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Pre-operative X-ray mammography and intraoperative X-ray specimen radiography are routinely
used to identify breast cancer pathology. Recent advances in optical coherence tomography
(OCT) have enabled its use for the intraoperative assessment of surgical margins during
breast cancer surgery. While each modality offers distinct contrast of normal and pathological
features, there is an essential need to correlate image-based features between the two modalities
to take advantage of the diagnostic capabilities of each technique. We compare OCT to X-ray
images of resected human breast tissue and correlate different tissue features between modalities
for future use in real-time intraoperative OCT imaging. X-ray imaging (specimen radiography)
is currently used during surgical breast cancer procedures to verify tumor margins, but
cannot image tissue in situ. OCT has the potential to solve this problem by providing intrao-
perative imaging of the resected specimen as well as the in situ tumor cavity. OCT and micro-CT
(X-ray) images are automatically segmented using different computational approaches,
and quantitatively compared to determine the ability of these algorithms to automatically
differentiate regions of adipose tissue from tumor. Furthermore, two-dimensional (2D) and
three-dimensional (3D) results are compared. These correlations, combined with real-time
intraoperative OCT, have the potential to identify possible regions of tumor within breast tissue
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which correlate to tumor regions identified previously on X-ray imaging (mammography or

specimen radiography).

Keywords: Optical imaging; mammography; specimen radiography; segmentation; breast cancer;

intraoperative imaging.

1. Introduction

Breast cancer is estimated to be the leading form
of new non-skin cancer cases affecting women in the
United States in 2013.! As medicine evolves, new
treatment options have developed, with a combi-
nation of surgery, radiation therapy, chemothe-
rapy and hormone therapy being prescribed on an
individual basis.”? However, early detection still
remains a critical factor for successful treatment
and increased patient survival rates.>* Currently,
the standard practice for screening for breast cancer
includes physical examination and X-ray mammo-
graphy. Suspicious lesions found on mammography
are subsequently biopsied to provide specimens for
pathological diagnosis, and surgical resection may
follow. During surgery, resected breast masses con-
taining tumor are frequently imaged with specimen
radiography (X-rays) to help determine if the entire
lesion has been resected with a sufficient margin
of apparently normal tissue. Both X-ray mammo-
graphy and specimen radiography rely on tissue
contrast between normal and abnormal regions
based on X-ray absorption and scattering. However,
the introduction of other imaging modalities and
tissue contrast mechanisms offers the potential to
improve the diagnostic capabilities in the intrao-
perative setting.

Optical coherence tomography (OCT) was first
described in 1991° and over the last two decades
has been developed for applications in medicine,
surgery, biology and materials testing.®” OCT can
noninvasively visualize optical scattering properties
arising from differences in refractive index within
a sample area, such as from scattering particles or
boundaries. OCT is rapidly becoming an established
biomedical imaging technique because it uniquely
offers noninvasive micron-level resolution capable
of visualizing microscopic cell and tissue features in
real time up to several millimeters deep in highly-
scattering tissues. Relatively inexpensive compared
to many other imaging modalities, OCT systems can
be portable, and interface with a variety of beam-
delivery systems such as microscopes, catheters,

needles or hand-held probes. Most notably in oph-
thalmology, OCT has become the gold-standard
for retinal imaging because of the transparent
nature of the eye. Ocular disease detection has
advanced with the ability to look beneath the sur-
face of the retina, as well as visualize anterior seg-
ment structures.*'* OCT also has applications in
dentistry'®~'® and dermatology,'?~?! among many
other areas.

In oncology, OCT has been used to differentiate
between normal and abnormal breast tissue.????
Using OCT, it has been shown that positive tumor
margins on freshly excised breast masses can be
accurately identified intraoperatively during breast
lumpectomy procedures.?* Furthermore, there is
ongoing work involving intraoperative OCT lymph
node imaging to provide real-time assessment of
sentinel lymph nodes for determining tumor meta-
stases and staging cancer.?”~?” A commercial OCT
system that implements interferometric synthetic
aperture microscopy (ISAM)?® has been used for
in vivo imaging of the tumor cavity during breast
surgeries.”” The use of other optical imaging tech-
nologies have been investigated to address the need
for high-resolution assessment of tumor margins
during breast cancer surgery, including elastic
scattering spectroscopy,®’ Raman spectroscopy,*!
photoacoustic imaging®”? and diffuse reflectance
spectroscopy,’® among several others. While many
of these have shown promise, several are hampered
by factors such as point-based measurements,
long acquisition times, lower spatial resolution or
the generation of spectroscopic signatures, rather
than image-based data. The work in this study
offers the potential to correlate real-time intrao-
perative OCT findings with those obtained using
pre-operative X-ray mammography and intrao-
perative specimen radiography.

