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Separation of arteries and veins in the cerebral cortex is of signi¯cant importance in the studies of
cortical hemodynamics, such as the changes of cerebral blood °ow, perfusion or oxygen con-
centration in arteries and veins under di®erent pathological and physiological conditions. Yet the
cerebral vessel segmentation and vessel-type separation are challenging due to the complexity of
cortical vessel characteristics and low spatial signal-to-noise ratio. In this work, we presented an
e®ective full-¯eld method to di®erentiate arteries and veins in cerebral cortex using dual-modal
optical imaging technology including laser speckle imaging (LSI) and optical intrinsic signals
(OIS) imaging. The raw contrast images were acquired by LSI and processed with enhanced laser
speckle contrast analysis (eLASCA) algorithm. The vascular pattern was extracted and seg-
mented using region growing algorithm from the eLASCA-based LSI. Meanwhile, OIS images
were acquired alternatively with 630 and 870 nm to obtain an oxyhemoglobin concentration map
over cerebral cortex. Then the separation of arteries and veins was accomplished by Otsu
threshold segmentation algorithm based on the OIS information and segmentation of LSI.
Finally, the segmentation and separation performances were assessed using area overlap measure
(AOM). The segmentation and separation of cerebral vessels in cortical optical imaging have
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great potential applications in full-¯eld cerebral hemodynamics monitoring and pathological
study of cerebral vascular diseases, as well as in clinical intraoperative monitoring.

Keywords: Vessel segmentation; laser speckle imaging; optical intrinsic signals imaging; region
growing algorithm; artery–vein separation.

1. Introduction

Cortical vessel separation is highly valuable in cer-
ebral hemodynamics study, and plays an important
role in clinical diagnostic and therapeutic manage-
ment of a variety of vascular diseases, e.g., cerebral
hemorrhage, stroke, aneurysm, etc.1 Therefore, an
e®ective method is in great need to separate arteries
and veins from cerebral cortical vessels.

The separation of arteries and veins has been
investigated using di®erent methods for vessel-type
identi¯cation, mostly in the separation of retinal
vessels. Li et al. proposed a piecewise Gaussianmodel
for retinal vessels utilizing the central re°ex charac-
teristics to describe the image intensity distribution.2

Narasimha-Iyer et al. developed an automated
methodology to identify arteries and veins from dual-
wavelength retinal fundus images recorded at 570 and
600nm utilizing both structural and functional fea-
tures of the images.3 Mendonca and Campilho pro-
posed a set of four directional di®erential operators for
detecting the vessel centerlines and then applied a
binary morphological reconstruction method and a
region growing process to segment the vessels.4

However, there has been few literature reviews on
the identi¯cation of cortical vessel types based on the
di®erences between arteries and veins in di®erent
aspects. For example, Wang et al. presented a
method for separating cortical arteries and veins in
optical intrinsic signals (OIS) using 0.1-Hz oscillation
at the wavelengths of 546 and 630 nm. Multiscale
matched ¯lter and a single Gaussian model were
employed to acquire di®erent vessel types.5 Zhong
et al. applied a method of independent component
analysis (ICA) to OIS images and separated the
arterial and venous regions. They constructed a fea-
ture vector combining heartbeat and respiration
features for the fuzzy c-means clustering method and
determined the vessel types using morphological
intersection points.6 Hu et al. identi¯ed the vessel-
type based on the phenomenon that the spectral
distribution ofOISwas di®erent between arterial and
venous vessels.7 Vanzetta et al. identi¯ed di®erent
corticalmicrovascular compartments in anesthetized

cats by the ratio image of twowavelengths at 540 and
560 nm, which were corresponding to the peaks of
oxyhemoglobin (HbO)anddeoxyhemoglobin (HbR),
respectively. Yet the absorption coe±cients di®er-
ences at these twowavelengths for HbR andHbO are
not high enough for artery–vein separation in low
signal-to-noise ratio images, e.g., rodent cerebral
cortical vessels.8 Nevertheless, due to the low signal-
to-noise ratio, these OIS-based vessel-type separ-
ation methods have a fair performance in spatial
resolution.

