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Finding subtypes of cancer in breast cancer database is an extremely difficult task because of
heavy noise by measurement error. Most of the recent clustering techniques for breast cancer
database to achieve cancerous and noncancerous often weigh down the interpretability of the
structure. Hence, this paper tries to find effective Fuzzy C-Means-based clustering techniques to
identify the proper subtypes of cancer in breast cancer database. This paper obtains the objective
function of effective Fuzzy C-Means clustering techniques by incorporating the kernel induced
distance function, Renyi’s entropy function, weighted distance measure and neighborhood terms-
based spatial context. The effectiveness of the proposed methods are proved through the ex-
perimental works on Lung cancer database, IRIS dataset, Wine dataset, Checkerboard dataset,
Time Series dataset and Yeast dataset. Finally, the proposed methods are implemented suc-
cessfully to cluster the breast cancer database into cancerous and noncancerous. The clustering
accuracy has been validated through error matrix and silhouette method.
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1. Introduction

Recently clustering techniques are widely used in
analyzing subtypes of cancer in cancer medical
database to help physicians for treatment plan. This
paper deals with the breast cancer database
that contains two different types of cancers using
effective fuzzy C-means techniques. Breast cancer is
the second leading cause of cancer death in the
world!? and it is the leading cause of cancer deaths
among women aged 40-59.° Breast cancer is the
most frequently diagnosed cancer in women in the
United States. About 800,000 new cases of breast
cancer is diagnosed each year among Taiwanese
women, and breast cancer is the second most
common form in Taiwan according to cancer
report.” In India, cancer is one of the leading causes
of deaths and due to cancer disease around 3 lakh
deaths occur annually in India.” Hence, proper’
diagnosing method for analyzing the breast cancer
database is very important to reduce the cancer
death. There are number of techniques involved to
identify the subtypes of breast cancer patterns.®
Recently unsupervised clustering method of Fuzzy
C-means is the most widely used method in clus-
tering cancer medical databases.” Unsupervised
clustering divides the dataset into several clusters
based on the similarity between the data objects, it
does not require any prior information about the
data objects for clustering them into available
structures.'’"'> Due to the uncertain nature of
many practical real world problems, fuzzy set the-
ory'? based Fuzzy clustering techniques'’-'* have
been proposed by researchers. The most widely
used conventional fuzzy C-means is incapable in
clustering nonlinear structured medical data-
base'?'% due to its Euclidean norm to measure the
similarity between the data points. Further it fails
to incorporate any information about spatial con-
text, and neighborhood information to cluster the
medical database into meaningful subtypes of can-
cers. Hence, researchers have invented modified
fuzzy C-means algorithms'”'? in order to deal
the data objects with different noises for facing the
complicated structure of databases, but the
methods did not give expected accuracy in clus-
tering the database into available subtypes.?’ To
overcome the drawbacks, this paper formulates
suitable novel fuzzy C-means with effective cluster
center initialization in clustering more complicated
structure of medical database. The algorithms of

this paper are obtained by incorporating the
kernel induced distance function, Renyi’s entropy,
weighted distance measure and neighborhood
terms-based spatial context. The kernel induced
distance of the proposed objective function converts
the lower dimension of the objects into higher
dimension to have meaningful distance between
objects. The Renyi’s entropy, weighted distance
measure and neighborhood terms-based spatial
context of objective function of this paper tries to
reduce the uncertainty in the objects, and balancing
the loss of information in the objects in medical
database. The proposed methods work well with the
dataset which is affected by the noises such as
measurement error, faulty equipment and data
transmission error in dataset. The methods elegantly
find the difference between cluster centers and data
points by considering the information from neigh-
boring objects with higher dimensional distance
using kernel, and it finds desirable membership for an
object to an appropriate cluster. The neighborhood
information-based clustering algorithms are effec-
tively applied to medical and other real life fields by
researchers.”’>> Renyi’s entropy with proposed
objective function of fuzzy C-means tries to quantify
the diversity and uncertainty of the boundary of the
subtypes of cancerous portions. The entropy with
proposed method helps to measure the disorder in the
amount of information that may be gained by pro-
posed systems in clustering the medical database.
There is extensive literature on the applications
of the Renyi’s entropy in many fields from biology,
medicine and genetics.>>?* Further Renyi’s entropy-
based proposed algorithm performs well on datasets
of nonspherical shape and capable of clustering a
high-dimensional dataset. However, the random
selection of initial prototypes of fuzzy C-means-based
algorithms lead more number of iterations to reach
the termination criterion,?>? therefore in order to
avoid irrelevant initial random prototypes this paper
introduces a prototype initialization method. This
paper proved the effectiveness and strength of the
proposed algorithms in clustering more complicated
medical database through the experimental results
on benchmarks and real database. The rest of this
paper is organized as follows. Section 2 gives a short
form of Kernel-based Fuzzy C-means clustering,
validation method and methodology. In Sec. 3, this
paper presents proposed algorithms KEFCM,,4 and
KFCM,; online. Section 4 presents Prototypes or
centers knowledge Method. Section 5 reports the
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experimental results on Yeast, Lung cancer, IRIS,
Wine, Checkerboard, Time Series and Breast cancer
datasets. Section 6 gives the conclusion of this paper.

