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4K-DMDNet: diffraction model-driven network
for 4K computer-generated holography
Kexuan Liu, Jiachen Wu, Zehao He and Liangcai Cao*

Deep  learning  offers  a  novel  opportunity  to  achieve  both  high-quality  and  high-speed  computer-generated  holography
(CGH). Current data-driven deep learning algorithms face the challenge that the labeled training datasets limit the train-
ing performance and generalization. The model-driven deep learning introduces the diffraction model into the neural net-
work.  It  eliminates the need for  the labeled training dataset  and has been extensively applied to hologram generation.
However, the existing model-driven deep learning algorithms face the problem of insufficient constraints. In this study, we
propose a model-driven neural network capable of high-fidelity 4K computer-generated hologram generation, called 4K
Diffraction Model-driven Network (4K-DMDNet). The constraint of the reconstructed images in the frequency domain is
strengthened.  And  a  network  structure  that  combines  the  residual  method  and  sub-pixel  convolution  method  is  built,
which effectively enhances the fitting ability of the network for inverse problems. The generalization of the 4K-DMDNet is
demonstrated with binary, grayscale and 3D images. High-quality full-color optical reconstructions of the 4K holograms
have been achieved at the wavelengths of 450 nm, 520 nm, and 638 nm.

Keywords: computer-generated holography; deep learning; model-driven neural network; sub-pixel convolution; 
oversampling
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 Introduction
Computer-generated holography is a technology that can
accurately modulate the light field distribution in three-
dimensional  (3D)  space.  It  has  been  widely  applied  in
various  fields,  including  holographic  display1−4,  meta-
surface design5−8, and laser fabrication9. Currently, only a
few  spatial  light  modulators  (SLMs)  can  modulate  both
the amplitude  and  phase  of  the  wavefront  simultan-
eously.  The  complex  amplitude  hologram  (CAH)  needs
to  be  converted  to  an  amplitude  hologram  or  a  phase-
only  hologram  (POH)  for  display.  Compared  with  the
amplitude hologram,  the  POH  provides  higher  diffrac-
tion efficiency  and  avoids  the  twin  image  in  the  recon-

struction. The  POH  is  calculated  only  with  the  amp-
litude constraints on the object plane without any phase
constraints. So the solution is not unique. And the amp-
litude constraints  on the hologram plane are equal  to 1,
so the solution may not exist. The POH generation pro-
cess is  a  typical  ill-posed  inverse  problem.  The  al-
gorithms used to fit this inverse problem are mostly iter-
ative  methods,  such  as  Gerchberg–Saxton (GS)  al-
gorithm10,11,  Wirtinger  algorithm12, and  non-convex  op-
timization algorithm13. But they are time-consuming and
only  can  find  the  local  optimal  solutions  with  speckle
noise.

Since the high-performance network structure ResNet 
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was  proposed  in  201614,  the  powerful  ability  of  deep
learning  on  highly  ill-posed  inverse  problems  has  been
gradually  demonstrated15−17.  Deep  learning  has  been
widely  used  for  types  of  hologram  generation  since  its
parallel  operational  framework  and  complex  structure
based on  convolution  layers.  Compared  with  the  tradi-
tional POH algorithms4,18−21, the learning-based POH has
the  great  potential  to  realize  real-time  and  speckle-free
holographic display. Nowadays, the learning-based POH
can  be  mainly  divided  into  two  types:  the  data-driven
deep  learning1,22−29 and  the  model-driven  deep
learning30−38.

