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Direct field-to-pattern monolithic design of
holographic metasurface via residual encoder-
decoder convolutional neural network
Ruichao Zhu 1, Jiafu Wang1*, Tianshuo Qiu1, Dingkang Yang2, Bo Feng1,
Zuntian Chu1, Tonghao Liu1, Yajuan Han1, Hongya Chen1 and
Shaobo Qu1*

Complex-amplitude  holographic  metasurfaces  (CAHMs)  with  the  flexibility  in  modulating  phase  and  amplitude  profiles
have been used to manipulate the propagation of wavefront with an unprecedented level, leading to higher image-recon-
struction quality compared with their natural counterparts. However, prevailing design methods of CAHMs are based on
Huygens-Fresnel theory, meta-atom optimization, numerical simulation and experimental verification, which results in a
consumption of  computing  resources.  Here,  we  applied  residual  encoder-decoder  convolutional  neural  network  to  dir-
ectly  map  the  electric  field  distributions  and  input  images  for  monolithic  metasurface  design.  A  pretrained  network  is
firstly trained by the electric field distributions calculated by diffraction theory, which is subsequently migrated as transfer
learning framework to map the simulated electric field distributions and input images. The training results show that the
normalized mean pixel  error  is  about  3% on dataset.  As  verification,  the  metasurface prototypes are  fabricated,  simu-
lated and measured. The reconstructed electric field of reverse-engineered metasurface exhibits high similarity to the tar-
get  electric  field,  which  demonstrates  the  effectiveness  of  our  design.  Encouragingly,  this  work  provides  a  monolithic
field-to-pattern design method for CAHMs, which paves a new route for the direct reconstruction of metasurfaces.
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 Introduction
Metasurfaces, as  two-dimensional  metamaterials,  dis-
play fascinating ability in electromagnetic (EM) modula-
tion  within  a  sub-wavelength  scale,  opening  up  a  new
way  for  manipulating  the  properties  of  EM  wave  in  a
plane1−3. Recently, versatile metasurfaces consisting of in-
genious  meta-atoms  with  systematic  arrangement  have
sprung up like mushrooms for shaping the EM fields by

manipulating amplitude4,  phase5,  wavefront6,  and so on.
Owing to the flexible modulation of EM wave, metasur-
faces have spawned a number of enchanting applications,
such  as  perfect  absorbers7,8,  cloaking  devices9,10,  planar
meta-lens11−14 and meta-hologram15−17. The emergence of
metasurface exhibits  extraordinary  capabilities  in  devel-
oping and improving optical and microwave devices.

Benefitting  from  the  advantages  of  metasurfaces, 
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holograms  can  be  generated  according  to  the  positions
and local  scattering  characteristics  of  meta-atoms  ar-
ranged on a plane, which can be called metasurface holo-
graphy18−20. With  the  unprecedented  ability  of  recon-
structing wavefronts, metasurface holography has attrac-
ted  a  lot  of  interest,  which  is  opening  new  frontiers  for
microwave  and  optical  devices18,19.  Many  fascinating
works are springing up, which have greatly enriched the
design  and  application  of  holograms.  According  to  the
information  modulation  mode,  metasurface  holography
can be roughly divided into three categories: phase-only,
amplitude-only  and  complex-amplitude  metasurface
holography21−23.  Phase-only  hologram  engineers  phase
information in the image plane with amplitude as a con-
stant, in which Gerchberg-Saxton (GS) is one of the most
representative  algorithms24−32. Phase  profiles  are  modu-
lated  by  various  mechanisms,  such  as  propagation
phase24−26,  geometric  phase27−29,  detour  phase30−32,  etc.,
which exhibits a flexible control strategy, thus enriching
the tailoring of the image information. However, the ob-
livion of amplitude will compromise the imaging quality
with noises that may unexpectedly appear on the preset-
ting image.  Therefore,  the amplitude modulation is  also
introduced  to  engineer  hologram.  Similarly,  amplitude-
only metasurface holography can engineer amplitude in-
formation via coding the local transmission or reflection
amplitude33,34.  Furthermore,  combined  with  amplitude
and phase,  complex-amplitude  holographic  metasur-
faces  (CAHMs)  are  introduced  to  improve  the  imaging
quality by  carrying  both  phase  and  amplitude  informa-
tion35−37. The  phase  and  amplitude  profiles  of  metasur-
face  can  be  deduced  by  Huygens–Fresnel  theory.
Rayleigh–Sommerfeld (RS)  diffraction  theory  is  a  com-
mon method to design CAHMs38−40. However, the theor-
etical results  calculated  by  diffraction  theory  are  differ-
ent  from  actual  situation,  which  may  be  caused  by  unit
coupling  and  unit  error.  Therefore,  further  numerical
simulations  are  carried  out  to  verify  the  hologram,  thus
causing  a  consumption  of  computing  resources  and  the
increased complexity of design. Fortunately, the popular-
ity of machine learning provides an opportunity to over-
come it.