Compared with other imaging techniques, laser
speckle imaging (LSI) provides a two-dimensional
real-time, full-¯eld cerebral blood °ow (CBF) vel-
ocity map with high spatiotemporal resolution.9 The
CBF velocity information was acquired by laser
speckle contrast analysis (LASCA). While OIS ima-
ging is a useful tool for functional brain imaging, it
can obtain oxygen distribution information in vessels
and tissues.10 The di®erences in the concentration of
oxygen–hemoglobin between arteries and veins could
be used to di®erentiate arteries and veins.

In this paper, we proposed a separation method
using dual-modal optical imaging techniques, i.e.,
LSI and OIS, to achieve a high spatial resolution for
vessel-type separation. We extracted the vessel
pattern based on LSI using region growing algor-
ithm. Then OIS images were acquired at the
wavelengths of 630 nm and 870 nm, so that we
might distinguish the concentration of HbO in
arteries and veins by computing the di®erences of
re°ected light intensity at 630 nm and at 870 nm.
Finally, arteries and veins would be separated by
Otsu thresholding algorithm. Besides, we used area
overlap measure (AOM) to evaluate the segmenta-
tion and separation performance.

2. Materials and Methods

2.1. Animal preparation

The experimental protocols in this study were
approved by the Animal Care and Use Committee
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of Med-X Research Institute of Shanghai Jiao Tong
University. One male adult Sprague-Dawaley (SD)
(240 g) rat was used in the experiment. Firstly, the
rat was anesthetized with chloral hydrate (350mg/
kg, IP, 7%) and then mounted to a stereotaxic frame
(Benchmark DeluxeTM, MyNeurolab.com, St.
Louis, MO). During the experiment, the body tem-
perature of the animal was maintained at 37� 0:2�C
using a DC control module (FHC Inc., Bowdoinham,
ME, USA) and a heating pad. After removing the rat
hair and epidermal tissue, the skull between bregma
and lambda was polished using a dental drill (Fine
Science Tools Inc., North Vancouver, Canada) and
sterilized with saline until the cerebral vessels were
clearly visible.

2.2. Data collection

The raw images were captured through the dual-
modal optical imaging system (see Fig. 1), which
consisted of a CCD camera (12 bit, 24 fps, exposure
time, 5ms), one lens with a focal length of 8mm
(C240TM, Thorlabs), two light emitting diodes
(LED630E, Thorlabs and LED870E, Thorlabs)
powered by two driver modules (LEDD1B, Thor-
labs), a laser diode (L780P010, Thorlabs) powered
by a driver module (LDC220C, Thorlabs) and a
computer for acquiring image data.

The cortical vessel network was focused and
clearly seen by ¯nely tuning the lens. Then the raw
speckle images and OIS images at two wavelengths
were alternatively captured at a sampling frequency
of 24 fps for 200 frames.

2.3. Principles of LSI and OIS

LSI is a real-time, full-¯eld and high-resolution CBF
imaging technology, utilizing the scattering prop-
erty of the moving particles to coherent light to
obtain a two-dimensional CBF velocity distribution
map.11 Speckle pattern can be described using
statistics since it is a random interference pattern.

According to the principle of LSI,12 speckle con-
trast K and the CBF velocity obeyed the following
relations

K ¼ � 0:5 � c
T

þ � 2
c

2T 2
exp � 2T

� c

� �
� 1

� �� �0:5

; ð1Þ

where � represents the loss of correlation deter-
mined by the ratio of the detector size to the speckle
size and polarization characteristics of scattered
light, �c denotes the correlation time, T is the ex-
posure time of CCD. Bonner and Nossal13 demon-
strated that the correlation time

� c ¼ 1=ak0v; ð2Þ
where K0 is the light wavenumber, a is determined
by the particle Lorentzian width and scattering
properties, and v is the particle velocity. When K 2

is limited to very small values, e.g., [0, 0.1],14 it
could be induced from Eqs. (1) and (2) that

v / 1

K 2
: ð3Þ

Equation (3) indicates that CBF velocity is inver-
sely proportional to the square of speckle contrast.
Therefore it is obvious that the smaller the contrast,
the greater the CBF velocity in the two-dimensional
LSI.