2. Related Works and Methodology

2.1. Kernel-based Fuzzy C-means
Clustering

In the fuzzy C-means algorithm,'’ a cluster is
viewed as a fuzzy set in the dataset, X. Thus, each
data element in the dataset will have membership
values with all clusters. The degree of membership,
to which a data point belongs to a cluster, is com-
puted from the distances of the data point to the
cluster prototypes. The membership degrees basi-
cally reflect the relative inverse squared distance of
the data point to the different cluster prototypes. In
FCM, the proximity of each data, x;, to the cluster
prototypes, vy, is defined as the membership u;, of
x; to the kth cluster of X minimizing the following
objective function:

JU, V)= uitlle; — vl (1)

=1 k=1

where X = {z;}-; C R" is a given set of unlabeled
data; V = {v;}j_1 C RV are the centroids of the
clusters, and m = [1, o0] is the weighting exponent
which determines the fuzziness of the resultant clus-
ters, at m =1 Fuzzy C-Means fall down to Hard
C-Means, fuzzy partition matrix U = [u;;,] is gener-
ated that is of size ¢ X n (¢— number of clusters and
n — number of data elements), satisfying the con-
straint > j_; u;, = 1,7 = 1,2, 3,..., n. Minimization
of the objective function is achieved by iteratively
optimizing for U and V. The cluster centers and the
memberships are computed as follows:

n m
i=1 U Ti

Uk = n mlk:172737'--7ca (2)

i=1 Uk

(= ol
T; — U m—
Ui = <7> )
Z (; [z = v )
E=1,2,3,....,c; i=1,2,3,....,n. (3)

The above FCM with distance measure has
drawbacks in clustering complex and large amount
of dataset. Therefore, kernel method is used to
formulate the kernel versions of the Fuzzy C-means
(KFCM) algorithm?”3" to cluster complex data

structure. The data point z; € R™,i=1,2,...,n,is
transformed from the original space to a feature
space H by a nonlinear mapping ¢, it becomes the
following form ¢(z;), ¢(xs), d(x3), ..., ¢(x,). So the
inner product in the original space can be expressed
by the Mercer kernel’! as K (x;, ;) = (¢(x;) - ¢(x;)).
The Euclidean distance in the feature space can be
represented as follows:

dp (i, )

= lo(@) - o(a))]
= /o) - Blw;) — 20(w:) - b)) + B(w;) - B,
(4)

The objective function of the KFCM algorithm
can be formulated as follows:

JUV) =23 ()™ (1~ Kz w). (5)

i=1 k=1

2.2. Clustering validation

The silhouette width**?? is used to validate the
results of proposed methods in clustering the complex
dataset. The silhouette average value of clusters can
vary between —1 and 1.7?7%* These silhouette average
values measure the degree of confidence in the clus-
tering assignment of a particular observation, with
well-clustered observations having values near 1 and
poorly clustered observations having values near —1.
The silhouette width s(i) of the object i is obtained
: : Ny b(i)—ali)
using the equation s(i) = o/mrrmy. In the above
equation a(7) is the average distance between the ith

data and all other data in the cluster. b(i) is the
smallest average distance between the i-data and all
other data of other clusters. The silhouette average
width of the clusters has been obtained by taking the
average of the silhouette value of points belonging to
the cluster.

2.3. Methodology

The methodology of this paper aims to find novel
fuzzy clustering techniques in order to reduce the
uncertainty in the objects by loss of information,
measurement error and data transmitter error. This
paper invents kernel fuzzy C-means-based entropy
with weighted distance measure [KEFCM,4| and
kernel fuzzy C-means-based entropy term with
neighborhood term [KFCM,]. Further this paper
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invents the center or prototype initialization method
to speed up the clustering algorithms. In order to
evaluate the performance of the proposed methods
yeast dataset, lung cancer dataset, IRIS dataset,
wine dataset, time series dataset, checkerboard
dataset and breast cancer dataset are involved in the
experimental works. To identify the strength of the
clustering methods, the clustering accuracy is
obtained by silhouette method and error matrix.

3. Proposed KEFCM,,; and KFCM,
Algorithms

3.1. Proposed KEFCM,

The modified objective function from the standard
fuzzy C-means' is given by

V)= 33 ulllote) — wwl’s (6)

i=1 k=1

wa algorithm

where 1 stands as map x— > ¢(x) € F, z € X. The
common ground of kernel-based FCM is to map the
input data element into a feature space with higher
dimension via a nonlinear transformation and then
perform FCM in that feature space. And the dis-
tance function can be expressed using inner product
space as [|[1(z;) — (vp)[|* = (@), (i) + (P(vy),
w(vk» - 2<¢(mz)7 w(vk»ﬂ where i = ]-7 27 - N, and
k=1,2,...,c. We adopt hyper tangent Function to
evaluate the distance, i.e., ¥(x;,v;) expressed as
Hyper Tangent function

. — 2
1_tanh< 2 ka>
Wy,

where wy, is the weighted mean distance in cluster k,
and is given by

1
_ > i1 gl — vl 2 -
Zi:l Uik

Using the expression (7) we obtained ¢(z;, z;) =
1 and (v, v,) = 1, so the distance function can be
rewritten as

(i) = Ppll? = 2(1 = (s, 0)). (8)

From Egs. (6) and (8), we have the kernelized
fuzzy C-means given by

J(U,V) _2227%

i=1 k=

1/1(3% Uk) -

(i, vp)- (9)