Recently,  machine  learning  has  been  widely  used  in
metasurface  design  and  applications41–43.  In  metasurface
design, the commonest design methods are applied at the
level  of  microstructure  including  forward  and  inverse
design  of  meta-atoms,  that  is,  the  EM  response  can  be
directly  inferred  from the  structure  and the  geometrical

parameters  can  be  deduced  from  the  EM  spectrum44−51.
The applications of machine learning empowered meta-
atoms  effectively  accelerate  the  design  efficiency  of
metasurfaces  by  superseding  the  simulation  process.  In
metasurface applications, machine learning can assist the
metasurface  to  perceive  the  external  environment,  thus
making the metasurface more intelligent to approach the
usage scenario52−54. Moreover, another application of ma-
chine  learning-assisted  design  approaches  has  also  been
proposed to design the wavefront,  including the predic-
tion of far-field or near-field distributions via neural net-
works  without  numerical  simulation55−59.  At  the  level  of
microstructure, the  meta-atoms  with  specified  EM  re-
sponses can  be  fast  designed  by  machine  learning.  Fur-
thermore, the  optimized  meta-atoms  are  arranged  ac-
cording  to  the  specified  profiles  to  achieve  specified
function, which means that coupling between units is ig-
nored.  Therefore,  the  design  of  metasurface  from  a
macro perspective is correspondingly proposed. By ana-
lyzing the  local  field  distributions  in  space,  neural  net-
work can  accurately  explore  their  internal  laws  and  re-
construct  the  mapping  from  local  field  to  modulator.
Homoplastically, the configuration of  metasurface holo-
graphy also has the potential to be monolithically gener-
ated by  machine  learning.  Metasurfaces  formed  by  di-
verse meta-atoms  with  different  arrangements  will  syn-
thetically  affect  the  electric  field  in  space.  Therefore,
metasurface  design  from  a  macroscopic  perspective  by
analyzing  field  and  pattern  will  further  improve  the
design efficiency and accuracy.

In this  work,  we  proposed  a  monolithic  design  ap-
proach  for  CAHMs.  Different  from  traditional  unit-
based  optimization  and  layout,  the  metasurface  can  be
monolithically generated from the electric field distribu-
tions by  the  deep  learning  network.  The  monolithic  ar-
rangement  of  metasurface  is  directly  generated  by  the
target electric field distribution, thus reducing the coup-
ling  between  elements  to  simplify  and  accelerate  the
hologram metasurface design. Specifically, a residual en-
coder-decoder convolutional neural network (REDCNN)
is employed  to  establish  the  mapping  between  the  elec-
tric field distributions and input images. Instead of tradi-
tional Huygens–Fresnel principle and numerical simula-
tion, the given electric field distribution can be fast con-
verted  to  complex-amplitude  profiles  via  the  trained
REDCNN. The schematic diagram of this work is shown
in Fig. 1. Firstly, RS diffraction theory is used for gener-
ating  the  theoretical  electric  field  distribution  with  the
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input image. The input images are derived from MNIST,
a classic dataset of handwritten numbers. The theoretic-
al electric  field  distribution  and  input  image  are  collec-
ted for training the REDCNN, which is preliminarily set
as pretrained model. Then the metasurfaces with the the-
oretical complex-amplitude profiles are simulated to ob-
tain  the  electric  field  distributions  as  new  dataset.  The
pretrained model can be migrated to the new dataset by
transfer  learning  framework,  and  thus  only  part  of  the
input  images  is  used  to  establish  high-precision  electric
field mapping. After statistics, the normalized mean pixel
error  of  trained  REDCNN model  is  about  3%,  meaning
the high  similarity  between  the  real  images  and  pre-
dicted images. The monolithic design method mainly fo-
cuses  on  the  monolithic  pattern  of  metasurface  without
considering the attributes of the specific elements, which
will simplify the complexity of metasurface design. Also,
monolithic design is to design metasurfaces at the macro
level.  As verification, an input image is  predicted by the
electric field  distribution,  and the corresponding metas-
urface is  modeled.  The  metasurface  prototypes  are  fab-
ricated,  simulated  and  measured  to  validate  the  inverse
model. The reconstructed electric field of reverse-engin-
eered  metasurface  exhibits  high  similarity  to  the  given
electric field distribution, which demonstrates the effect-

iveness  of  our model.  Importantly,  this  work provides  a
monolithic  design  method  for  CAHMs,  which  can  be
easily  extended  to  the  metasurface  reverse  engineer  of
other properties.

