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Finding subtypes of cancer in breast cancer database is an extremely di±cult task because of
heavy noise by measurement error. Most of the recent clustering techniques for breast cancer
database to achieve cancerous and noncancerous often weigh down the interpretability of the
structure. Hence, this paper tries to ¯nd e®ective Fuzzy C-Means-based clustering techniques to
identify the proper subtypes of cancer in breast cancer database. This paper obtains the objective
function of e®ective Fuzzy C-Means clustering techniques by incorporating the kernel induced
distance function, Renyi's entropy function, weighted distance measure and neighborhood terms-
based spatial context. The e®ectiveness of the proposed methods are proved through the ex-
perimental works on Lung cancer database, IRIS dataset, Wine dataset, Checkerboard dataset,
Time Series dataset and Yeast dataset. Finally, the proposed methods are implemented suc-
cessfully to cluster the breast cancer database into cancerous and noncancerous. The clustering
accuracy has been validated through error matrix and silhouette method.
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1. Introduction

Recently clustering techniques are widely used in
analyzing subtypes of cancer in cancer medical
database to help physicians for treatment plan. This
paper deals with the breast cancer database
that contains two di®erent types of cancers using
e®ective fuzzy C-means techniques. Breast cancer is
the second leading cause of cancer death in the
world1,2 and it is the leading cause of cancer deaths
among women aged 40–59.3 Breast cancer is the
most frequently diagnosed cancer in women in the
United States. About 800,000 new cases of breast
cancer is diagnosed each year among Taiwanese
women, and breast cancer is the second most
common form in Taiwan according to cancer
report.2 In India, cancer is one of the leading causes
of deaths and due to cancer disease around 3 lakh
deaths occur annually in India.4 Hence, proper5

diagnosing method for analyzing the breast cancer
database is very important to reduce the cancer
death. There are number of techniques involved to
identify the subtypes of breast cancer patterns.6–8

Recently unsupervised clustering method of Fuzzy
C-means is the most widely used method in clus-
tering cancer medical databases.9 Unsupervised
clustering divides the dataset into several clusters
based on the similarity between the data objects, it
does not require any prior information about the
data objects for clustering them into available
structures.10–12 Due to the uncertain nature of
many practical real world problems, fuzzy set the-
ory13 based Fuzzy clustering techniques10,14 have
been proposed by researchers. The most widely
used conventional fuzzy C-means is incapable in
clustering nonlinear structured medical data-
base15,16 due to its Euclidean norm to measure the
similarity between the data points. Further it fails
to incorporate any information about spatial con-
text, and neighborhood information to cluster the
medical database into meaningful subtypes of can-
cers. Hence, researchers have invented modi¯ed
fuzzy C-means algorithms17–19 in order to deal
the data objects with di®erent noises for facing the
complicated structure of databases, but the
methods did not give expected accuracy in clus-
tering the database into available subtypes.20 To
overcome the drawbacks, this paper formulates
suitable novel fuzzy C-means with e®ective cluster
center initialization in clustering more complicated
structure of medical database. The algorithms of

this paper are obtained by incorporating the
kernel induced distance function, Renyi's entropy,
weighted distance measure and neighborhood
terms-based spatial context. The kernel induced
distance of the proposed objective function converts
the lower dimension of the objects into higher
dimension to have meaningful distance between
objects. The Renyi's entropy, weighted distance
measure and neighborhood terms-based spatial
context of objective function of this paper tries to
reduce the uncertainty in the objects, and balancing
the loss of information in the objects in medical
database. The proposed methods work well with the
dataset which is a®ected by the noises such as
measurement error, faulty equipment and data
transmission error in dataset. The methods elegantly
¯nd the di®erence between cluster centers and data
points by considering the information from neigh-
boring objects with higher dimensional distance
using kernel, and it ¯nds desirable membership for an
object to an appropriate cluster. The neighborhood
information-based clustering algorithms are e®ec-
tively applied to medical and other real life ¯elds by
researchers.21,22 Renyi's entropy with proposed
objective function of fuzzy C-means tries to quantify
the diversity and uncertainty of the boundary of the
subtypes of cancerous portions. The entropy with
proposedmethod helps tomeasure the disorder in the
amount of information that may be gained by pro-
posed systems in clustering the medical database.
There is extensive literature on the applications
of the Renyi's entropy in many ¯elds from biology,
medicine and genetics.23,24 Further Renyi's entropy-
based proposed algorithm performs well on datasets
of nonspherical shape and capable of clustering a
high-dimensional dataset. However, the random
selection of initial prototypes of fuzzy C-means-based
algorithms lead more number of iterations to reach
the termination criterion,25,26 therefore in order to
avoid irrelevant initial random prototypes this paper
introduces a prototype initialization method. This
paper proved the e®ectiveness and strength of the
proposed algorithms in clustering more complicated
medical database through the experimental results
on benchmarks and real database. The rest of this
paper is organized as follows. Section 2 gives a short
form of Kernel-based Fuzzy C-means clustering,
validation method and methodology. In Sec. 3, this
paper presents proposed algorithms KEFCMwd and
KFCMnt online. Section 4 presents Prototypes or
centers knowledge Method. Section 5 reports the
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experimental results on Yeast, Lung cancer, IRIS,
Wine, Checkerboard, Time Series and Breast cancer
datasets. Section 6 gives the conclusion of this paper.