2. Methods

Human breast tissue containing a portion of breast
tumor (ductal carcinoma in situ) was obtained from
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Carle Foundation Hospital, Urbana, Illinois, under
a protocol approved by the Institutional Review
Boards at Carle Foundation Hospital and the Uni-
versity of Illinois at Urbana-Champaign. Imaging
of tumor specimens was performed using each
modality in succession, keeping the orientation and
imaging areas correlated. Specimens were first
imaged with a custom-built spectral-domain OCT
system that utilized a titanium:sapphire laser
(KMLabs, Inc.) as an optical source. This source
provided broadband light centered at 800 nm with
a 100nm bandwidth, yielding an axial resolution
of 4 um. The transverse resolution of the system
was 12 um. Following OCT imaging, specimens
were either maintained in the same cuvette or
transferred to a second cuvette for imaging with a
commercial micro-CT (X-ray) system (MicroXCT-
400, Xradia, Inc.). After imaging, specimens were
either placed in formalin for paraffin-embedded
histology or flash frozen for frozen section histology.
Four specimens (each ~5mm diameter) were
imaged with both OCT and micro-CT, and an ad-
ditional 4 specimens used for analysis were imaged
with only OCT. A total of 2400 OCT images were
collected and 1250 images were analyzed. A total of
2200 micro-CT images were collected and 760 were
analyzed. Subsets of images were not analyzed
because they were acquired at the edges of the tissue
specimens and either contained a very small portion
of the tissue (low signal) or were excessively noisy
(high background). The determination of which
raw images were used for analysis and which were
discarded was based on manual inspection of each
image to ensure there was sufficient signal-to-noise
to visually identify the presence of tissue in the
image.

In the clinical setting, digital specimen radi-
ography systems (Faxitron Bioptics, LLC) are often
used. This portable system would typically be
located immediately outside an operating room
where a radiologist can provide real-time feedback
on a resected tissue mass. These types of systems
use X-ray energies ranging from 10—35keV. Stan-
dard X-ray mammography scans use X-ray energies
from 24—32keV, although lower energies may be
used to enhance contrast at the expense of pen-
etration depth. The micro-CT system used in this
study can image at most all of the typical X-ray
energies used in both X-ray mammography and
specimen radiography, with an X-ray photon energy
range of 20 to 80keV. An X-ray energy of 30keV

Correlation of OCT and X-ray of Breast Cancer

was used to acquire the images in this study because
this closely approximated the energies used in these
clinical systems. The commercial micro-CT system
had a machine specification resolution capability of
200 nm, but this level of detail was not apparent
in the images taken with the device. Following
OCT and micro-CT imaging, specimens were his-
tologically prepared, sectioned, stained with hema-
toxylin and eosin and viewed under bright field
microscopy.