In the data-driven deep learning, the neural networks
fit  the  inverse  problem  by  learning  the  coding  method
from the approximate solutions calculated by traditional
algorithms.  The image datasets  and their  corresponding
approximate POHs  compose  the  labeled  training  data-
sets.  The  network  is  trained  to  extract  the  non-linear
mapping between the labeled training dataset, which can
be regarded as a black box.  The training process is  real-
ized by calculating the loss function between the output
POHs  and  the  label  POHs,  and  updating  the  network
parameters  by  gradient  descent  algorithms.  The  trained
data-driven  network  can  effectively  speed  up  the  POH
generation processes of images outside the training data-
set1,22 and has  the  advantage  of  simple  network  struc-
tures.  However,  since the neural  network with the data-
driven  deep  learning  purely  learns  the  mapping  of  the
image dataset and label POHs, the labeled training data-
set quality limits the ceiling of the training performance
and POH generalization. And the label POHs need to be
generated in advance, which requires large datasets, huge
computing  resources,  and  long  calculation  time.  The
above  two  challenges  are  particularly  prominent  in  the
learning-based POH generation problem24−26, which pro-
hibits the  practical  application of  the  data-driven meth-
od. To avoid using iterative algorithms in the label POH
generation  process,  random  phase  patterns  and  their
propagating  speckle-like  intensity  patterns  are  used  for
training27. This  method  was  also  used  for  binary  amp-
litude holograms28.  However, the trained networks work
well only for the speckle-like patterns.

To  solve  the  above  two  challenges,  the  model-driven
deep learning is proposed for the POH generation30,31. In
the model-driven  deep  learning,  the  corresponding  for-
ward process model of the inverse problem is used as the
constraints  to  train  the  networks.  It  can  directly  fit  the
inverse problem without the limitation of the approxim-

ate solutions.  For  POH generation,  the  physical  diffrac-
tion  model  is  incorporated  into  the  network  structure.
The loss function can be directly calculated between the
image dataset  and the output reconstructions,  which ef-
fectively eliminates  the  need  for  label  POHs.  The  net-
work  can  automatically  learn  the  latent  encodings  of
POHs in an unsupervised way. Current studies have suc-
cessfully  explored  and  demonstrated  the  availability  of
model-driven deep learning for various POH generation
tasks. Peng et al.  optimized the diffraction model by the
camera-in-the-loop  (CITL)  strategies,  which  obtained
speckle-free  holographic  images  with  coherent  light
sources32,33 and  partially  coherent  light  sources34.
Shimobaba et  al.  realized  zoomable  reconstruction  lar-
ger  than  the  holograms35.  Liu  et  al.  proposed  the  phase
dual-resolution network (PDRNet) structure to learn the
mapping on the same optical  plane rather than crossing
optical planes36. Sun et al. solved dual tasks of amplitude
reconstruction and phase smoothing jointly by loss func-
tion optimization37. In our previous research, the model-
driven network Holo-Encoder could generate one single-
wavelength 4K POH in 0.15 s38. However, due to the in-
sufficient constraints,  the  existing  model-driven  net-
works  face  the  limited  convergence  result  problem39,40.
The  transfer  learning  with  the  single  target  image  is
needed  for  better  reconstruction  quality.  There  is  a
trade-off between the reconstruction quality and calcula-
tion  speed,  which  limits  the  practical  application.  The
combined-driven method,  which  combines  the  advant-
ages  of  the  data-driven  and  model-driven  method,  was
proposed  and  achieved  high-quality  reconstructions  of
3D objects41. But it still faces the time-consuming gener-
ation challenge of the labeled training dataset.

In this  paper,  we  systematically  investigate  the  exist-
ing  learning-based POH research and especially  analyze
the  advantages  of  the  model-driven  method  over  the
data-driven method. We propose a high-fidelity 4K POH
generation network,  called 4K Diffraction Model-driven
Network (4K-DMDNet).  The  constraint  of  the  recon-
structed images in the frequency domain is strengthened.
The  network  structure  combines  the  residual  method
and sub-pixel convolution method, which effectively en-
hances the fitting ability of the network for inverse prob-
lems. The  generalization  of  the  4K-DMDNet  is  demon-
strated with both binary and grayscale images, which can
achieve high-fidelity and high-speed POH generation for
4K display.
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 POH generation network of 4K-DMDNet