2. Related Works and Methodology

2.1. Kernel-based Fuzzy C-means

Clustering

In the fuzzy C-means algorithm,10 a cluster is
viewed as a fuzzy set in the dataset, X. Thus, each
data element in the dataset will have membership
values with all clusters. The degree of membership,
to which a data point belongs to a cluster, is com-
puted from the distances of the data point to the
cluster prototypes. The membership degrees basi-
cally re°ect the relative inverse squared distance of
the data point to the di®erent cluster prototypes. In
FCM, the proximity of each data, xi, to the cluster
prototypes, vk, is de¯ned as the membership uik of
xi to the kth cluster of X minimizing the following
objective function:

JðU ;V Þ ¼
Xn
i¼1

Xc
k¼1

um
ikjjxi � vkjj2; ð1Þ

where X ¼ fxign
i¼1 � RN is a given set of unlabeled

data; V ¼ fvkg c
k¼1 � RN are the centroids of the

clusters, and m ¼ ½1;1� is the weighting exponent
which determines the fuzziness of the resultant clus-
ters, at m ¼ 1 Fuzzy C-Means fall down to Hard
C-Means, fuzzy partition matrix U ¼ ½uik� is gener-
ated that is of size c� n (c— number of clusters and
n — number of data elements), satisfying the con-
straint

Pc
k¼1 uik ¼ 1; i ¼ 1; 2; 3; . . . ;n. Minimization

of the objective function is achieved by iteratively
optimizing for U and V. The cluster centers and the
memberships are computed as follows:

vk ¼
Pn

i¼1 u
m
ikxiPn

i¼1 u
m
ik

k ¼ 1; 2; 3; . . . ; c; ð2Þ

uik ¼
Xc
j¼1

jjxi � vkjj
jjxi � vjjj

� � 2
m�1

 !�1

;

k ¼ 1; 2; 3; . . . ; c; i ¼ 1; 2; 3; . . . ;n: ð3Þ
The above FCM with distance measure has

drawbacks in clustering complex and large amount
of dataset. Therefore, kernel method is used to
formulate the kernel versions of the Fuzzy C-means
(KFCM) algorithm27–30 to cluster complex data

structure. The data point xi 2 Rm, i ¼ 1; 2; . . . ;n, is
transformed from the original space to a feature
space H by a nonlinear mapping �, it becomes the
following form �ðx1Þ; �ðx2Þ; �ðx3Þ; . . . ; �ðxnÞ. So the
inner product in the original space can be expressed
by theMercer kernel31 asKðxi;xjÞ ¼ ð�ðxiÞ � �ðxjÞÞ.
The Euclidean distance in the feature space can be
represented as follows:

dHðxi;xjÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jj�ðxiÞ � �ðxjÞjj

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðxiÞ � �ðxiÞ � 2�ðxiÞ � �ðxjÞ þ �ðxjÞ � �ðxjÞ

q
:

ð4Þ
The objective function of the KFCM algorithm

can be formulated as follows:

JðU ;V Þ ¼ 2
Xn
i¼1

Xc
k¼1

ðuikÞmð1�Kðxi; vkÞÞ: ð5Þ

2.2. Clustering validation

The silhouette width32,33 is used to validate the
results of proposedmethods in clustering the complex
dataset. The silhouette average value of clusters can
vary between�1 and 1.32–34 These silhouette average
values measure the degree of con¯dence in the clus-
tering assignment of a particular observation, with
well-clustered observations having values near 1 and
poorly clustered observations having values near�1.
The silhouette width sðiÞ of the object i is obtained
using the equation sðiÞ ¼ bðiÞ�aðiÞ

maxfaðiÞ;bðiÞg. In the above

equation aðiÞ is the average distance between the ith

data and all other data in the cluster. bðiÞ is the
smallest average distance between the i-data and all
other data of other clusters. The silhouette average
width of the clusters has been obtained by taking the
average of the silhouette value of points belonging to
the cluster.