Three MATLAB algorithms were developed to
automatically segment the acquired images, modi-
fied from community-developed algorithms from
MATLAB Central.** The first algorithm applied
an amplitude filter to an image based on a user-
defined threshold (using the im2bw function on
a grayscale image). The second algorithm, a 2D
spatial frequency filter, applied a band-pass filter
in the Fourier domain (using the fft2 and ifft2
functions) with a specified bandwidth around a
center frequency, and isolated features within
that range using a window function. The third al-
gorithm applied a texture-based filter, which found
entropy values (using the entropyfilt function as
well as the mat2gray, im2bw and bwareopen func-
tions) throughout a cross-sectional B-mode OCT
image and made a binary decision to create a region
based on similar features within a user-defined
correlation distance. Each filter and segmentation
approach was experimentally optimized by adjust-
ing filter parameters to obtain a segmentation result
similar to manual visual segmentation, which ser-
ved as the gold-standard for comparison. This filter
parameter optimization was done on a training
set comprised of a total of 25 randomly selected
images and a Student’s t-test was performed to
determine statistical significance. Then, for each
segmentation approach, an additional algorithm
was written to automatically read the images in a
data set sequentially (using the imread function),
process the images with optimum parameters and
calculate an area and perimeter value for the tumor
region in each image (using the regionprops func-
tion). Additionally, the texture-based segmentation
algorithm had an additional optimization portion
as it had a large variance in results from the initial
training set. Two of the parameters (kernel size and
correlation distance) were varied and the set with
the lowest variance was used so that variability in
results was minimized. Each of these algorithms was
then applied to the remaining OCT and micro-CT
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image data sets (n = 1225 for OCT and n = 735
for micro-CT) and the results analyzed using a
Student’s t-test.

3. Results and Discussion
3.1. Manual image correlation

For accurate correlations between different image
sections of a specimen across modalities, the orien-
tation and axes of imaging were maintained. The
OCT scan volumes were generally smaller (~ 2 mm x
2mm X 1.5mm) compared to the micro-CT volumes
(~5mm x 5mm x 3mm) due to instrument scan
parameters, and therefore the OCT volumes did
not encompass the entire specimen. When compar-
ing the two modalities, as well as comparing with
corresponding histological findings (see Fig. 1), it
can be seen that each modality serves a specialized
role in imaging breast cancer. X-ray imaging pro-
minently shows the presence of microcalcifications
and variations in tissue density (see Fig. 1), which
is not surprising, given the strong and differential

2D OCT

X-ray attenuation by these features. OCT, in
comparison, can provide morphological information
based on optical scattering, and offers a different
type of tissue contrast that yields different struc-
tural features. As seen in Fig. 1, suspicious micro-
structures visualized with OCT are not apparent
in the micro-CT scan. However, because of the
reduced field-of-view and imaging depth of OCT,
applications are somewhat limited to specific uses
where the tissue sites have been exposed, and sus-
picious regions have already been identified, such as
in intraoperative imaging.

3D correlations can also be useful. Commercial
biomedical image visualization software (Amira,
Visualization Sciences Group) was used to manually
co-register different morphological features. In this
way, the rough orientation of the sample was
obtained between modalities and features within
the specimen were more easily correlated by look-
ing at corresponding computationally extracted
slices. 3D volumes of micro-CT and OCT were
compared on the same scale and orientation (see
Fig. 1). Although the attenuation of X-rays is not

3D OCT

Fig. 1. Representative comparison of OCT, micro-CT and histology image data. The dotted white boxes in the micro-CT images
and the dotted black boxes in the histology images (H&E) are the approximate scan areas of the corresponding OCT images. Tumor
structures can be seen in all three modalities on the left-half of the images, with normal adipose tissue on the right-half. The arrows
indicate corresponding structures and areas of microcalcifications. 3D OCT and micro-CT datasets are also shown. The black
3D wire-frame in the micro-CT image is the approximate scan area for the corresponding 3D OCT image. Microcalcifications
(black arrows) appear bright in the micro-CT data of the adipose tissue on the right. The micro-CT volume is visualized using a
direct volume rendering algorithm while the OCT volume is visualized using a surface mesh algorithm.
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significantly different between fibrous tissue and
cancerous tissue, three separate tissue types were
readily differentiable: adipose tissue, tumor tissue
and microcalcifications. Similarly, these three tissue
types were readily identified with OCT (see Fig. 1).
The adipose tissue had a honeycomb network
texture pattern based on the higher scattering by
the adipocyte cell membranes. The tumor tissue
was more homogeneous and higher scattering, and
the microcalcifications were point-like objects that
exhibited the highest amount of optical scattering.
Based on these common image features between
modalities, it was possible to segment and correlate
images between modalities.

Threshold = .05

Correlation of OCT and X-ray of Breast Cancer

3.2. Optimizing segmentation methods

Following alignment of the orientation, scale and
fields-of-view between OCT and micro-CT data
volumes, three MATLAB algorithms modified from
community-developed algorithms were utilized to
automatically segment images. Each algorithm
made a binary decision, delineating tumor regions
and areas.