In order to cluster effectively the more compli-
cated dataset which have been corrupted by the
noises such as measurement error, faulty equipment
and data transmission error, the Renyi’s entropy
fuzzy C-means-based hyper tangent kernel algor-
ithm [KEFCM,] is introduced as

JU,V) = 2ZZulk P(x;,vy))

i=1 k=
1 <,
+ TR ZZlnuik. (10)

Here =z 1is the resolution parameter. The
KEFCM,, objective function is optimized to obtain
effective membership grades to the objects which
are close to their prototypes. Using the Lagrange
multiplier to the objective function of KEFCM,q,
the equation for obtaining prototypes and mem-
bership grades are calculated. In order to derive the
KEFCM,,y with respect to membership, the objec-
tive function of KEFCM,,, has been modified as

JU,V,\) _2221%

i=1 k=

mzavk))

where A = (A, Ao, ..., A,).
Optimizing Eq. (11) by using
Ai
Uif = P
P A = () + =)

2IUVN _
Ouy. )

(12)

Using the constraint > _; u;, = 1, we get
1

(17 ]))—i_‘l z\'

\ = (13)

21401
substitute (13) in (12), we get

A1 = Y(zi, ) +
25:14(1 ( Lis ]))

The general equation is used to attain member-
ship grades for data elements for getting meaningful
groups. The accuracy of clustering results mainly
depends on the cluster centers. Now optimizing

(14)

Ui, =

1450018-4



J. Innov. Opt. Health Sci. 2014.07. Downloaded from www.worldscientific.com
by 103.240.126.9 on 10/21/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

Fuzzy C-Means in Finding Subtypes of Cancers in Cancer Database

the following objective function of KEFCM,q,
this paper obtains the equations for updating the
prototypes.

J(U,V,\) —QZZuzktanh< wkka )

i=1 k=

‘1 — Z| EZ]HUM

i=1 k=
_i)‘i (iuzk_ 1)~ (15)
=1 k=1

Since (z;,v) =1 — tanh(_”%i?"‘“?), optimizing
the above objective function with respect to v, using

the necessary condition of Lagrangian method
dJIUVN
(?’Uk

aJ(Uv Vv )‘) o = 2 2 _”:I:Z - IUkHQ

=1
Ti — Vg
—. 16
* ( W ) (18)
Simplifying this Eq. (16), we get

g w V(i vg) (1 +tanh< i — “kIIQ))a:Z
i 175 w(%vk)(l +tanh( z W))

=0, we have

U =

17)

3.2. Proposed KFCM,

In order to avoid assigning same memberships for an
object which has similar intensity values for more
than one cluster and to assign appropriate mem-
bership to the objects which have been corrupted by
heavy noise, this paper incorporates neighborhood
term with fuzzy C-means given by

JU,V,\) =2 En: iu?k(l

i=1 k=

. algorithm

¢($i7 vk))

z1k11+‘p

Here g; denotes the geometric mean of the neigh-
boring elements of z;. The parameter ¢ is the neigh-
borhood regularizer term that controls the effect
of neighborhood term. A, represents the average
value of the elements in the kth cluster. In essence, the
addition of the second term in (18), equivalently,
aims at deriving effective finding memberships for

objects. By an optimization way, the objective
function can be minimized under the constraint
> i1 ujr = 1. The proposed method can be expressed
using Lagrangian multiplier as

JOVN) =23 S uA (1 )

=1 k=1

+Zzl+<,0

i=1 k=1

- z": Aj (ZC: Ui, — 1)- (19)

Optimizing the Eq. (19) in terms of uy using the
necessary condition of Lagrangian method

OJUVAN _ 0
Ouy. -

gszk))

Ai
2[2(1 = (s, v) + 75 (1 = 93, Ay)

U, =

(20)
Using the constraint » j_; u;, = 1
we get
Ai 1
2 ¥ 200 = lav) + 1h (1= (G A)))]
(21)

Substitute (21) in (20), we have the following
equation for updating memberships.

-1

(20— (e 0) + 5 (1 9(3:. A1)

S (201 = i v)) + 15 (1403 4))
(22)

Uik = 1

The incorporation of neighboring information
has strengthened the above membership function
which gives the accurate result. To obtain the
updating prototype equation, the objective function
n (20) can be written as

- i — oil?
JU VA =2 2 tanh

i=1 k=

z - Ni_A 2
+Zlkz k t < ngk k”)

=1 k=1
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Optimizing the above objective function with

respect to v, using the necessary condition of

(U,V,\)

Lagrangian method o Do = 0, we have

OJUV,A) & o [ —llzi — vill?
a0, = Zulk<1 tanh o,

i=1

. (%) (23)

Simplifying this Eq. (23), we obtain the cluster
center updating equation as follows,

> i1 ?Tzw(xw V) <1 + tanh (:Hﬂﬂiv—kvk\lZ))

X
Sty g, o) (14 tanh (Slpul2))
(24)

(3

V =

This effective updating center equation is used to
find proper structure of the clusters from the data-
set and it induces the robustness to reduce compu-
tational complexity.

The above algorithms can uniformly be sum-
marized in the following steps.

Algorithm 1

Step 1. Fix the number of prototypes or clusters
and then select initial prototypes.

Step 2. Use Egs. (14) and (22) for obtaining
membership partition matrix.