2.3. Methodology

The methodology of this paper aims to ¯nd novel
fuzzy clustering techniques in order to reduce the
uncertainty in the objects by loss of information,
measurement error and data transmitter error. This
paper invents kernel fuzzy C-means-based entropy
with weighted distance measure [KEFCMwd] and
kernel fuzzy C-means-based entropy term with
neighborhood term [KFCMnt]. Further this paper
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invents the center or prototype initialization method
to speed up the clustering algorithms. In order to
evaluate the performance of the proposed methods
yeast dataset, lung cancer dataset, IRIS dataset,
wine dataset, time series dataset, checkerboard
dataset and breast cancer dataset are involved in the
experimental works. To identify the strength of the
clustering methods, the clustering accuracy is
obtained by silhouette method and error matrix.

3. Proposed KEFCMwd and KFCMnt

Algorithms

3.1. Proposed KEFCMwd algorithm

The modi¯ed objective function from the standard
fuzzy C-means10 is given by

JðU ; V Þ ¼
Xn
i¼1

Xc
k¼1

um
ikjj ðxiÞ �  ðvkÞjj2; ð6Þ

where  stands as map x� >  ðxÞ 2 F , x 2 X. The
common ground of kernel-based FCM is to map the
input data element into a feature space with higher
dimension via a nonlinear transformation and then
perform FCM in that feature space. And the dis-
tance function can be expressed using inner product
space as jj ðxiÞ �  ðvkÞjj2 ¼ h ðxiÞ;  ðxiÞiþ h ðvkÞ;
 ðvkÞi � 2h ðxiÞ;  ðvkÞi, where i ¼ 1; 2; . . . ;n, and
k ¼ 1; 2; . . . ; c. We adopt hyper tangent Function to
evaluate the distance, i.e.,  ðxi; vkÞ expressed as
Hyper Tangent function

 ðxi; vkÞ ¼ 1� tanh
�jjxi � vkjj2

wk

� �

where wk is the weighted mean distance in cluster k,
and is given by

wk ¼
Pn

i¼1 uikjjxi � vkjj2Pn
i¼1 uik

� � 1
2

: ð7Þ

Using the expression (7) we obtained  ðxi;xiÞ ¼
1 and  ðvk; vkÞ ¼ 1, so the distance function can be
rewritten as

jj ðxiÞ �  ðvkÞjj2 ¼ 2ð1�  ðxi; vkÞÞ: ð8Þ
From Eqs. (6) and (8), we have the kernelized

fuzzy C-means given by

JðU ;V Þ ¼ 2
Xn
i¼1

Xc
k¼1

u2
ik � ð1�  ðxi; vkÞÞ: ð9Þ

In order to cluster e®ectively the more compli-
cated dataset which have been corrupted by the
noises such as measurement error, faulty equipment
and data transmission error, the Renyi's entropy
fuzzy C-means-based hyper tangent kernel algor-
ithm [KEFCMwd] is introduced as

JðU ;V Þ ¼ 2
Xn
i¼1

Xc
k¼1

u2
ik � ð1�  ðxi; vkÞÞ

þ 1

j1� zj
Xn
i¼1

Xc
k¼1

lnuz
ik: ð10Þ

Here z is the resolution parameter. The
KEFCMwd objective function is optimized to obtain
e®ective membership grades to the objects which
are close to their prototypes. Using the Lagrange
multiplier to the objective function of KEFCMwd,
the equation for obtaining prototypes and mem-
bership grades are calculated. In order to derive the
KEFCMwd with respect to membership, the objec-
tive function of KEFCMwd has been modi¯ed as

JðU ;V ; �Þ ¼ 2
Xn
i¼1

Xc
k¼1

u2
ik � ð1�  ðxi; vkÞÞ

þ 1

j1� zj
Xn
i¼1

Xc
k¼1

lnuz
ik

�
Xn
i¼1

�i
Xc
k¼1

uik � 1

 !
; ð11Þ

where � ¼ ð�1; �2; . . . ; �nÞ.
Optimizing Eq. (11) by using @JðU ;V ;�Þ

@uik
¼ 0,

uik ¼
�i

4ð1�  ðxi; vkÞÞ þ z
j1�zj

: ð12Þ

Using the constraint
Pc

k¼1 uik ¼ 1, we get

�i ¼
1Pc

j¼1 4ð1�  ðxi; vjÞÞ þ z
j1�zj

: ð13Þ

substitute (13) in (12), we get

uik ¼
4ð1�  ðxi; vkÞÞ þ z

j1�zjPc
j¼1 4ð1�  ðxi; vjÞÞ þ z

j1�zj
: ð14Þ

The general equation is used to attain member-
ship grades for data elements for getting meaningful
groups. The accuracy of clustering results mainly
depends on the cluster centers. Now optimizing

S. R. Kannan et al.
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the following objective function of KEFCMwd,
this paper obtains the equations for updating the
prototypes.