The first algorithm used an intensity filter to
segment out tumor areas as seen in Fig. 2 (OCT
and micro-CT). For the OCT data set, threshold
values were optimized to 20%, based on visually
determining the value that highlighted the tumor

Threshold = .10

Micro-CT

Threshold = .15

Threshold = .20

Threshold =.25

Threshold = .35

Threshold = .30

Threshold = .40

Fig. 2. Optimization of intensity-based filtering. OCT images (top set) with intensity threshold settings from 5—30% and micro-
CT images (bottom set) with threshold values from 15—40% are shown. Setting threshold values at 20% for OCT and 25% of
maximum intensity for micro-CT yielded the best results by visual selection (boxes). The image dimensions were 3mm x 1.5 mm

and the tumor area is shown on the left side of each image.
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area best while minimizing the signal from the
adipose tissue. For micro-CT, a threshold value of
25% was found to be optimal, as almost the entire
tumor region was segmented without significant
signal from the adipose tissue.

Intensity filtering yielded better segmentation
results for micro-CT data because of the large X-ray
absorption contrast between the tumor and adipose
regions. In the scattering-based OCT images, there
are regions of adipose tissue that are more visible
due to scattering from the adipocyte cell mem-
branes. As such, the intensity filter was not as
effective for OCT image segmentation in this com-
parison. This intensity filter algorithm, however,
was the fastest, requiring only 0.7 s per OCT image
and 0.1s per micro-CT image on a 2.93 GHz Intel
quad-core personal computer.

The second algorithm for segmentation was
spatial frequency filtering. This method was chosen
because tumor areas are denser and have different
spatial frequency content in images compared to
adipose tissue. This algorithm applied a band-pass
filter in the Fourier domain and returned a filtered
image. In order to optimize this algorithm, both the
center frequency and bandwidth had to be opti-
mized. Figure 3 shows this optimization for OCT
and micro-CT, where arrays of images are shown,
with the center frequency increasing in the columns
from left-to-right, and the bandwidth increasing
in the rows, from top-to-bottom. For both OCT
and micro-CT images, the spatial frequency filter
was able to isolate the tumor area. The spatial
frequencies were determined by multiplying the
number of pixels by the frequency variable and
dividing by the size of the image in millimeters. This
segmentation algorithm required 0.95s per OCT
image and 1.8 s per micro-CT image.

The third segmentation method used a texture-
based algorithm, because the entropy and texture
of tumor and adipose regions should be different.
This approach was optimized around the variables
of kernel size and correlation distance as seen in
Fig. 4. This method yielded the best qualitative
results for processing OCT images, because it was
able to clearly isolate the tumor region. However,
the parameters were highly sensitive to specific
images and needed to be optimized for each image,
often giving erroneous results if not recalibrated for
each image. Furthermore, when applied to micro-
CT images, this algorithm had difficulty in dis-
tinguishing the borders of tumor regions, because

the texture of the micro-CT images was universally
grainy. The nl variable identified in Fig. 4 is the
width and height of the kernel size, increasing from
top-to-bottom. The n2 variable is the square of the
correlation distance, increasing from left-to-right.
This algorithm required 2.3s per OCT image and
2.3 s per micro-CT image.

To validate our selection of the given threshold
values, we varied these threshold values slightly and
re-analyzed the images in the study set to determine
the effect that slight variations in the thresholds
would have on the measured outcomes. Few dif-
ferences were noted for the intensity and spatial
filters, validating the choice of thresholds for these
filters. However, more variability was noted for the
texture-based filter, as noted above, indicating that
the use of this filter approach would likely be more
tissue specific.

