð1Þ
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Precision ¼ TP

TPþ FP
; ð2Þ

Recall ¼ TP

TPþ FN
; ð3Þ

F1 ¼ 2 � 1
1

Recall þ 1
Precision

: ð4Þ

For multi-classi¯cation, the evaluation can be
derived from the binary-classi¯cation. Assuming
that k types of data need to be classi¯ed, and
that \TPi", \FPi", \TNi", and \FNi" represent
the True Positive, False Positive, True Negative,
and False Negative of the ith data, respectively, we
can calculate Accuracy, Precision and Recall with
Eqs. (5)–(7), and then F1-score using Eq. (4):

Accuracy ¼
Pk

i¼1 TPi þ
Pk

i¼1 TNi
Pk

i¼1 TPi þ
Pk

i¼1 TNi

þ Pk
i¼1 FPi þ

Pk
i¼1 FNi

; ð5Þ

Precision ¼
Pk

i¼1 TPi
Pk

i¼1TPi þ
Pk

i¼1 FNi

; ð6Þ

Recall ¼
Pk

i¼1TPi
Pk

i¼1 TPi þ
Pk

i¼1 FNi

: ð7Þ

3. Result and Discussion

3.1. Resolution estimation

We used 140 � 5 nm \GATTA-SIM" nanorulers
(Gattaquant) to characterize the performance of
SIM (Fig. 1). This kind of nanorulers carries two
°uorescent markers at each end and is an ideal

sample to quantify the lateral resolution of our SIM
system. As shown in Figs. 1(a) and 1(b), SIM can
clearly resolve the ¯ne structure of the nanorulers.
In contrast, conventional °uorescence microscopy
provides only blurry, undistinguishable images
(Fig. 1(c)). The distance between the two °uores-
cent spots in Fig. 1(b) was estimated to be 138 nm
(Fig. 1(f)), which is consistent with the size of the
nanoruler (140 � 5 nm). We also performed direct
experimental comparison between the SIM and
conventional °uorescence microscopy imaging of a
bacterium, and observed signi¯cant improvement of
resolution in the SIM image (Figs. 1(d)–1(e)). With
SIM imaging, we can obtain more morphological
features from SIM images which are bene¯cial for
subsequent machine learning.

3.2. Preparation for machine learning

3.2.1. Standard images for machine learning

The SIM images of three types of bacteria, including
E. coli MG1655 (178 images), Mycobacterium
smegmatis MC155 (168 images), Pseudomonas
aeruginosa PAO1 (202 images), were acquired with
a Nikon N-SIM with 50–100ms exposure and 100
EM gain. Representative SIM images are shown in
Fig. 2(a). The bacteria in the SIM images were
segmented into individual positive images contain-
ing only one bacteria (Figs. 2(b) and 3). Negative
images (Fig. 2(b)) were also generated using the
procedures described in Sec. 2.3.1. Both the positive
and the negative images had the same size of 250 �
250 pixels. Table 1 shows the number of raw images
and positive images in this study.

Fig. 1. (Color online) SIM and conventional °uorescence microscopy images of GATTA-SIM nanoruler and E. coli. (a) SIM image
of GATTA-SIM nanorulers. (b) Enlarged SIM and (c) conventional °uorescence images of the boxed regions in (a). (d) SIM and (e)
conventional °uorescence microscopy images of a representative bacterium. (f) Line pro¯le of the nanoruler image indicated by the
arrowhead in (b). The blue dots show the experimental data, and the red line is for Gaussian ¯ts.
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3.2.2. Structural features for bacteria
identi¯cation

In this study, we used PCA to extract the structural

features of the bacteria and obtained the eigenvec-

tors for each type of bacteria. Figure 4(a) shows

four of the most important eigenvectors with the

Fig. 3. Flowchart of strategy for generating positive samples.

(a)

(b)

Fig. 2. Representative SIM images of the bacteria. (a) Raw SIM images of E. coli (left), Mycobacterium smegmatis (middle) and
Pseudomonas aeruginosa (right). (b) Resized positive images for a standard training library.