JðU ;V ; �Þ ¼ 2
Xn
i¼1

Xc
k¼1

u2
ik tanh

�jjxi � vkjj2
wk

� �

þ 1

j1� zj
Xn
i¼1

Xc
k¼1

lnuz
ik

�
Xn
i¼1

�i
Xc
k¼1

uik � 1

 !
: ð15Þ

Since  ðxi; vkÞ ¼ 1� tanhð�jjxi�vkjj2
wk

Þ, optimizing
the above objective function with respect to vk using
the necessary condition of Lagrangian method
@JðU ;V ;�Þ

@vk
¼ 0, we have

@JðU ;V ; �Þ
@vk

¼
Xn
i¼1

u2
ik 1� tanh2 �jjxi � vkjj2

wk

� �� �

� xi � vk
wk

� �
: ð16Þ

Simplifying this Eq. (16), we get

vk ¼
Pn

i¼1
u 2
ik

wk
 ðxi; vkÞ 1þ tanh �jjxi�vkjj2

wk

� �� �
xiPn

i¼1
u 2
ik

wk
 ðxi; vkÞ 1þ tanh �jjxi�vkjj2

wk

� �� � :

ð17Þ

3.2. Proposed KFCMnt algorithm

In order to avoid assigning same memberships for an
object which has similar intensity values for more
than one cluster and to assign appropriate mem-
bership to the objects which have been corrupted by
heavy noise, this paper incorporates neighborhood
term with fuzzy C-means given by

JðU ;V ; �Þ ¼ 2
Xn
i¼1

Xc
k¼1

u2
ikð1�  ðxi; vkÞÞ

þ
Xn
i¼1

Xc
k¼1

u2
ik

1þ ’
ð1�  ð~gi;AkÞÞ: ð18Þ

Here ~gi denotes the geometric mean of the neigh-
boring elements of xi. The parameter ’ is the neigh-
borhood regularizer term that controls the e®ect
of neighborhood term. Ak represents the average
value of the elements in the kth cluster. In essence, the
addition of the second term in (18), equivalently,
aims at deriving e®ective ¯nding memberships for

objects. By an optimization way, the objective
function can be minimized under the constraintPc

k¼1 uik ¼ 1.Theproposedmethod canbe expressed
using Lagrangian multiplier as

JðU ;V ; �Þ ¼ 2
Xn
i¼1

Xc
k¼1

u2
ikð1�  ðxi; vkÞÞ

þ
Xn
i¼1

Xc
k¼1

u2
ik

1þ ’
ð1�  ð~gi;AkÞÞ

�
Xn
i¼1

�i
Xc
k¼1

uik � 1

 !
: ð19Þ

Optimizing the Eq. (19) in terms of uik using the
necessary condition of Lagrangian method
@JðU ;V ;�Þ

@uik
¼ 0,

uik ¼
�i

2 2ð1�  ðxi; vkÞÞ þ 1
1þ� ð1�  ð~gi;AkÞÞ

h i :
ð20Þ

Using the constraint
Pc

k¼1 uik ¼ 1
we get

�i
2

¼ 1Pc
j¼1 2ð1�  ðxi; vjÞÞ þ 1

1þ� ð1�  ð~gi;AjÞÞ
h i :

ð21Þ
Substitute (21) in (20), we have the following
equation for updating memberships.

uik¼
2ð1� ðxi;vkÞÞþ 1

1þ� ð1� ð~gi;AkÞÞ
� ��1

Pc
j¼1 2ð1� ðxi;vjÞÞþ 1

1þ� 1� ð~gi;AjÞ
� 	� ��1

:

ð22Þ
The incorporation of neighboring information

has strengthened the above membership function
which gives the accurate result. To obtain the
updating prototype equation, the objective function
in (20) can be written as

JðU ;V ; �Þ ¼ 2
Xn
i¼1

Xc
k¼1

u2
ik tanh

�jjxi � vkjj2
wk

� �

þ
Xn
i¼1

Xc
k¼1

u2
ik

1þ ’
tanh

�jj~gi �Akjj2
wk

� �

�
Xn
i¼1

�i
Xc
k¼1

uik � 1

 !
:
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Optimizing the above objective function with
respect to vk using the necessary condition of