3.3. Automated segmentation

Following the optimization of these algorithm par-
ameters based on visual inspection of segmentation
outcomes compared to the original OCT and micro-
CT images, automated segmentation of the larger
image datasets were performed. In order to deter-
mine the effectiveness of each segmentation algor-
ithm, a training set was performed with n =25
OCT and n = 25 micro-CT images, comparing the
area and perimeter of the segmented areas to a gold-
standard of visual segmentation. Figure 5 shows the
comparison of segmented areas for each method,
after being normalized by the area determined by
visual segmentation. Only the spatial frequency
filter applied to the micro-CT images was shown to
be statistically similar (p > 0.05) to the area seg-
mented by visual inspection, and it was shown to be
the closest to the visual segmentation of tumor area
in OCT as well. Subsequently, the spatial frequency
algorithm was used in the automated portion of
this study as the normalizing quantity. The inten-
sity-based filter segmented a much larger area than
visual segmentation because it did not accurately
account for noise in the images. The texture-based
filter was not able to segment a tumor area ap-
proximately 25% of the time, and also had limi-
tations with the micro-CT images, resulting in large
error bars and smaller segmented areas. This is
likely due to the highly variable texture within the
images, from the high heterogeneity of the tissue

types.
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Fig. 3. Optimization of spatial frequency filtering. In both sets of OCT and micro-CT images, the tumor tissue is located on the
left. The center spatial frequencies vary in the range of 73.4—75.8 cycles/mm from left-to-right for OCT and 18.4—32.2 cycles/mm
from left-to-right for micro-CT. The bandwidth varies in the range 1.4—2.6 cycles/mm from top-to-bottom for OCT and 6.3—15.7
cycles/mm from top-to-bottom for micro-CT. The optimal set of parameters has a center spatial frequency of 74.9 cycles/mm and a
bandwidth of 2.2 cycles/mm for OCT, and a center spatial frequency of 23.01 cycles/mm and a bandwidth of 12.3 cycles/mm for

micro-CT (boxes).

Additionally, the perimeter of automatically
segmented areas was compared to visually seg-
mented areas (see Fig. 6). The perimeter of the
tumor regions in the OCT images segmented
with the intensity method was large because many

small areas were isolated, each contributing to the
perimeter measurement. For the spatial frequency
algorithm, the perimeter was also larger than by
visual segmentation because there was more detail
in choosing the boundaries of the area. Finally, the
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Fig. 4. Optimization of texture-based filtering. In both sets of OCT and micro-CT images, the tumor tissue is located on the left.
The columns show increasing correlation distance (n2) from left-to-right and the rows show increasing kernel size (n1) from top-to-

bottom. The optimum configurations are selected visually (boxes).

texture-based method was closest to visual inspec-
tion because the algorithm forms one continuous
region based on similar texture characteristics.
Finally, based on the findings from the training
set, these algorithms were applied to the remainder
of the datasets, including images where tumor
regions were larger and smaller. In each of these
images, the intensity and texture-based algorithms

were normalized to the areas found by the spatial
frequency filter. This was done because the spatial
frequency algorithm was closest to visual segmen-
tation in the training set (see Fig. 5). In Fig. 7, it
can be seen that intensity-based segmentation con-
sistently found larger areas than those identified by
the spatial frequency algorithm, as shown earlier.
However, the texture-based method performed better
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OCT 1.88E-10 0.00012  2.24E-06
Micro-CT 1.38E-08 0.094259  2.20E-05

Fig. 5. Average area of tumor found by each segmentation
method, normalized to visual segmentation (training dataset,
n =25) with error bars representing standard deviation.
A Student’s t-test comparing the mean of areas found by
each method with the mean obtained by visual inspection was
performed. The p-values are shown in the table. Note, because
the data is normalized, areas closer to 1 more closely approach
the area determined by visual segmentation.

for OCT than micro-CT. This is consistent with
previous findings, but the texture-based method has
the additional advantage of finding smaller numbers
of isolated areas.
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Intensity  Spatial Texture
OCT 5.06E-34 2.10E-32 1.31E-3
Micro-CT 3.48E-16 1.06E-05  2.68E-16

Fig. 6. Average perimeter of tumor found by each method
normalized to visual segmentation (training dataset, n = 25)
with error bars representing standard deviation. A Student’s
t-test comparing the mean of perimeters found by each method
with the perimeter obtained by visual inspection was per-
formed. The p-values are shown in the table. Note, because the
data is normalized, perimeters closer to 1 more closely approach
the perimeter determined by visual segmentation.
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ocT MicroCT
Intensity Texture
ocT 1.50E-170 1.12E-49
Micro-CT  2.45E-95 6.96E-26

Fig. 7. Comparison of automatic segmentation algorithms.
Areas of tumor segmented by each algorithm are normalized to
areas from the spatial frequency algorithm (n = 1250 for OCT,
n = 760 for micro-CT), with error bars representing standard
deviation. A Student’s ¢t-test comparing the means of the areas
found by each method with the area obtained by the spatial
frequency filter was performed. The p-values are shown in the
table.