Step 3. Update the centers using Egs. (17) and
(24).
Repeat Steps 2 and 3 until the following
termination criterion is satisfied:
|V &) — VB < ¢, where V#+1) and V (#)
are the vector of cluster centroids at
(k+ 1)th and (k)th iterations.

4. Prototypes or Centers Knowledge
Method

The random selection of prototypes can lead the
clustering process with more number of iterations,
because the random selection is sometimes com-
pletely irrelevant and far away to the cluster. This
farther representation of prototypes usually takes
more iteration to complete the algorithm and many
times it causes errors in clustering results. This
section shows a mathematical computation to
choose the prototypes from the information learned
in the given data.

Let X be a finite set in the N-dimensional space
RV, X ={z),29,...,2,}, ;) e RN, k=1,2,... n.
Consider each point in X is with dimensionality N.

Step 1. Compute the expected value p of each
point of N-dimensional in given dataset.
Find the variance o2 using means expec-
ted value p.

Step 2. Get C :"—;, where k is the number of
cluster and C is the number of objects in
every cluster.

Step 3. Find Median (C).

Step 4. Assign the median of each cluster as clus-
ter center.

Algorithm 2

Step 1. Fix the number of prototypes or centers of
clusters and then select initial prototypes,
using Prototypes knowledge Method.

Step 2. Use step 2 and 3 of algorithm 1.

Repeat Steps 2 and 3 until the following
termination criterion is satisfied:

|[VE+D — V)| <&, where VD and
V(#) are the vector of cluster centroids at
(k+ 1)th and (k)th iterations.

5. Experimental Results

To evaluate the performance of proposed methods,
this section implements the proposed methods with
Yeast Dataset, Lung Cancer Database, IRIS dataset,
Wine dataset, Time series dataset and Checkerboard
dataset. Finally, the proposed methods have been
successfully implemented with the breast cancer
database for dividing it into two subtypes of cancers.
The algorithms were implemented in programming
language [R] on Workstation (HP Z800 INTEL Xeon
HEX (6) Dual Core Processor).

5.1. Experimental results on yeast
dataset

Yeast Dataset®” is composed of 1484 data, each data
has 9 attributes (8 predictive, 1 name). The eight
predictive are: (1) McGeoch’s method for signal
sequence recognition; (2) von Heijne’s method for
signal sequence recognition; (3) score of the ALOM
membrane spanning region prediction program;
(4) Score of discriminant analysis of the amino
acid content of the N-terminal region of mitochon-
drial and nonmitochondrial proteins; (5) Presence of
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Fig. 1. Size of Clusters by KFCM. Fig. 3. Size of Clusters by KEFCM .

“HDEL” substring; (6) Peroxisomal targeting signal
in the C-terminus; (7) Score of discriminate analysis J
of the amino acid content of vacuolar and extra-
cellular proteins; and (8) Score of discriminant
analysis of nuclear localization signals of nuclear and

non-nuclear proteins. The data has 10 classes: cyto- Obiets nelster? | Clustering Accuracy: 93.1%
solic or cytoskeletal, nuclear, mitochondrial, mem- B el
brane protein, no N-terminal signal, membrane Colels heliter 10
protein-uncleaved, membrane protein-cleaved sig-
nal, extracellular, vacuolar, peroxisomal, endo-
plasmic reticulum lumen. The research in clustering
Yeast Dataset is extensively active in recent
years®* 7 to improve the clustering accuracy. - oi / :w ® ®o
KFCM?* clustering results based on 10 classes in ' ' ' '
yeast data are plotted in Fig. 1. The divided 10 classes f ane 1o 1e0n
by KFCM are visualized in Fig. 2. The results of Fig. 4. Reallocated 1484 Data by KEFCM,,.
proposed KEFCM,,, and Proposed KFCM,,
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methods based on 10 classes in yeast dataset are
shown in Figs. 3—6. The objects in 10 classes of yeast
dataset by Proposed KEFCM,, and KFCM,
algorithms are given in Figs. 3 and 5, respectively.
The captured size of 10 classes of yeast dataset by
proposed KEFCM,, and proposed KFCM,, are
shown in Figs. 4 and 6, respectively. The clustering
accuracy of KFCM, proposed KEFCM,, and
KFCM,; algorithms on clustering 10 classes in yeast
database are listed in Table 1. This paper shows from
Table 1, that the proposed methods improve the
clustering accuracy more than the KFCM, because of
the neighborhood terms, and weighted distance with
Renyi’s entropy.

The Error Matrix Table 2 gives the accuracy
between reference classes and the obtained classes in
yeast dataset by the methods involved in this ex-
periment study. From Table 2, the best clustering
accuracy was obtained for proposed methods during
the experiment on yeast dataset with 10 clusters.

Table 1. Silhouette average values in
clustering Yeast dataset.

KFCM KEFCM,, KFCM,,

Accuracy 55.3% 99.1% 99.3%

Table 2. Error matrix on Yeast dataset.

KFCM KEFCM,, KFCM,,

Accuracy 51% 98.7% 99.1%

181x12533-Lung

L]
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(=

Intensity Values
g

50
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i
+]
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EoN
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o SBE,
%
&
[«

0 100 200 300 400 500

No. of Objects

Fig. 7. Lung database.

5.2. FEzxperimental results on
lung cancer

This subsection has employed a version of the
dataset in Ref. 38 which has samples from two
cancer types [malignant pleural mesothelioma
(MPM) and adenocarcinoma (ADCA)]. The Lung
Dataset which is given in Fig. 7 consists 181 of
human tissue samples and each sample are descri-
bed by 12,533 genes.