Lagrangian method @JðU ;V ; �Þ
@vk

¼ 0, we have

@JðU ;V ; �Þ
@vk

¼
Xn
i¼1

u2
ik 1� tanh2 �jjxi � vkjj2

wk

� �� �

� xi � vk
wk

� �
: ð23Þ

Simplifying this Eq. (23), we obtain the cluster
center updating equation as follows,

vk ¼
Pn

i¼1
u 2
ik

wk
 ðxi; vkÞ 1þ tanh �jjxi�vkjj2

wk

� �� �
xiPn

i¼1
u 2
ik

wk
 ðxi; vkÞ 1þ tanh �jjxi�vkjj 2

wk

� �� � :

ð24Þ
This e®ective updating center equation is used to

¯nd proper structure of the clusters from the data-
set and it induces the robustness to reduce compu-
tational complexity.

The above algorithms can uniformly be sum-
marized in the following steps.

Algorithm 1

Step 1. Fix the number of prototypes or clusters
and then select initial prototypes.

Step 2. Use Eqs. (14) and (22) for obtaining
membership partition matrix.

Step 3. Update the centers using Eqs. (17) and
(24).
Repeat Steps 2 and 3 until the following
termination criterion is satis¯ed:
jjV ðkþ1Þ � V ðkÞjj < "; where V ðkþ1Þ and V ðkÞ
are the vector of cluster centroids at
ðkþ 1Þth and ðkÞth iterations.

4. Prototypes or Centers Knowledge
Method

The random selection of prototypes can lead the
clustering process with more number of iterations,
because the random selection is sometimes com-
pletely irrelevant and far away to the cluster. This
farther representation of prototypes usually takes
more iteration to complete the algorithm and many
times it causes errors in clustering results. This
section shows a mathematical computation to
choose the prototypes from the information learned
in the given data.

Let X be a ¯nite set in the N-dimensional space
<N . X ¼ fx1;x2; . . . ; xng, xk 2 <N , k ¼ 1; 2; . . . ;n.
Consider each point in X is with dimensionality N .

Step 1. Compute the expected value � of each
point of N-dimensional in given dataset.
Find the variance �2 using means expec-
ted value �.

Step 2. Get C ¼ �2

k , where k is the number of
cluster and C is the number of objects in
every cluster.

Step 3. Find Median ðCÞ.
Step 4. Assign the median of each cluster as clus-

ter center.

Algorithm 2

Step 1. Fix the number of prototypes or centers of
clusters and then select initial prototypes,
using Prototypes knowledge Method.

Step 2. Use step 2 and 3 of algorithm 1.
Repeat Steps 2 and 3 until the following
termination criterion is satis¯ed:
jjV ðkþ1Þ � V ðkÞjj < ", where V ðkþ1Þ and
V ðkÞ are the vector of cluster centroids at
ðkþ 1Þth and ðkÞth iterations.

5. Experimental Results

To evaluate the performance of proposed methods,
this section implements the proposed methods with
YeastDataset, LungCancer Database, IRIS dataset,
Wine dataset, Time series dataset andCheckerboard
dataset. Finally, the proposed methods have been
successfully implemented with the breast cancer
database for dividing it into two subtypes of cancers.
The algorithms were implemented in programming
language [R] onWorkstation (HPZ800 INTELXeon
HEX (6) Dual Core Processor).

5.1. Experimental results on yeast
dataset

Yeast Dataset35 is composed of 1484 data, each data
has 9 attributes (8 predictive, 1 name). The eight
predictive are: (1) McGeoch's method for signal
sequence recognition; (2) von Heijne's method for
signal sequence recognition; (3) score of the ALOM
membrane spanning region prediction program;
(4) Score of discriminant analysis of the amino
acid content of the N-terminal region of mitochon-
drial and nonmitochondrial proteins; (5) Presence of
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\HDEL" substring; (6) Peroxisomal targeting signal
in the C-terminus; (7) Score of discriminate analysis
of the amino acid content of vacuolar and extra-
cellular proteins; and (8) Score of discriminant
analysis of nuclear localization signals of nuclear and
non-nuclear proteins. The data has 10 classes: cyto-
solic or cytoskeletal, nuclear, mitochondrial, mem-
brane protein, no N-terminal signal, membrane
protein-uncleaved, membrane protein-cleaved sig-
nal, extracellular, vacuolar, peroxisomal, endo-
plasmic reticulum lumen. The research in clustering
Yeast Dataset is extensively active in recent
years35–37 to improve the clustering accuracy.
KFCM29 clustering results based on 10 classes in
yeast data are plotted inFig. 1.The divided 10 classes
by KFCM are visualized in Fig. 2. The results of
proposed KEFCMwd, and Proposed KFCMnt

Fig. 1. Size of Clusters by KFCM.