 Holography metasurface monolithic design

 REDCNN design
Here, the REDCNN is employed as machine learning ar-
chitecture  to  establish  the  mapping  between the  electric
distributions and input images. As the name of the mod-
el suggests, REDCNN is based on encoder-decoder con-
volutional neural network with skipped residual connec-
tion. This architecture can achieve image reconstruction
through  feature  compression  and  reconstruction,  which
has  achieved  certain  results  in  medical  image
processing60.  Owning  to  the  image-to-image  framework
can be easily transplanted to another scenario, this work
followed and applied this framework. The architecture of
REDCNN is shown in Fig. 2(a), which includes 4 convo-
lution  down-sampling  layers,  4  transposed  convolution
up-sampling  layers,  and  1  convolution  full-connection
layer. The electric field distribution is set as input and in-
put  image  is  output  of  REDCNN.  As  a  down-sampling
method,  convolution  layer  can  effectively  extract  high-
dimensional  features  of  images.  The  schematic  diagram
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of  feature  transfer  in  the  encoder  is  shown  in Fig. 2(d),
which  can  be  seen  that  different  feature  information  is
extracted  from  different  feature  channels.  For  example,
some feature channels focus on foreground information,
while  others  may  focus  on  background  information.
Even  edge,  brightness  and  other  features  are  extracted
into different feature channels. After the compression of
the  first  four  convolution  layers,  the  feature  graph  with
dimension  [20×20]  is  finally  compressed.  The  down-
sampling  process  under  convolution  is  shown  in Fig.
2(b). In  the  down-sampling  process,  batch  normaliza-

tion  is  applied  to  normalize  the  data  set  and  average
pooling layer is introduced to reduce the effect of singu-
larities. Batch normalization can be expressed as Eq. (1).
 

y = x− U(x)√
Var(x) + ε

∗ A+ B , (1)

where x and y are  input  and  output  data, U(x)  and
Var(x) are expectation and variance of training data, ε is
a constant to avoid 0 in the denominator. A and B are the
weight parameters. Since it is a nonlinear mapping, Rec-
tified  Linear  Unit  (ReLU)  is  used  as  the  activation
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function which is shown in Eq. (2). 

f(x) =
{

0, x ≤ 0
x, x > 0 , (2)

in  which x is  the  input  data. f(x)  is  output  of  neuron.
Correspondingly, the  up-sampling  process  under  trans-
posed  convolution  is  shown  in Fig.  2(c),  in  which  this
block also includes batch normalization, average pooling
layer and  ReLU  activation  function.  The  schematic  dia-
gram of  feature  transfer  in  the  decoder  is  shown in Fig.
2(e).  After  the  restructuration  of  the  four  transposed
convolution  layers,  the  feature  graph  with  dimension
[28×28] is finally compressed. The last convolution layer
realizes  two-dimensional  fully  connection  through  1×1
convolution  kernel  to  adjust  the  output  of  the  image.
Henceforth,  the  input  image  can  be  reconstructed  by
REDCNN.

 Network training
The REDCNN is  trained twice  here,  that  is,  deep learn-
ing  pretraining  and  transfer  learning  retraining.  In  this
work, the images are extracted from MNIST dataset. The
MNIST dataset contains the images with pixels [28 × 28]
containing  handwritten  digits  across  10  categories61.
Firstly, the electric field distributions are collected by RS
diffraction  theory,  and  the  initial  dataset  of  theoretical
electric field and input image is achieved. The phase and
amplitude profiles  calculation  and  electric  field  recon-
struction  can  be  obtained  by  RS  diffraction  theory,
whose relevant  equations  are  supplemented  in  Supple-
mentary  information  Section  1.  The  collected  dataset  is
used to train REDCNN with the training process shown
in Fig. 3(a),  in  which  the  loss  function  value  appears  a
downward  trend.  The  initial  MAE  loss  value  of  deep
learning is 29.6, that is, 11.6% normalized mean pixel er-
ror.  Mean  absolute  error  (MAE)  function  is  selected  as
the loss function which can be expressed as Eq. (3). 