Table 1. A summary of the number of raw images and
positive images.

Raw images Positive images

E. coli 178 953
Mycobacterium smegmatis 168 538
Pseudomonas aeruginosa 202 1441

Rapid bacteria identi¯cation
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(a) (b)

Fig. 4. (a) The representative eigenvectors of the bacteria and (b) the relationship between the number of eigenvectors and the
classi¯cation accuracy.

(a)

(b)

Fig. 5. Flowchart of strategy used for model classi¯cation and training. (a) The strategy of classi¯cation. (b) The pipeline of
classi¯er training.
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largest contribution to the variances during PCA.
The eigenvectors for each type of bacteria are dif-
ferent, and thus can be used to identify the type of
the bacteria. Furthermore, to ¯nd out the best
number of eigenvectors for bacteria classi¯cation,
we quanti¯ed the dependence between the number
of eigenvectors and the classi¯cation accuracy
(Fig. 4(b)). The classi¯cation accuracy improved
rapidly by increasing the number of eigenvectors,
and then became stable after the eigenvectors in-
creased to 40. In this study, we determined to set
the number of eigenvectors to 100 to obtain highly
stable results.

3.3. Bacteria identi¯cation strategy

For the bacteria identi¯cation, it is important to
determine an optimal algorithm for feature ex-
traction and a suitable classi¯cation classi¯er.
Figure 5(a) shows the strategy to classify bacteria
image: Firstly the structural features of the image is
extracted, then the features are sent to a ¯rst clas-
si¯er which is used to determine whether the image
belongs to any kind of bacteria. If the conclusion is
\Yes", the structural features are further sent to a
second classi¯er for further determination of the
types of the bacteria.

The pipeline shown in Fig. 5(b) is used for clas-
si¯er training. First of all, SIM images of bacteria
were segmented and labeled as positive samples.
Then, negative samples are generated from the
same raw images. Finally, the structural features for
both positive and negative samples were extracted
and used for classi¯er training.

3.4. Bacteria identi¯cation
performance

3.4.1. Identi¯cation performance

The strategy of cross-validation16 was used to test
the e®ect of classi¯er. We found that the SVM al-
gorithm used in this study (Classi¯er one) was
su±cient to distinguish the positive images from the
negative images. In a ¯ve-fold cross validation
testing, the accuracy and F1-score of classi¯cation
were both above 99%.

Classi¯er two was responsible for identifying
the type of di®erent bacteria. We tested the iden-
ti¯cation performance of three classi¯ers: SVM,
KNN and Random Forest. The results for

multi-classi¯cation were shown in Table 2. The
parameters used in the classi¯er models were pre-
sented in Table 3. After carefully optimizing the
parameters, all of the classi¯ers provided excellent
Accuracy and F1-Score (> 95%), while SVM pre-
sents the best performance.

The confusion matrices for a representative
multi-classi¯cation test are shown in Fig. 6(a),
which allows a clear visualization on the identi¯-
cation performance of the classi¯ers. To further
understand the classi¯ers' capability on di®erenti-
ating the bacteria types, we performed a binary-
classi¯cation test. From the results in Fig. 6(b),
we concluded that the classi¯ers have no speci¯city
for the bacteria.

3.4.2. Time performance

The time performance is also an important factor
for choosing a good classi¯er. Here, with the same
training and test datasets, the time performance
of the classi¯cation models is similar (shown in
Table 4), but Random Forest seems to be less e±-
cient than the other two classi¯ers.

Table 3. Parameters of each classi¯er model.

Parameters

SVM Gamma: 0.0001
C: 6000

Kernel: RBF
Random Forest Min samples leaf: 1

Min samples split: 4
KNN Neighbor: 4

Notes: (1) Gamma represents Gamma function
value, C is for Penalty parameter value, Kernel
indicates Kernel function type, and RBF is
abbreviation for Radial basis function; (2) Min
samples leaf is for leaf nodes with the least
number of samples, and Min samples split is for
the least number of samples when the internal
node is divided; (3) Neighbor is for the number
of nearest points.