Fig. 2. Reallocated 1484 Data by KFCM.

Fig. 3. Size of Clusters by KEFCMwd.

Fig. 4. Reallocated 1484 Data by KEFCMwd.

Fig. 5. Size of Clusters by KFCMnt.
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methods based on 10 classes in yeast dataset are
shown in Figs. 3–6. The objects in 10 classes of yeast
dataset by Proposed KEFCMwd and KFCMnt

algorithms are given in Figs. 3 and 5, respectively.
The captured size of 10 classes of yeast dataset by
proposed KEFCMwd and proposed KFCMnt are
shown in Figs. 4 and 6, respectively. The clustering
accuracy of KFCM, proposed KEFCMwd and
KFCMnt algorithms on clustering 10 classes in yeast
database are listed in Table 1. This paper shows from
Table 1, that the proposed methods improve the
clustering accuracymore than theKFCM, because of
the neighborhood terms, and weighted distance with
Renyi's entropy.

The Error Matrix Table 2 gives the accuracy
between reference classes and the obtained classes in
yeast dataset by the methods involved in this ex-
periment study. From Table 2, the best clustering
accuracy was obtained for proposed methods during
the experiment on yeast dataset with 10 clusters.

5.2. Experimental results on
lung cancer

This subsection has employed a version of the
dataset in Ref. 38 which has samples from two
cancer types [malignant pleural mesothelioma
(MPM) and adenocarcinoma (ADCA)]. The Lung
Dataset which is given in Fig. 7 consists 181 of
human tissue samples and each sample are descri-
bed by 12,533 genes.

To show the e®ectiveness of the proposed
methods, KEFCMwd and KFCMnt in clustering
Lung cancer database, this subsection compares
the results of proposed methods with the results
obtained by GKFCM28 and KFCM on same data-
set. The partitions with three clusters for the two
types of cancers for the algorithms of GKFCM,
KFCM, KEFCMwd and KFCMnt are illustrated in
Figs. 8–11, respectively. The GKFCM and KFCM
take more iteration to complete the process of
algorithm in clustering two subtypes of cancers.
Further the existing methods provide poor accuracy
in clustering the Lung cancer Database. On the
other hand, the proposed algorithms predict the two
subtypes of cancers correctly due to its robust
objective functions.

The results on Table 3 show that the classes of
GKFCM and KFCM algorithms exhibited poor
clustering performance than that of the other classes
obtained by proposed methods KEFCMwd and
KFCMnt. The accuracy test (average accuracy

Fig. 7. Lung database.

Fig. 6. Reallocated 1484 Data by KFCMnt.

Table 1. Silhouette average values in
clustering Yeast dataset.

KFCM KEFCMwd KFCMnt

Accuracy 55.3% 99.1% 99.3%

Table 2. Error matrix on Yeast dataset.

KFCM KEFCMwd KFCMnt

Accuracy 51% 98.7% 99.1%

S. R. Kannan et al.
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value) indicated that GKFCM and KFCM receive
low accuracy values when compared to those of
the other methods involved in this experiment.
The proposed methods obtained good accuracy, less
running time and less number of iterations for
clustering the Lung cancer dataset into three
clusters.

From the results on Lung cancer dataset, this
paper proves the impact of proposed methods via
number of iterations, accuracy of clustering results
and visual inspection of separation of clusters, that
the proposed methods can have more capability to
cluster the similar expression of genes in Lung
cancer database.

Membership Comparison Test

The resulted membership of objects in each cluster
on clustering Lung cancer database into two sub-
types of cancers have been plotted in Fig. 12 to ¯nd
the e®ect of membership equations of proposed
methods in obtaining strong memberships to
objects. It is observed from Figs. 12(a) and 12(b)
that the GKFCM and KFCM provide weak mem-
berships to the objects in Cluster 1 and Cluster 2
and the methods have less di®erence between the
memberships of the objects between the ¯rst and
second clusters. From Figs. 12(c) and 12(d) we can
¯nd that the proposed methods have provided

(a) (b)

(c) (d)

Fig. 8. Subtype of Cancers by GKFCM: (a) Gene expression in Cluster 1 (b) Gene expression in Cluster 2 (c) Cluster 1 in 181 Lung
Cancer Dataset (d) Cluster 2 in 181 Lung Cancer Dataset.
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strong membership than GKFCM and KFCM for
placing the objects in Cluster 1 and Cluster 2.