To show the effectiveness of the proposed
methods, KEFCM,,q4 and KFCM,; in clustering
Lung cancer database, this subsection compares
the results of proposed methods with the results
obtained by GKFCM?® and KFCM on same data-
set. The partitions with three clusters for the two
types of cancers for the algorithms of GKFCM,
KFCM, KEFCM,,4 and KFCM,, are illustrated in
Figs. 8-11, respectively. The GKFCM and KFCM
take more iteration to complete the process of
algorithm in clustering two subtypes of cancers.
Further the existing methods provide poor accuracy
in clustering the Lung cancer Database. On the
other hand, the proposed algorithms predict the two
subtypes of cancers correctly due to its robust
objective functions.

The results on Table 3 show that the classes of
GKFCM and KFCM algorithms exhibited poor
clustering performance than that of the other classes
obtained by proposed methods KEFCM,,, and
KFCM,;. The accuracy test (average accuracy

1450018-8
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Fig. 8. Subtype of Cancers by GKFCM: (a) Gene expression in Cluster 1 (b) Gene expression in Cluster 2 (c) Cluster 1 in 181 Lung

Cancer Dataset (d) Cluster 2 in 181 Lung Cancer Dataset.

value) indicated that GKFCM and KFCM receive
low accuracy values when compared to those of
the other methods involved in this experiment.
The proposed methods obtained good accuracy, less
running time and less number of iterations for
clustering the Lung cancer dataset into three
clusters.

From the results on Lung cancer dataset, this
paper proves the impact of proposed methods via
number of iterations, accuracy of clustering results
and visual inspection of separation of clusters, that
the proposed methods can have more capability to
cluster the similar expression of genes in Lung
cancer database.

Membership Comparison Test

The resulted membership of objects in each cluster
on clustering Lung cancer database into two sub-
types of cancers have been plotted in Fig. 12 to find
the effect of membership equations of proposed
methods in obtaining strong memberships to
objects. It is observed from Figs. 12(a) and 12(Db)
that the GKFCM and KFCM provide weak mem-
berships to the objects in Cluster 1 and Cluster 2
and the methods have less difference between the
memberships of the objects between the first and
second clusters. From Figs. 12(c) and 12(d) we can
find that the proposed methods have provided
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Fig. 9.
Cancer Dataset (d) Cluster 2 in 181 Lung Cancer Dataset.

strong membership than GKFCM and KFCM for
placing the objects in Cluster 1 and Cluster 2.

5.3. FExperimental results on

benchmark datasets

This subsection implements the proposed methods
with Wine dataset, IRIS dataset, Checkerboard
Dataset and Synthetic time series dataset in order
to evaluate the performance of the proposed
methods. The 178 instances with 13 constituents of
Wine dataset?” have been used by many researchers
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Subtype of Cancers by KFCM: (a) Gene expression in Cluster 1 (b) Gene expression in Cluster 2 (¢) Cluster 1 in 181 Lung

for comparing various clustering techniques.*’*?

The wine data are the results of a chemical analysis
of wines grown in the same region in Italy but de-
rived from three different cultivators. Table 4 is
listed the analysis determined the quantities of 13
constituents. The three classes of 150 instances of
IRIS often used in the field of cluster analysis and
data mining.****** The 486 black with three attri-
butes of checkerboard dataset®” is widely used in
performing the clustering methods.”” Time series
data analysis is most widely used at present in many
areas and with special purposes, it is mainly used in
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Fig. 10. Subtype of Cancers by KEFCM,4: (a) Gene expression in Cluster 1 (b) Gene expression in Cluster 2 (c) Cluster 1 in 181

Lung Cancer dataset (d) Cluster 2 in 181 Lung Cancer dataset.

the area of data mining.*~°" The time series dataset
used in this subsection contains a total 300 control
chart time series generated by the process in Alcock
and Manolopoulos,”" with three classes as follows:
(Class one) 1-100 Normal, (Class two) 101-200
Cyclic, (Class three) 201-300 increasing trend. For
visualization, the wine, IRIS, checkerboard data
and time series dataset are given in Figs. 13-16.
Since the benchmark datasets are having known
number of clusters, this subsection corrupts the

intensities of objects of datasets in order to run the
proposed algorithm to cluster them into appropriate
clusters.

The obtained size of clusters and accuracies on
Wine dataset and IRIS dataset are shown in
Figs. 17 and 18 and the allocated objects are given
in Figs. 19 and 20.

The clustering accuracies using Silhouette width
of KFCM, Proposed KEFCM,,, and Proposed
KFCM,, algorithms on Wine, IRIS, Checkerboard
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Table 3. Comparison of Iteration Count
(Its), Running Time (RT) and clustering
accuracy (SW).

Lung
SW RT Its
GKFCM 64% 56's 27
KFCM 61% 1 min 30
KEFCM,q 93% 58 11
KFCM,,; 93% 5s 12
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Cluster 1 (b) Gene expression in Cluster 2 (c¢) Cluster 1 in 181

and Synthetic Control Time Series dataset are listed
in Table 5. The Proposed KEFCM,,4 and KFCM,,,
algorithms have obtained good clustering results
due to the objective function with kernel entropy
and neighborhood term.