MAE =
1
n

n∑
i=1

|p (xi)− yi| , (3)

in  which n is  the  count  of  data, p(xi)  is  the  predicted
value  of  model, yi is  the  true  value.  After  training,  the
MAE loss of gray image pixels reached 4.6,  that is,  1.8%
normalized mean pixel error, which can demonstrate the
model  can  reconstruct  the  image  with  less  loss.  We
define  the  normalized  mean  pixel  error  as  the  relative
variation in the range of pixel changes, which can be cal-
culate by Eq. (4). 

Perr =
MAE
Pmax

, (4)

where Perr is  normalized  mean  pixel  error. MAE is  the
mean  absolute  error  between  the  predicted  value  and
true value. Pmax is the max value of the range of pixel, in
which  the  pixel  value  in  gray  image  varies  between  [0,
255].  Moreover,  the  histograms  of  error  distribution  in
training set  and test  set  are shown in Fig. 3(c) and 3(d),
in which the pixel error of most point is close to 0. Sub-
sequently,  the  trained  REDCNN  is  set  as  pretrained
model for transfer learning. Part of input image is selec-
ted to simulate the electric field distributions. The simu-
lated electric field distributions are collected as new data-
set. Then,  the  pretrained  REDCNN  is  migrated  to  re-
train as transfer learning framework. The input and out-
put  of  new  dataset  are  the  simulated  electric  fields  and
input images. The process of transfer learning retraining
is shown in Fig. 3(b), where the gray value of pixel MAE
loss  dropped  to  7.8  from  13.9.  The  normalized  mean
pixel error finally reached to 3%. Notably, the initial loss
value  has  already  reached  13.9,  normalized  mean  pixel
error is 5.5%. Compared to the initial loss of deep learn-
ing, the initial loss value is reduced by 6.1%, which fully
demonstrates the advantages of transfer learning retrain-
ing  framework.  The  histograms  of  error  distribution  in
training set and test set by transfer learning are shown in
Fig. 3(e) and 3(f),  where  the  pixel  errors  of  most  points
are also  close  to  0.  The  error  histograms  fully  demon-
strate that the model can accurately predict images with
less  error.  Moreover,  the  convolutional  neural  network
(CNN) and  encoder-decoder  convolutional  neural  net-
work (EDCNN)  as  control  group  are  also  trained  re-
spectively  to  verify  the  superiority  of  REDCNN,  which
are supplemented  in  Supplementary  information  Sec-
tion 2.  The  statistical  results  convincingly  prove  the  ef-
fectiveness of this framework.

 Metasurface monolithic design and simulation
In order to further demonstrate the trained REDCNN, a
metasurface  in  dataset  is  selected  to  verify  our  design.
Firstly, the simulated electric field distribution is fed in-
to  the  trained  REDCNN  as  input.  After  this  operation,
the predicted gray image is output. Figure 4(a) illustrates
the gray image of the input image, in which the real im-
age  is  similar  to  predicted  image  with  less  error.  The
phase  and  amplitude  profiles  are  calculated  by  RS
diffraction  theory,  as  shown  in Fig. 4(b) and 4(c).  The
phase  and  amplitude  of  predicted  image  exhibit  high
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similarity to real image. Figure 4(d) illustrates the theor-
etical  electric  field which is  calculated by RS diffraction.
The electric  intensity  between  the  real  plane  and  pre-
dicted  plane  is  similar.  The  corresponding  metasurface
of the predicted image is filled by meta-atoms and simu-
lated to observe the electric field distribution. The meta-
atoms design is supplemented in Supplementary inform-
ation Section 3. The metasurface is placed on XOY plane
and the boundary conditions in X, Y, Z directions are set
to  free  space.  The  full  wave  simulation  is  carried  out  in
CST Microwave Studio. The x-polarized plane waves im-
pinge on the metasurface from the +Z direction.  E-filed
monitor  is  set  to  obtain  the  electric  field  distribution.
The XOY plane at Z = 50 mm is observed. The compara-
tion of simulated results is shown in Fig. 4(e), where the