Fig. 1. Illustration of dual-modal optical imaging.
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Changes in neuronal activity in the cerebral
cortex are coupled to changes in the blood °ow and
oxygenation, which provide signals that can be
measured by OIS imaging.15 These intrinsic signals
measured are now considered to primarily originate
from variations in the concentrations of oxyhe-
moglobin ([HbO]) and deoxyhemoglobin ([HbR]).16

Although the spatial distribution of functional ac-
tivations can be qualitatively mapped with single-
wavelength OIS, no quantitative information about
concentration of total hemoglobin ([HbT]), oxy-
genation or blood °ow could be obtained. To
quantify relative [HbO] and [HbR], we used a
method of multiple wavelengths.17

It is evident in Fig. 218 that the absorption
coe±cient variation of HbR is much larger than
that of HbO due to the fact that the absorption of
HbR is more sensitive to wavelength than HbO
within the range from 550 to 900 nm, which can be
used to detect the [HbO]/[HbR].

2.4. Data preprocessing

Firstly, laser speckle contrast images were obtained
by random process estimator (RPE) approach after
noise reduction and registration.14 As shown in
Fig. 3, the vascular network had a low gray contrast
and was interfered by various noises due to

Fig. 2. The molar absorption coe±cient. Data is from the website: http://omlc.ogi.edu/spectra/hemoglobin/.

(a) (b) (c)

Fig. 3. LSI and OIS images (a) LSI image (b) OIS image at 630 nm (c) OIS image at 870 nm.
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respiration, heartbeat and 0.1-Hz low-frequency
vessel motion.19 Hence noise reduction and image
enhancement were essential to achieve good vessel
segmentation performance.

(1) Noise Reduction
Noise reduction was accomplished by a linear ani-
sotropic Gaussian ¯ltering algorithm20 within a
sliding window (3� 3) along orientations of 0�,
45�, 90�, 135�, 180�, 225�, 270�, 315�, respectively.
Because 0� and 180�, 45� and 225�, 90� and 270�,
135� and 315� are in the same lines respectively, we
only investigated gray-intensity di®erences along
the orientations of 0�, 45�, 90� and 135� regardless
of the actual vessel directions. Mean square error
(MSE) along each orientation was used to deter-
mine the vessel direction

MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðxi � �Þ2
vuut ; ð4Þ

where xi represents the ith pixel gray level, N rep-
resents the pixels number and � represents the
mean gray level in each direction. The orientation
with minimal MSE would be considered as the
vessel direction. Then we implemented convolution
adaptive ¯lter with Gaussian kernel to process laser
speckle contrast images.21

Iðx; yÞ ¼
Z 1

1

Z 1

1
Iðx 0; y 0ÞGðx� x 0; y

� y 0Þdx 0dy 0; ð5Þ
where Iðx 0; y 0Þ denotes the input image, G is the
Gaussian kernel and Iðx; yÞ presents the output
image.

(2) Image Enhancement
The laser speckle contrast images were enhanced by
utilizing enhanced laser speckle contrast analysis
(eLASCA) algorithm based upon monotonic point
transformation (MPT), which not only improved the
CBF visualization but also reserved the CBF varia-
bility. Technical details have been reported inRef. 22.

The three-dimensional K 2 was reshaped into
one-dimensional variable fðiÞ (i ¼ 1; 2 . . .M�
N � L) by the following equation22:

k2ðm;n; lÞ ¼ fðmþ ðn� 1Þ �M þ ðl� 1Þ
�M �NÞ; ð6Þ

where M �N is the spatial size of an image, L
represents the number of total frames and m 2

½1;M �;n 2 ½1;N �; l 2 ½1;L�: Then Eq. (7) trans-
formed f into fe within a much broader range from
0 to 1. In practice, fe could be approximately
computed as22

fe ¼
Numf

M �N � L
� 100%; ð7Þ

where Numf denotes the number of pixels with
contrast values not more than f.