In the future, algorithms can be developed to
automatically determine and evaluate threshold
settings based on specific breast cancer sub-types
and image features. Also, a combination of seg-
mentation and filter methods may be useful for
automatically identifying areas of tumor so that
real-time segmentation of OCT can be used in the
operating room without the need for operator
training to read and interpret the OCT images.
Additionally, these algorithms can be expanded to
segment 3D datasets to isolate 3D volumes of
tumors.

4. Conclusions

Intraoperative OCT has been shown to identify
positive tumor margins during breast cancer sur-
gery. Because X-ray mammography and specimen
radiography are typically used in the screening,
diagnosis and treatment of breast cancer, this study
sought to segment, co-register and correlate image-
based findings of breast cancer observed with OCT
and X-ray imaging (micro-CT). This multi-modal
(and multi-scale) imaging approach has the benefit
of leveraging the large volume of image data acquired
using X-ray imaging, and relating this information to
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the high-resolution real-time OCT. Future work
will extend the findings of this study to intrao-
perative OCT, from either resected tumor speci-
mens or even in vivo within the tumor cavity.

This study compared the effectiveness of three
algorithms for automatically segmenting OCT and
micro-CT images of human breast tissue and
tumors. These algorithms were based on intensity,
spatial frequency and texture-based segmentation
approaches. The spatial frequency algorithm had
the most consistent segmentation of tumor areas.
However, the intensity and texture-based algor-
ithms each had advantages that could be incor-
porated into a more sophisticated segmentation
algorithm in the future. Quantitatively determining
the ability to segment and co-register images
between OCT and X-ray imaging, and automating
the registration process, will offer the potential to
more comprehensively evaluate tissue for diagnostic
purposes.

Acknowledgment

We thank Darold Spillman from the Beckman
Institute for Advanced Science and Technology
on the campus of the University of Illinois at
Urbana-Champaign for his assistance with logistical
and information technology support. This research
was supported in part by a grant from the U.S.
National Institutes of Health, R01 EB012479
(S.AB.). Jonathan Sun was also supported by a
Carver Foundation Graduate Fellowship. Additional
information can be obtained at http://biophotonics.
illinois.edu.

References

1. American Cancer Society, Cancer Facts & Figures
2013, American Cancer Society, Atlanta (2013).

2. J. Chhatwal, O. Alagoz, E. S. Burnside, “Optimal
breast biopsy decision-making based on mammo-
graphic features and demographic factors,” Oper.
Res. 58, 1577—1591 (2010).

3. D. G. Fryback, N. K. Stout, M. A. Rosenberg, A.
Trentham-Dietz, V. Kuruchittham, P. L. Remington,
“The Wisconsin breast cancer epidemiology simu-
lation model,” J. National Cancer Inst. Monogr.
36, 37—47 (2006).

4. R.T. Greenlee, T. Murray, S. Bolden, P. A. Wingo,
“Cancer statistics,” CA Cancer J. Clin. 50, 7—33
(2000).

1350015-10

10.

11.

12.

13.

14.

15.

16.

. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman,

W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K.
Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical
coherence tomography,” Science 254, 1178—1181
(1991).

Handbook of Optical Coherence Tomography, B. E.
Bouma, G. J. Tearney, Eds., Marcel Dekker, Inc.
(2002).

Optical Coherence Tomography: Technology and
Applications, W. Drexler, J. G. Fujimoto, Eds.,
Springer (2008).