 Network architecture
Compared  with  the  data-driven  deep  learning  method,
the  4K-DMDNet  consists  of  the  convolutional  neural
network (CNN) for POH generation and the diffraction
model  for  loss  function  calculation,  as  shown  in Fig. 1.
The  output  of  the  neural  network  with  the  data-driven
method is  the predicted POHs.  The loss  function calcu-
lates  the  error  between  the  output  POHs  and  the  label
POHs, as shown in Fig. 1(a). Thus, it requires the prepar-
ation of  a  labeled  training  dataset  consisting  of  the  im-
age dataset and its corresponding label POHs. However,
the label  POHs  need  to  be  generated  by  iterative  al-
gorithms, which  is  time-consuming  and  limits  the  ceil-
ing  of  the  training  performance  and  generalization.  In
comparison, the proposed 4K-DMDNet works in an un-
supervised way by incorporating the diffraction model as
a part of the neural network, as is shown in Fig. 1(b). The
diffraction  model  simulates  the  light  field  propagation
process. Therefore,  the loss function can be directly cal-
culated between  the  image  dataset  and  the  output  im-
ages.  The  latent  POH  encodings  can  be  sought  without
the label POHs by 4K-DMDNet: 

find H
s.t. |PROP(H)|2 = I , (1)

PROP
where H represents the POH, I represents the target im-
age,  and  represents  the  propagation  process
from the hologram plane to the object plane.  Moreover,
4K-DMDNet directly learns the optimal encoding POHs,
avoiding  the  quality  degradation  caused  by  the  extra
complex-to-phase-only  conversion  operation.  Since  no
random phase is added in the whole calculation process,
the ubiquitous speckle noises are significantly suppressed.

Once  the  network  training  is  complete,  the  network
parameters  can  be  solidified  into  the  computer  chip  to
realize the  rapid  generation  of  holograms.  The  genera-
tion and reconstruction process of 4K POHs by the 4K-
DMDNet is shown in Fig. 2. A set of images or series of
video frames outside the image dataset are input into the
network in sequence. The trained network is used to pre-
dict the  POHs  of  images.  The  output  POHs  are  up-
loaded on  the  4K  SLM.  To  realize  full-color  optical  re-
construction, the 4K-DMDNet is trained in three differ-
ent  wavelength  versions  corresponding  to  the  three
channels of the RGB image. The POHs corresponding to
the three channels are loaded onto the SLM in turn, and
three  illumination  lasers  with  different  wavelengths  are
switched simultaneously.  This  time-multiplexing  meth-
od can  present  high-quality  color  images  without  inter-
ference-induced noise. Finally, observers can see the op-
tically reconstructed image or video at the set distance.
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(image dataset)

Neural network

Data-driven deep learning
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4K-DMDNet

Output POHs
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b

Fig. 1 | Training processes of (a) data-driven deep learning and (b) 4K-DMDNet, respectively.
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The  U-Net  network  as  the  CNN  of  4K-DMDNet  is
shown  in Fig. 3(a). It  consists  of  a  contracting  down-
sampling path  to  capture  context  and  a  symmetric  ex-
panding upsampling  path  that  enables  precise  localiza-
tion,  which  achieves  excellent  performance  on  different
image-to-image  problems42.  And  the  skip  connection
from the  downsampling  path  to  the  upsampling  path  is
another  feature  of  the  U-Net,  which  makes  the  output
images  include  more  details.  Here  the  downsampling
path is  a  residual  neural  network,  consisting  of  down-
sampling blocks and corresponding residual blocks. Each
block  is  composed  of  two  sets  of  batch  normalization,
nonlinearity  (ReLU),  and  a  3×3  convolutional  layer
stacked one  above  the  other.  And the  residual  block  ef-
fectively solves  the  degradation  problem  with  skip  con-
nections14. The downsampling is realized directly by con-
volutional  layers  with  a  stride  of  two.  The  upsampling
path  consists  of  upsampling  blocks,  as  shown  in Fig.
3(b).  In  order  to  achieve  4K  hologram  generation,  the
upsampling  is  realized  by  the  sub-pixel  convolution
method43. It includes convolutional layers to increase the
channel  number  and  a  pixel  shuffle  layer  to  turn  the
tensor from H×W×2C to 2H×2W×C/2. And the residual
method  is  also  used.  Finally,  the  output  layer  of  the  U-
Net  is  a  tanh  function  that  limits  the  POH  value  in  the
range of [−π, π].