Table 2. Five-fold cross validation testing results.

Accuracy F1-Score

SVM 0.9836 � 0.0065 0.9826 � 0.0050
Random Forest 0.9703 � 0.0096 0.9718 � 0.0068
KNN 0.9683 � 0.0139 0.9723 � 0.0102

Rapid bacteria identi¯cation
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3.4.3. Robustness performance

In real applications, the SIM images of the bac-
teria may contain di®erent level of noises. In this
regard, we tested the robustness of the classi¯ers
under three types of noises: bar mask, square
mask and Gaussian noise (shown in Fig. 7(a)).
We ¯rstly added these noises to original images
and then performed the same bacteria identi¯ca-
tion processes to the new images containing
noises. Figure 7(b) shows the testing results.

We observed that SVM was sensitive to the bar
and Gaussian noises, KNN was sensitive to the
Gaussian noise, and Random Forest was robust
to all of the noises.

3.5. Comparison of bacteria
identi¯cation performance

To investigate the superiority of SIM's high reso-
lution, we trained classi¯cation model using the
images captured by normal °uorescence micro-
scopy. Figure 8 shows that for original image SIM
improved accuracy slightly. However, for the de¯-
cient images, SIM is better than normal °uores-
cence microscopy in most instances. This shows
that SIM images improved the robustness of all
three kinds of classi¯cation models and the classi-
¯cation accuracy.

(a) (b)

Fig. 6. The representative confusion matrices (e.g., in SVM confusion matrix, of the 106 actual E. coli, the classi¯er predicted that
two were PA, and of the 106 MS, it predicted that two were E. coli and three were PA). (a) Confusion matrices for the classi¯ers in
the multi-classi¯cation test. (b) Confusion matrices in the binary-classi¯cation test. E. coli is an abbreviation for E. coli, MS is for
Mycobacterium smegmatis and PA is for Pseudomonas aeruginosa.

Table 4. Time performance of di®erent classi¯cation models.

Training time (s) Prediction time (s)

SVM 17.5802 � 1.8315 0.1886 � 0.0059
Random Forest 18.2690 � 1.2241 0.2289 � 0.0302
KNN 16.3916 � 1.2523 0.2183 � 0.0167
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3.6. Cost performance

The cost performance is an important reference
factor for rapid clinical diagnosis of pathogenic
bacteria. Based on local market, we provided a

comparison between biochemical, genotypic analysis

method and the SIM-based method (shown in

Table 5). It shows that this study is cost e®ective, less

time-consuming and less technological demanding.

Fig. 8. (Color online) Comparison of classi¯cation accuracy between SIM images and normal °uorescence microscopy (Normal-
FM) images.

(a)

(b)

Fig. 7. (Color online) The robustness of di®erent classi¯ers under three kinds of noises. (a) Original images and the images with
di®erent noises. (b) The testing results.

Table 5. Comparison between biochemical and genotypic analysis method and the SIM
imaging-based method in this study.

Timing (day) Cost* (U) Identi¯cation level Technology required

16S rDNA 5–7 500 Strain þþþ
Ribosomal protein 1–2 500 Strain þþþ
Fatty acid composition 1–2 800–1000 Species þþ
Nutritional type 5–6 800–1000 Species þþ
This study 1–2 50 Species þ

Notes: *The cost is expected according to local market prices.
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4. Conclusion

In this study, we report a new method for bacterial
identi¯cation. This method is based on SIM tech-
nology which is capable of providing more mor-
phological features than conventional °uorescence
microscopy. After applying a machine learning
strategy to the SIM images, we obtain an identi¯-
cation accuracy up to 98%. This study opens new
possibility for rapid bacteria identi¯cation, espe-
cially after further training of more bacteria types
and optimizing labeling strategies and machine
learning algorithms.
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