5.4. FExperimental results with breast
cancer database
This subsection uses 699 breast cancer datasets®’

given in Fig. 21 for the purpose of experimental
works using the proposed clustering methods. The
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Table 4. The constituents of Wine dataset.

No. Chemical name of constituent
1 Alcohol
2 Malic acid
3 Ash
4 Alcalinity of ash
5 Magnesium
6 Total phenols
7 Flavanoids
8 Nonflavanoid phenols
9 Proanthocyanins
10 Color intensity
11 Hue
12 0D280/0D315 of diluted wines
13 Proline

data consists of visually assessed nuclear features of
fine needle aspirates (FNAs) taken from patients’
breasts. Each data have been assigned nine-
dimensional vectors by Dr. Wolberg. Each com-
ponent is in the interval 1-10, with a value 1 cor-
responding to a normal state and 10 to a most
abnormal state. The nine-dimensional vectors are:
thickness, cell size, cell shape, marginal, adhesion,
epithelial cell size, nuclei, chromatin, normal
nucleoli and mitoses. The breast cancer data are
used to make a decision on the medical condition
that the cancer is malignant or benign.

GKFCM and KFCM results based on malignant
and benign in 699 breast data are plotted in Figs. 22
and 24, respectively. The separated two classes for
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results of malignant and benign by GKFCM and
KFCM are visualized in Figs. 23 and 25, respect-
ively. The results of proposed KEFCM,, and
KFCM,; methods based on malignant and benign
on breast cancer dataset are shown in Figs. 26
and 28, respectively. The allocated two classes for

CheckBoard Dataset
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Fig. 15. 1000 Check board Dataset.

300 Time Series

Fig. 16. 300 Time Series Dataset.

malignant and benign of 699 breast cancer dataset
by Proposed KEFCM,,4 and KFCM,,;, are given in
Figs. 27 and 29, respectively. The captured size of
two classes of malignant and benign by proposed
KEFCM,,, and KFCM,,, algorithms are shown in
Figs. 27 and 29, respectively. The clustering accu-
racy of GKFCM, KFCM, KEFCM,,4 and KFCM,,
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Table 5. Cluster results. Silhouette width [SW], Clustering Accuracy [CA], Minutes [M], Seconds [S], Running

Time [RT] and Iterations [Its].

No. of objects No. of objects

No. of objects

in cluster 1 SW in cluster 2 SW in cluster 3 SW CA RT Its
Wine data
KFCM 56 0.52 59 0.63 63 0.41 52% 1.5min 49
KEFCM, 4 48 0.97 65 0.98 65 094 96.3% 6s 7
KFCM,, 48 0.98 65 0.98 65 099 98.3% 5s 5
IRIS data
KFCM 48 0.51 50 0.63 52 0.52 55.33% 1.6min 40
KEFCM,q 52 0.96 44 0.91 54 097 94.6% 9s 7
KFCM,, 51 0.97 44 0.98 55 0.99 98% 7s 6
Checkerboard Time series
SW RT Its SW RT Its
KFCM 61% 1.4 min 47 60% 1.3 min 50
KEFCM, 4 97% 8s 7 95% 7s 9
KFCM,, 98.5% 7s 7 98% 7s 8

on clustering malignant and benign in breast cancer
database is listed in Table 6. We can find from
Table 6 that the proposed methods have better
clustering accuracy during the experiment on breast

Wisconsin Breast Cancer Database(9-dimensional)
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699 dataset with two classes of malignant and
benign.

The Error Matrix Table 7 gives the accuracy
between the reference classes and the obtained
classes by the methods involved in this experimental
study with Breast Cancer database. From Tables 6
and 7, the best clustering accuracy was obtained for
the proposed methods during the experiment on
Breast Cancer data with two clusters.
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Table 6. Silhouette average values in clustering Breast cancer
Data.

Clusterl Cluster 2

No. of items SW No. of items SW ASW

GKFCM 303 0.72 396 0.77 74.5%
KFCM 305 0.34 394 0.32  33%
KEFCM, 4 271 0.85 428 0.86 85.5%
KFCM,, 266 0.84 433 0.87 85.5%

Table 7. Error Matrix on Breast Cancer Dataset.

GKFCM KFCM KEFCM,, KFCM,,

Accuracy 79% 55% 92.7% 93%

6. Conclusions

The novel fuzzy clustering algorithms KEFCM, 4
and KFCM,; have been developed for finding sub-
types of cancers in the Breast cancer database.
A center or prototypes knowledge method is intro-
duced to speed up the convergence of the algor-
ithms. This paper evaluated the performance of the
proposed methods through the experimental works
on Yeast, Lung Cancer, IRIS, Wine, Checkerboard
and Time Series dataset. This paper has reported
the superiority the proposed methods have shown
using silhouette width, error matrix, running time,
number of iterations and well-separated clusters.

Finally, this paper has proved that the proposed
methods are effective in clustering the breast cancer
database into cancerous and noncancerous portions.

Acknowledgments

This work was supported by Indo Taiwan Joint
Research Project, DST India & NSC Taiwan.

References

1. Hawes et al., “DNA hypermethylation of tumors
from non-small cell lung cancer (NSCLC) patients is
associated with gender and histologic type,” Lung
Cancer 69, 172-179 (2010).