Finally, the enhanced laser speckle contrast
images were obtained by mapping fe back to three-
dimensional K 2 according to Eq. (6).

2.5. Vessel segmentation

Cortical vessel segmentation was based on seeded
region growing (SRG) algorithm in the following
steps.

(1) Selecting Seed Points
The growing points, i.e., seed points, were manually
selected by visual inspection of the images as human
eyes were the gold standard to distinguish the pixels
representing the vessel network. To speed up the
segmentation, each image was divided into top and
bottom halves so that both parts could use SRG
simultaneously with three seed points in each.

(2) The Homogeneity Criterion
The pixels were merged into the growing region
based on an appropriate homogeneity criterion, e.g.,
gray level value, region connectivity or statistical
parameters.23 In this work, the homogeneity cri-
terion was based on the vessel gray level value, and
�ðx; yÞ was de¯ned as the di®erence between merged
region and its adjacent pixels,24

�ðx; yÞ ¼ jIðx; yÞ �meanðx 0;y 0Þ2AfIðx 0; y 0Þgj; ð8Þ
where A is the merged region, Iðx 0; y 0Þ is the gray
level of the pixel in A, Iðx; yÞ is the gray level of the
adjacent point around A. The gray level value at
the lowest trough of the image gray histogram was
selected as the initial threshold. If �ðx; yÞ is less than
the threshold, this pixel would be merged into the
growing region, otherwise the pixel would not be
merged. The optimal threshold was determined by
estimating the degree of region overlap, i.e., AOM
described in next section, between the segmented
images based on algorithm and the manually seg-
mented images. When the degree of region overlap
reached the maximum, we regarded the correspond-
ing threshold as the optimal threshold. The above
process was repeated until all the pixels were tested.

Separation of cortical arteries and veins
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(3) The Assessment of Segmentation
It was necessary to quantitatively analyze the seg-
mentation performance by comparing the result
based on SRG with that by manual segmentation.
We used AOM as the criterion for similarity
measurement,25

AOMðA;BÞ ¼ areafSA \ SBg
areafSA [ SBg

; ð9Þ

where SA represents the segmentation region with
SRG and SB represents the manual segmentation
region. The manual segmentation was based on
hand-sketching by a person with neurovascular
observation knowledge. AOMðA;BÞ ¼ 1 indicates
thatSA andSB are completelymatching, whileAOM
ðA;BÞ ¼ 0 means that SA and SB have no overlap.

2.6. The separation of arteries

and veins

After the segmentation of vessels, we focused on the
pixels of segmented cortical vessels by multiplying
the OIS image with the well-segmented vessel
binary image.

(1) The Ratio of Dual-Wavelength OIS Images
In Fig. 2, we noticed that the absorption coe±cient
of HbR was obviously higher than that of HbO at
630 nm, implying that this wavelength was sensitive
to the concentration change of HbR. And the
absorption coe±cient of HbR at 870 nm was much
lower than that of HbO, indicating that 870-nm
light was sensitive to the concentration change of
HbO.3,26

Therefore, we de¯ned the ratio R of gray level
intensity at 630 nm to that at 870 nm:

R ¼ G630

G870

; ð10Þ

where G630 and G870 represent the intensities of
re°ected light at 630 and 870 nm, respectively. By
applying dual-wavelength OIS imaging, we could
get the distribution of relative [HbO] and [HbR] in
cortical vessels for further artery–vein separation.

(2) Automatic Segmentation by Otsu Thresholding
We accomplished the separation of arteries and veins
using the ratio R of dual-wavelength OIS images by
Otsu automatic thresholding algorithm.27

Firstly, the image was divided equally into two
parts in order to determine the threshold more
accurately. If each OIS image (R) has N pixels with

L gray level, the probability pi of each gray level
could be denoted as

pi ¼
fðiÞ
N

ði ¼ 1; 2; . . . ;LÞ; ð11Þ

where fðiÞ represents the number of pixels at ith
gray level. An initial threshold t (1 < t < L) was
used to divide the gray levels into two groups C1

and C2, where C1 contained the gray levels from 1 to
t and C2 contained the gray levels from tþ 1 to L.