similarity of  electric  intensity  distributions  demon-
strated the  accuracy  of  model.  The  similarity  of  the  im-
ages  is  evaluated  by  Peak  Signal-to-Noise  Ratio  (PSNR)
and  Structural  SIMilarity  (SSIM)  respectively,  which  is
supplemented  in  Supplementary  information  Section  4.
The  PSNR  of  the  real  and  predicted  images  is  38.39  dB
and the SSIM of the real and predicted images is 99.78%.
According to  the  real  and  predicted  images,  the  com-
plex-amplitude profiles can be calculated and the metas-
urface  can  be  reconstructed  to  generate  the  hologram.
Furthermore,  the  PSNR  and  SSIM  are  also  applied  to
evaluate  the  image  similarity  between  the  real  data  and
predicted data. The PSNR of the real and predicted phase
profiles, amplitude profiles,  theoretical  electric  field  dis-
tributions,  and  simulated  electric  field  distributions  are
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25.99 dB,  44.80  dB,  44.29  dB,  and  28.2861  dB,  respect-
ively. The SSIM of the real and predicted phase profiles,
amplitude profiles, theoretical electric field distributions,
and  simulated  electric  field  distributions  are  99.97%,
99.92%, 99.92%, and 94.96% respectively.  Moreover,  the
more comparations of real and predicted images are sup-
plemented in Supplementary information Section 5.

 Experimental verification
Furthermore, the metasurface prototypes of the real im-
age  and  predicted  image  are  fabricated  and  measured.
Figure 5(a) shows the  photographs  of  fabricated  metas-
urface prototypes.  The  prototypes  of  designed  metasur-
faces  are  fabricated  using  Printed  Circuit  Board  (PCB)

technology. Figure 5(b) and 5(c) illustrate the  photo-
graphs  of  the  fabricated  orthogonal  metal  gratings.  The
photographs  of  the  metasurface  patterns  corresponding
with  real  image  and  predicted  image  are  shown  in Fig.
5(d) and 5(e). The  images  include  28×28  pixels  corres-
ponding  that  the  metasurfaces  consist  of  28×28  meta-
atoms. Therefore,  the side-length of  fabricated metasur-
face prototype is 168 mm. All the samples are measured
in  microwave  anechoic  chamber  as  shown  in Fig. 5(f).
The sample  is  placed vertically  on the  test  platform,  the
broadband  horn  antenna  is  vertically  placed  away  from
sample as transmitting antenna. The probe as the receiver
is  set  to  receive  the  EM wave  and scan the  electric  field
distribution.  The  polarization  direction  of  the  probe  is
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placed  orthogonal  to  that  of  the  transmitting  antenna.
The  probe  driven  by  a  stepper  motor  is  positioned  50
mm above the sample and the scanning area is 180×180
mm. The  measured  results  of  real  metasurface  and pre-
dicted metasurface are  shown in Fig. 5(g) and 5(h).  The
difference between two electric field distributions is used
to  detect  the  error  between  them,  which  is  exhibited  in
Fig. 5(i). The error diagram between these shows a small
measured error  distribution,  which  sufficiently  demon-
strated  our  design.  All  the  measured  results  verified  the
validity of  trained  REDCNN  model,  which  can  mono-
lithically design the CAHM.

 Conclusion
In  this  work,  we  propose  a  monolithic  design  approach
of CAHM via REDCNN architecture. Deep learning pre-
training and transfer learning retraining frameworks are

employed  to  establish  the  mapping  between  the  electric
field  distributions  and  input  images.  With  the  trained
REDCNN,  the  input  image  can  be  fast  predicted  by  the
electric  field  distributions.  Owing  to  the  unit  coupling
and unit error have been considered for generating elec-
tric  field distribution,  the prediction of  input  image can
eliminate these effects. The training results illustrate that
the normalized mean pixel error predicted by REDCNN
can reach 3%, which is high accuracy for inverse design.
The  metasurfaces  can  be  fast  monolithically  fabricated
according  to  the  input  images.  As  verification,  theory,
simulation and measurement are carried out to compare
the  metasurfaces  of  real  image and predicted image.  All
the  real  and  predicted  results  exhibit  a  high  degree  of
similarity,  which  convincedly  verified  our  design.  Here,
we use REDCNN to achieve the metasurface monolithic
design based on MNIST data. In the future, the data and
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Zhu RC et al. Opto-Electron Adv  6, 220148 (2023) https://doi.org/10.29026/oea.2023.220148

220148-8

 



model  can  be  further  improved  performance.  About
data,  the  more  images  can  be  expanded  in  dataset  and
the more  complex  patterns  can  be  calculated  in  mono-
lithic design.  About  model,  physics-based  inspired  ma-
chine  learning  will  further  optimize  the  monolithic
design. Most importantly, this work provides a new way
to monolithically  inverse  design  the  holography  metas-
urface via  machine  learning,  which  can  be  easily  exten-
ded to the other application of metasurfaces.
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