2. D. M. Parkin, F. Bray, J. Ferlay, P. Pisani, “Global
cancer statistics,” CA Cancer J. Clin. 55(2), 74-108
(2002).

3. J. Calle, “Breast cancer facts and figures 2003—
2004, American Cancer Society, 1-27 (2004).

4. Y. N. Rao, S. Gupta, S. P. Agarwal, “National
Cancer Control Programme: Current status and
strategies, 50 years of cancer control in India,” NCD
Section, Director General of Health (2003).

5. H.-L. Chen, B. Yang, J. Liu, D.-Y. Liu, “A support
vector machine classifier with rough set-based fea-
ture selection for breast cancer diagnosis,” Expert
Syst. Appl. 38, 9014-9022 (2011).

6. C. Liedtke et al., “Systematic analysis of in vitro
chemosensitivity and mib-1 expression in molecular
breast cancer subtypes,” Fur. J. Cancer 48(13),
2066-2074 (2012).

7. F. P. Turkoz et al., “Association between common
risk factors and molecular subtypes in breast cancer
patients,” Breast J. 22(3), 344-350 (2013).

8. Ramathilagam et al., “Extended Gaussian kernel
version of fuzzy c-means in the problem of data ana-
lyzing,” Expert Syst. Appl. 38(4), 3793-3805 (2011).

9. M. Kowal et al., “Computer-aided diagnosis of
breast cancer based on fine needle biopsy micro-
scopic images,” Comput. Biol. Med. 43(10), 1563—
1572 (2013).

10. J. C. Bezdek, Pattern Recognition with Fuzzy
Objective Function Algorithms (Plenum Press,
New York, 1981).

11. R. C. Dubes, A. K. Jain, Clustering methodology in
Exploratory Data Analysis, Advances in Computers,
M. C. Yovits, Ed., pp. 113-225 (Academic Press,
New York, 1980).

12. Y. Yong, Z. Chongxun, L. Pan, “A novel Fuzzy C-
means clustering algorithm for image thresholding,”
Meas. Sci. Rev. 4, 11-19 (2004).

13. L. A. Zadeh, “Fuzzy sets,” Inf. Control 8, 338-353
(1965).

1450018-18



J. Innov. Opt. Health Sci. 2014.07. Downloaded from www.worldscientific.com
by 103.240.126.9 on 10/21/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Fuzzy C-Means in Finding Subtypes of Cancers in Cancer Database

J. Dunn, “A fuzzy relative of the Isodata process
and its use in detecting compact, well-separated
clusters,” J. Cybernetics 3(3), 32-57 (1973).

J.-S. Lin, “Clustering problem using Fuzzy C-means
algorithms and wunsupervised neural networks,”
Neuro-Fuzzy Pattern Recogn. 41, 75-99 (2000).
Ravi et al., “Threshold accepting-based Fuzzy
clustering algorithms,” Int. J. Unc. Fuzz. Knowl.
Based Syst. World Scientific J. 14, 617 (2006).
Chaira et al., “Intuitionistic Fuzzy C means clus-
tering in medical image segmentation,” Adv. Pattern
Recogn. 1, 226-230 (2007).

H. P. Ng et al., “Fuzzy C-means algorithm with
local thresholding for gray-scale images,” Int. J.
Artif. Intell. Tools 17(04), 765-775 (2008).

K. Yuan et al., “A novel Fuzzy C-means algorithm
and its application,” Int. J. Pattern Recogn. Artif.
Intell. 19(08), 1059-1066 (2005).

S. D. Hu, K. Tak, U. “A Novel video steganography
based on non-uniform rectangular partition,” IEEFE Int.
Conf. Computational Science and Engineering CSE/
I-SPAN/IUCC 2011, doi: 10.1109/CSE.2011.24.

Y. Wen, “Brain tissue classification based on DTI
using an improved Fuzzy C-means algorithm with
spatial constraints,” Magn. Reson. Imaging 31(9),
1623-1630 (2013).

Y. Li et al., “Fast Fuzzy c-means clustering algorithm
with spatial constraints for image segmentation,”
Advances in Neural Network Research and Appli-
cations, Springer (2010).

E. Comak, “A biomedical decision support system
using LS-SVM classifier with an efficient and new
parameter regularization procedure for diagnosis of
heart valve diseases,” J. Med. Syst. 36, 549-556
(2012), doi: 10.1007/s10916-010-9500-5.

L. Zhang et al., “A novel ant-based clustering
algorithm using Renyi entropy,” Appl. Soft Comput.
13, 2643-2657 (2013).

L. Bai et al., “An initialization method to simul-
taneously find initial cluster centers and the
number of clusters for clustering categorical data,”
Knowledge-Based Syst. 24, 785-795 (2011).

S. Shehroz et al., “Cluster center initialization
algorithm for K-means clustering,” Pattern Recog-
nit. Lett. 25, 1293-1302 (2004).

H.-S. Tsai et al., A Kernel-based Fuzzy C-means
algorithm with partition index maximization, Proc.
2010 Seventh Int. Conf. Fuzzy Systems and Knowl-
edge Discovery, FSKD, pp. 391-394 (2010).

M.-S. Yang et al., “A Gaussian kernel-based fuzzy c-
means algorithm with a spatial bias correction,”
Pattern Recogn. Lett. 29, 17131725 (2008).
Saikumar et al., “Robust adaptive threshold algor-
ithm based on Kernel Fuzzy clustering on image
segmentation,” The First Int. Conf. Information

1450018-19

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Technology Convergence and Services, ITCS 2012,
N. Meghanathan et al. Ed. SIP, JSE-2012, CS & IT
04, pp. 99-103 (2012), doi: 10.5121 /csit.2012.2109.
S. Chen, D. Zhang, “Robust image segmentation using
FCM with spatial constraints based on new Kernel-
induced distance measure,” IEEE Trans. Syst. Man
Cybern. B Cybern. 34(4), 1907-1916 (2004).