The between-class variance �2 was de¯ned to
determine the optimal threshold t 0:

�2 ¼ w1ðu1 � uÞ2 þ w2ðu2 � uÞ2; ð12Þ
wherew1 andw2 represent total probabilities of class
C1 and classC2, respectively, and u is themean of the
whole gray levels. The threshold t 0 corresponded to t
when �2 reached the maximum value.

After the separation, AOM would be used to
assess the separation performance.

3. Results

3.1. Vessel segmentation using LSI

Figure 4(c) is the segmented cortical vessel net-
work. It is shown that major vessels were well seg-
mented while some of the small vessels were missed.
This is due to the fact that region growing algor-
ithm is based on gray levels of the image. But from
Fig. 4(a), we could hardly di®erentiate the small
vessels from capillary bed. In our work, we selected
an appropriate threshold for segmenting the major
vessels.

According to Eq. (9), AOM between SRG-based
separation [see Fig. 4(c)] and manual separation [see
Fig. 4(b)] reached 76.59% (see Table 1), which
indicated that we achieved a good segmentation
performance.

3.2. The separation of arteries and veins

Figures 5(a) and 5(b) show the OIS vessel network
at 630 nm and 870 nm, respectively. We noticed
that it was very di±cult to distinguish arteries and
veins by a single-wavelength OIS image. The ratio
R of OIS Images is shown in Fig. 5(c), in which the
gray intensities in veins are obviously lower than
those of arteries. Figure 5(d) illustrates the cortical
vessel artery–vein separation using our proposed
method, in which the blue vessels represent veins

L. Zhao et al.
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(a) (b) (c) (d)

Fig. 5. The separation of arteries and veins (a) OIS vessel network at 630 nm (b) OIS vessel network at 870 nm (c) The ratio R of
OIS images (d) The artery–vein separation (the blue vessels represent veins and the red vessels represent arteries).

(a) (b) (c)

Fig. 4. Vessel segmentation (a) LSI (b) the manual segmentation (c) the segmentation with SRG.

(a) (b) (c) (d)

Fig. 6. Arteries and veins (a) arteries criterion (b) the segmentation of arteries (c) vein criterion (d) the segmentation of veins.
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and the red vessels represent arteries. It was found
that the major arteries and veins over the major
somatosensory area were correctly separated
although there were a few errors in the overlapping
regions. Due to the in°uence of CCD depth of ¯eld,
pia mater arteries and capillaries were also mis-
takenly classi¯ed into cortical vessels. Also, a small
number of veins near the window edge were wrongly
segmented as arteries due to higher noise level
around the window edge area.

In Fig. 6, the arteries and veins criteria were also
separated by experts according to their experiences.
The overlaps of the arteries and veins were computed
by Eq. (9) and the AOMs of them were 57.39%
and 64.99% (see Table 1), respectively. As shown in
Fig. 6(b), the segmentation of arteries was not per-
formed optimally, among which a small part of
veins were wrongly classi¯ed into arteries. By
comparing Figs. 6(c) with 6(d), we found the major
veins were well separated out except the edge area
with low signal-to-noise ratio.

4. Discussion and Conclusions

In this work, we proposed an e®ective and e±cient
method for cortical artery–vein separation combining
LSI with OIS imaging. Compared with other vessel-
type classi¯cation methods, this method took ad-
vantage of full-¯eld high spatiotemporal resolution
LSI to segment cortical vessel network, thus achieving
better performance than only OIS-based segmenta-
tion. Yet one limitation is that the SRG is a semi-
automated segmentation because the seeds were
selected manually. Another limitation was that the
small vessels were not well segmented due to low
signal-to-noise ratio between small vessels and the
capillary bed while the segmentation of major vessels
worked well. The classi¯cation of veins was better
than arteries especially in vessel overlapping area.
Because major vessels should be paid more attention
during neurosurgery, our method provides a con-
venient and e±cient way to the artery–vein separ-
ationwith potential clinical and research applications.
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