F. G. Holz, R. F. Spaide, Medical Retina: Focus on
Retinal Imaging, Springer (2010).

V. J. Srinivasan, B. K. Monson, M. Wojtkowski,
R. A. Bilonick, I. Gorczynska, R. Chen, J. S. Duker,
J. S. Schuman, J. G. Fujimoto, “Characterization
of outer retinal morphology with high-speed, ultra-
high-resolution optical coherence tomography,”
Invest. Ophthalmol. Vis. Sci. 49, 15711579 (2008).
M. C. Lim, S. T. Hoh, P. J. Foster, T. H. Lim, S. J.
Chew, S. K. Seah, T. Aung, “Use of optical coher-
ence tomography to assess variations in macular
retinal thickness in myopia,” Invest. Ophthalmol.
Vis. Sci. 46, 974—978 (2005).

C. A. Toth, D. G. Narayan, S. A. Boppart, M. R.
Hee, J. G. Fujimoto, R. Birngruber, C. P. Cain, C.
D. DiCarlo, W. P. Roach, “A comparison of retinal
morphology viewed by optical coherence tomogra-
phy and by light microscopy,” Arch. Ophthalmol.
115, 1425—-1428 (1997).

A. Mistlberger, J. M. Liebmann, D. S. Greenfield,
M. E. Pons, S. T. Hoh, H. Ishikawa, R. Ritch,
“Heidelberg retina tomography and optical coher-
ence tomography in normal, ocular-hypertensive,
and glaucomatous eyes,” Ophthalmology 106,
2027—-2032 (1999).

T. H. Ko, J. G. Fujimoto, J. S. Duker, L. A. Paunescu,
W. Drexler, C. R. Baumal, C. A. Puliafito, E.
Reichel, A. H. Rogers, J. S. Schuman, “Comparison
of ultrahigh- and standard-resolution optical cohe-
rence tomography for imaging macular hole pathol-
ogy and repair,” Ophthalmology 111, 2033—2043
(2004).

R. J. Linnola, O. Findl, B. Hermann, H. Sattmann,
A. Unterhuber, R. P. Happonen, W. Drexler,
“Intraocular lens-capsular bag imaging with ultra-
high-resolution optical coherence tomography
pseudophakic human autopsy eyes,” J. Cataract
Refract. Surg. 31, 818—823 (2005).

L. L. Otis, M. J. Everett, U. S. Sathyam, B. W.
Colston, Jr., “Optical coherence tomography: A new
imaging technology for dentistry,” J. Am. Dent.
Assoc. 131, 511-514 (2000).

L. L. Otis, B. W. Colston, Jr., M. J. Everett,
H. Nathel, “Dental optical coherence tomography:



J. Innov. Opt. Health Sci. 2013.06. Downloaded from www.worldscientific.com
by 103.240.126.9 on 10/21/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

A comparison of two in vitro systems,” Dentomax-
illofac. Radiol. 29, 85—89 (2000).

B. W. Colston, Jr., M. J. Everett, U. S. Sathyam,
L. B. DaSilva, L. L. Otis, “Imaging of the oral cavity
using optical coherence tomography,” Monogr. Oral
Sei. 17, 32—55 (2000).

D. Fried, J. Xie, S. Shafi, J. D. Featherstone,
T. M. Breunig, C. Le, “Imaging caries lesions
and lesion progression with polarization sensitive
optical coherence tomography,” J. Biomed. Opt. 7,
618—627 (2002).

M. C. Pierce, J. Strasswimmer, B. H. Park, B.
Cense, J. F. de Boer, “Advances in optical coherence
tomography imaging for dermatology,” J. Invest.
Dermatol. 123, 458—463 (2004).

J. Welzel, “Optical coherence tomography in
dermatology: A review,” Skin Res. Technol. 7, 1—9
(2001).

J. Welzel, E. Lankenau, R. Birngruber, R. Engelhardst,
“Optical coherence tomography of the human skin,”
J. Am. Acad. Dermatol. 37, 958—963 (1997).

S. A. Boppart, W. Luo, D. L. Marks, K. W. Singletary,
“Optical coherence tomography: Feasibility for
basic research and image-guided surgery of breast
cancer,” Breast Cancer Res. Treat. 84, 85—97
(2004).