M. Girolami, “Mercer-based clustering in feature
space,” IEEE Trans. Neural Netw. 13(3), 780-784
(2002).

G. N. Brock, V. Pihur, S. Datta, S. Datta, “clValid,
an R package for cluster validation,” J. Stat.
Software 25(4), 1-22 (2008).

P. J. Rousseeuw, “Silhouettes: A Graphical aid to
the interpretation and validation of cluster ana-
lysis,” J. Comput. Appl. Math. 20, 5365 (1987).
A. Struyf, M. Hubert, P. Rousseeuw, “Clustering in
an object-oriented environment,” J. Statistical Soft-
ware 1(4), 1-30 (1997).

K. Mouhoubi et al., A knowledge-driven bi-
clustering method for mining noisy datasets, Neural
Information Processing, Lecture Notes in Computer
Science, Vol. 7665, pp. 585-593, Springer (2010).

D. Hou et al., “An Efficient successive iteration
partial cluster algorithm for large datasets, Fuzzy
information and engineering 2010,” Adv. Intell. Soft
Comput. 78, 557-562 (2010).

K. Das et. al., “Empirical comparison of sampling
strategies for classification,” Procedia FEng. 38,
1072-1076 (2012).

G. J. Gordon et al., “Translation of microarray data
into clinically relevant cancer diagnostic tests using
gene expression ratios in lung cancer and
Mesothelioma,” Cancer Res. 62, 4963-4967 (2002).
UCI Benchmark repository: A huge collection of arti-
ficial and real world data sets, University of California
Irvine, Available at http://www.ics.uci.edu/~mlearn.
C. Borgelt, R. Kruse, Speeding up Fuzzy clustering
with neural network techniques, Proc. 12th IEEFE Int.
Conf. Fuzzy Systems, FUZZ-IEEE’03, St. Louis, MO,
USA, IEEE Press, Piscataway, NJ, USA (2003).

E. J. Bredenstenier, K. P. Bennett, “Multicategory
classification by support vector machines,” Comput.
Optim. Appl. 12, 53-79 (1999).

J. G. Dy, C. E. Brodley, “Feature selection for
unsupervised learning,” J. Mach. Learn. Res. 5,
845-889 (2004).

D.-Q. Zhang, S.-C. Chen, “Clustering incomplete
data using Kernel-based Fuzzy C-means algorithm,”
Neural Process. Lett. 18, 155-162 (2003).

X.-L. Yang, Q. Song, Y.-L. Wu, “A robust deter-
ministic annealing algorithm for data clustering,”
Data Knowl. Eng. 62, 84-100 (2007).

J. Gonzalez-Castillo et al., “Whole-brain, time-
locked activation with simple tasks revealed using



J. Innov. Opt. Health Sci. 2014.07. Downloaded from www.worldscientific.com
by 103.240.126.9 on 10/21/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

S. R. Kannan et al.

46.

47.

48.

massive averaging and model-free analysis,” Proc.
Natl. Acad. Sci. USA 109(14), 5487-5492 (2012).
D. Martinez-Rego, O. Fontenla-Romero, A. Alonso-
Betanzos, “Efficiency of local models ensembles for
time series prediction,” FExpert Syst. Appli. 38,
6884-6894 (2011).

M. L. Hetland, “A survey of recent methods for
efficient retrieval of similar time sequences,” Data
Mining in Time Series Databases, World Scientific
(2002).

L. Singh, M. Sayal, “Privacy preserving burst
detection of distributed time series data using linear
transforms,” Proc. IEEE Symp. Computational

1450018-20

49.

50.

51.

Intelligence and Data Mining, CIDM 2007, pp. 646—
653 (2007).

Q. Wang, V. Megalooikonomou, C. Faloutsos,
“Time series analysis with multiple resolutions,” Inf.
Syst. doi: 10.1016/j.is.2009.03.006.

Q. Wang, V. Megalooikonomou, “A dimensionality
reduction technique for efficient time series simi-
larity analysis,” Inf. Syst. 33, 115-132 (2008).

R. J. Alcock, Y. Manolopoulos, “Time-series simi-
larity queries employing a feature-based approach,”
7th Hellenic Conf. Informatics, 27-29 August, 1999,
Ioannina, Greece, 1999.



	FUZZY C-MEANS IN FINDING SUBTYPES OF CANCERS IN CANCER DATABASE
	1. Introduction
	2. Related Works and Methodology
	2.1. Kernel-based Fuzzy C-means Clustering
	2.2. Clustering validation
	2.3. Methodology

	3. Proposed KEFCMwd and KFCMnt Algorithms
	3.1. Proposed KEFCMwd algorithm
	3.2. Proposed KFCMnt algorithm

	4. Prototypes or Centers Knowledge Method
	5. Experimental Results
	5.1. Experimental results on yeast dataset
	5.2. Experimental results on lung cancer
	5.3. Experimental results on benchmark datasets
	5.4. Experimental results with breast cancer database

	6. Conclusions
	Acknowledgments
	References