5.3. Experimental results on

benchmark datasets

This subsection implements the proposed methods
with Wine dataset, IRIS dataset, Checkerboard
Dataset and Synthetic time series dataset in order
to evaluate the performance of the proposed
methods. The 178 instances with 13 constituents of
Wine dataset39 have been used by many researchers

for comparing various clustering techniques.40–42

The wine data are the results of a chemical analysis
of wines grown in the same region in Italy but de-
rived from three di®erent cultivators. Table 4 is
listed the analysis determined the quantities of 13
constituents. The three classes of 150 instances of
IRIS often used in the ¯eld of cluster analysis and
data mining.40,43,44 The 486 black with three attri-
butes of checkerboard dataset39 is widely used in
performing the clustering methods.45 Time series
data analysis is most widely used at present in many
areas and with special purposes, it is mainly used in

(a) (b)

(c) (d)

Fig. 9. Subtype of Cancers by KFCM: (a) Gene expression in Cluster 1 (b) Gene expression in Cluster 2 (c) Cluster 1 in 181 Lung
Cancer Dataset (d) Cluster 2 in 181 Lung Cancer Dataset.
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the area of data mining.46–50 The time series dataset
used in this subsection contains a total 300 control
chart time series generated by the process in Alcock
and Manolopoulos,51 with three classes as follows:
(Class one) 1–100 Normal, (Class two) 101–200
Cyclic, (Class three) 201–300 increasing trend. For
visualization, the wine, IRIS, checkerboard data
and time series dataset are given in Figs. 13–16.
Since the benchmark datasets are having known
number of clusters, this subsection corrupts the

intensities of objects of datasets in order to run the
proposed algorithm to cluster them into appropriate
clusters.

The obtained size of clusters and accuracies on
Wine dataset and IRIS dataset are shown in
Figs. 17 and 18 and the allocated objects are given
in Figs. 19 and 20.

The clustering accuracies using Silhouette width
of KFCM, Proposed KEFCMwd and Proposed
KFCMnt algorithms on Wine, IRIS, Checkerboard

(a) (b)

(c) (d)

Fig. 10. Subtype of Cancers by KEFCMwd: (a) Gene expression in Cluster 1 (b) Gene expression in Cluster 2 (c) Cluster 1 in 181
Lung Cancer dataset (d) Cluster 2 in 181 Lung Cancer dataset.
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and Synthetic Control Time Series dataset are listed
in Table 5. The Proposed KEFCMwd and KFCMnt

algorithms have obtained good clustering results
due to the objective function with kernel entropy
and neighborhood term.

5.4. Experimental results with breast

cancer database

This subsection uses 699 breast cancer datasets39

given in Fig. 21 for the purpose of experimental
works using the proposed clustering methods. The

Table 3. Comparison of Iteration Count
(Its), Running Time (RT) and clustering
accuracy (SW).

Lung

SW RT Its

GKFCM 64% 56 s 27
KFCM 61% 1min 30
KEFCMwd 93% 5 s 11
KFCMnt 93% 5 s 12

(a) (b)

(c) (d)

Fig. 11. Subtype of Cancers by KFCMnt: (a) Gene expression in Cluster 1 (b) Gene expression in Cluster 2 (c) Cluster 1 in 181
Lung Cancer dataset (d) Cluster 2 in 181 Lung Cancer dataset.
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data consists of visually assessed nuclear features of
¯ne needle aspirates (FNAs) taken from patients'
breasts. Each data have been assigned nine-
dimensional vectors by Dr. Wolberg. Each com-
ponent is in the interval 1–10, with a value 1 cor-
responding to a normal state and 10 to a most
abnormal state. The nine-dimensional vectors are:
thickness, cell size, cell shape, marginal, adhesion,
epithelial cell size, nuclei, chromatin, normal
nucleoli and mitoses. The breast cancer data are
used to make a decision on the medical condition
that the cancer is malignant or benign.

GKFCM and KFCM results based on malignant
and benign in 699 breast data are plotted in Figs. 22
and 24, respectively. The separated two classes for

(a) (b)

(c) (d)

Fig. 12. Comparison of membership (a) by GKFCM (b) by KFCM (c) by KEFCMwd and (d) by KFCMnt.

Table 4. The constituents of Wine dataset.