P. L. Hsiung, D. R. Phatak, Y. Chen, A. D. Aguirre,
J. G. Fujimoto, J. L. Connolly, “Benign and
malignant lesions in the human breast depicted with
ultrahigh resolution and three-dimensional optical
coherence tomography,” Radiology 244, 865—874
(2007).

F. T. Nguyen, A. M. Zysk, E. J. Chaney,
J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore,
K. M. Rowland, P. A. Johnson, S. A. Boppart,
“Intraoperative evaluation of breast tumor margins
with optical coherence tomography,” Cancer Res.
69, 8790—8796 (2009).

W. Luo, F. T. Nguyen, A. M. Zysk, T. S. Ralston,
J. Brockenbrough, D. L. Marks, A. L. Oldenburg,
S. A. Boppart, “Optical biopsy of lymph node
morphology using optical coherence tomography,”
Technol. Cancer Res. Treat. 4, 539—547 (2005).
F. T. Nguyen, A. M. Zysk, E. J. Chaney, S. G. Adie,
J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore,
K. M. Rowland, P. A. Johnson, S. A. Boppart,

1350015-11

27.

28.

29.

30.

31.

32.

33.

34.

Correlation of OCT and X-ray of Breast Cancer

“Optical coherence tomography: The intraoperative
assessment of lymph nodes in breast cancer,” IEFE
Eng. Med. Biol. Mag. 29, 63—70 (2010).

R. John, S. G. Adie, E. J. Chaney, M. Marjanovic,
K. V. Tangella, S. A. Boppart, “Three-dimensional
optical coherence tomography for optical biopsy of
lymph nodes and assessment of metastatic disease,”
Ann. Surg. Oncol. DOI: 10.1245/s10434-012-2434-z
(2012).

T. S. Ralston, D. L. Marks, P. S. Carney,
S. A. Boppart, “Interferometric synthetic aperture
microscopy,” Nat. Phys. 3, 129—134 (2007).

L. K. Jacobs, P. S. Carney, A. J. Cittadine,
D. T. McCormick, A. L. Somera, D. A. Darga,
J. L. Putney, S. G. Adie, P. Ray, K. A. Cradock,
L. Tafra, E. W. Gabrielson, S. A. Boppart,
“Intraoperative assessment of tumor margins with
a new optical imaging technology: A multi-center,
randomized, blinded clinical trial,” Proc. CTRC-
AACR Breast Cancer Symp., San Antonio, TX,
December 4—8 (2012).

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley,
S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose,
C. Saunders, “Diagnosis of breast cancer using
elastic-scattering spectroscopy: Preliminary clinical
results,” J. Biomed. Opt. 5, 221—228 (2000).

A. S. Haka, Z. Volynskaya, J. A. Gardecki,
J. Nazemi, J. Lyons, D. Hicks, M. Fitzmaurice,
R. R. Dasari, J. P. Crowe, M. S. Feld, “In vivo
margin assessment during partial mastectomy
breast surgery using Raman spectroscopy,” Cancer
Res. 66, 3317—3322 (2006).

L. Xi, S. R. Grobmyer, L. Wu, R. Chen, G. Zhou,
L. G. Gutwein, J. Sun, W. Liao, Q. Zhou, H. Xie,
H. Jiang, “Evaluation of breast tumor margins
in vivo with intraoperative photoacoustic imaging,”
Opt. Express 20, 8726—8731 (2012).

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown,
J. Gallagher, M. Junker, W. Barry, N. Ramanujam,
L. Wilke, “Optical breast cancer margin assessment:
An observational study of the effects of tissue
heterogeneity on optical contrast,” Breast Cancer
Res. 12, R91 (2010).

Available at http://www.mathworks.com/help/
images/functionlist.html, MATLAB, Mathworks,
Inc.



	SEGMENTATION AND CORRELATION OF OPTICAL COHERENCE TOMOGRAPHY AND X-RAY IMAGES FOR BREAST CANCER DIAGNOSTICS
	1. Introduction
	2. Methods
	3. Results and Discussion
	3.1. Manual image correlation
	3.2. Optimizing segmentation methods
	3.3. Automated segmentation

	4. Conclusions
	Acknowledgment
	References