No. Chemical name of constituent

1 Alcohol
2 Malic acid
3 Ash
4 Alcalinity of ash
5 Magnesium
6 Total phenols
7 Flavanoids
8 Non°avanoid phenols
9 Proanthocyanins
10 Color intensity
11 Hue
12 OD280/OD315 of diluted wines
13 Proline

Fuzzy C-Means in Finding Subtypes of Cancers in Cancer Database
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results of malignant and benign by GKFCM and
KFCM are visualized in Figs. 23 and 25, respect-
ively. The results of proposed KEFCMwd and
KFCMnt methods based on malignant and benign
on breast cancer dataset are shown in Figs. 26
and 28, respectively. The allocated two classes for

malignant and benign of 699 breast cancer dataset
by Proposed KEFCMwd and KFCMnt are given in
Figs. 27 and 29, respectively. The captured size of
two classes of malignant and benign by proposed
KEFCMwd and KFCMnt algorithms are shown in
Figs. 27 and 29, respectively. The clustering accu-
racy of GKFCM, KFCM, KEFCMwd and KFCMnt

Fig. 13. 178 Wine Data.

Fig. 14. 150 IRIS Dataset.

Fig. 15. 1000 Check board Dataset.

Fig. 16. 300 Time Series Dataset.
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Fig. 17. Wine Dataset: (i) Result by KFCM (ii) Result by KEFCMwd (iii) Result by KFCMnt.

Fig. 18. IRIS Dataset: (i) Result by KFCM (ii) Result by KEFCMwd (iii) Result by KFCMnt.

Fig. 19. Wine Dataset: (i) Result by KFCM (ii) Result by KEFCMwd (iii) Result by KFCMnt.

Fig. 20. IRIS Dataset: (i) Result by KFCM (ii) Result by KEFCMwd (iii) Result by KFCMnt.
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on clustering malignant and benign in breast cancer
database is listed in Table 6. We can ¯nd from
Table 6 that the proposed methods have better
clustering accuracy during the experiment on breast

699 dataset with two classes of malignant and
benign.

The Error Matrix Table 7 gives the accuracy
between the reference classes and the obtained
classes by the methods involved in this experimental
study with Breast Cancer database. From Tables 6
and 7, the best clustering accuracy was obtained for
the proposed methods during the experiment on
Breast Cancer data with two clusters.

Table 5. Cluster results. Silhouette width [SW], Clustering Accuracy [CA], Minutes [M], Seconds [S], Running
Time [RT] and Iterations [Its].

No. of objects
in cluster 1 SW

No. of objects
in cluster 2 SW

No. of objects
in cluster 3 SW CA RT Its

Wine data

KFCM 56 0.52 59 0.63 63 0.41 52% 1.5min 49
KEFCMwd 48 0.97 65 0.98 65 0.94 96.3% 6 s 7
KFCMnt 48 0.98 65 0.98 65 0.99 98.3% 5 s 5

IRIS data

KFCM 48 0.51 50 0.63 52 0.52 55.33% 1.6min 40
KEFCMwd 52 0.96 44 0.91 54 0.97 94.6% 9 s 7
KFCMnt 51 0.97 44 0.98 55 0.99 98% 7 s 6

Checkerboard Time series

SW RT Its SW RT Its

KFCM 61% 1.4min 47 60% 1.3min 50
KEFCMwd 97% 8 s 7 95% 7 s 9
KFCMnt 98.5% 7 s 7 98% 7 s 8

Fig. 21. 699 Breast Cancer Dataset.

Fig. 22. Size of clusters by GKFCM.
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Fig. 23. Reallocated 699 Data by GKFCM.

Fig. 24. Size of clusters by KFCM.

Fig. 25. Reallocated 699 data by KFCM.

Fig. 26. Size of clusters by KEFCMwd.

Fig. 27. Reallocated 699 data by KEFCMwd.

Fig. 28. Size of clusters by KFCMnt.
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6. Conclusions

The novel fuzzy clustering algorithms KEFCMwd

and KFCMnt have been developed for ¯nding sub-
types of cancers in the Breast cancer database.
A center or prototypes knowledge method is intro-
duced to speed up the convergence of the algor-
ithms. This paper evaluated the performance of the
proposed methods through the experimental works
on Yeast, Lung Cancer, IRIS, Wine, Checkerboard
and Time Series dataset. This paper has reported
the superiority the proposed methods have shown
using silhouette width, error matrix, running time,
number of iterations and well-separated clusters.

Finally, this paper has proved that the proposed
methods are e®ective in clustering the breast cancer
database into cancerous and noncancerous portions.
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