 Sub-pixel convolution method
The  learnable  parameter  number  presents  the  learning
capability  of  network  frameworks.  For  CNN,  it  is  the
number  and  size  of  the  convolution  kernels.  When  the

pending data  exceeds  the  learning  capability,  the  net-
work will not converge stably. Increasing the number of
convolutional  layers  is  usually  used  for  more  learnable
parameters. But  the  deeper  the  network,  the  more  diffi-
cult the training. The upsampling method is another im-
portant  factor  which  prominently  affects  the  learnable
parameter number.  Here  we  use  the  sub-pixel  convolu-
tion  method  to  achieve  the  4K  hologram  generation.  It
can increase the learnable parameters of the upsampling
path by four times without changing the network depth.
To  highlight  the  strong  learning  capability  of  the  sub-
pixel convolution method, we compare it with the other
two common upsampling methods, as shown in Fig. 4.

The task of the upsampling path is to upscale the low-
resolution  feature  map  gradually  to  the  target  size.  The
transposed convolution method, also called the deconvo-
lution method, realizes the upsampling by zero-padding
around the input layer to double size and then convolut-
ing  with  a  stride  of  one.  It  is  the  original  upsampling
method used in the U-Net network. However, its recon-
structions  face  the  “checkerboard  artifacts ”  problem,
caused  by  the  uneven  overlap  in  the  convolution
process44,  as  shown  in Fig. 4(a).  The  nearest  neighbor
resize convolution  (NN-resize  convolution)  can  effect-
ively solve this problem. It replaces the zero-padding op-
eration  with  the  nearest  neighbor  interpolation,  adding
more valid  information.  The  sub-pixel  convolution  fur-
ther  uses  learnable  parameters  instead  of  interpolation
information to  enhance  network  performance.  It  in-
cludes a convolutional layer with a stride of one and four
times  the  original  channel  number,  and  a  pixel  shuffle
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Fig. 2 | Generation and reconstruction process of 4K POHs by the 4K-DMDNet. The sub-pixel convolution method and oversampling meth-

od have played decisive roles to achieve it.
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Lilayer to permute data  from the channel dimension in-
to blocks of 2-D spatial data,
 

PS(Li)h,w,c = Li
⌊h/2⌋,⌊w/2⌋,c·2·mod(w,2)+c·mod(h,2) . (2)

The peak signal-to-noise ratio (PSNR) is employed to
quantitatively  evaluate  the  reconstruction  quality  of  the
above  three  upsampling  methods.  We  can  see  that  the
sub-pixel  convolution  method  can  achieve  high-fidelity
and  artifact-free  images  compared  with  the  other  two
methods. The PSNR of the reconstruction with the sub-
pixel convolution method is 19.27 dB.

 Diffraction model of 4K-DMDNet

 Fresnel diffraction model in network layer manner
The  Fresnel  diffraction  model  is  used  as  the  diffraction
model of  4K-DMDNet,  which is  advantageous for com-
putational  speed.  It  calculates  the  propagation  process
from the hologram plane to the object plane, as shown in
Fig. 5(a).  The  intensity  distribution  on  the  object  plane
can be formulated as
 

Î (x, y) = |Ĉ (x, y)|2 = |F {exp[iΦ (x0, y0)]}|
2

= |F
{
exp[iφ (x0, y0)] · exp

[
i
π
λd

(x20 + y20)
]}

|2 ,
(3)

x, y, x0, y0
Ĉ (x, y)

F φ (x0, y0)
λ

d
λ d

where represent  the  coordinates  on  the  object
plane and the hologram plane, respectively,  rep-
resents the complex amplitude distribution on the object
plane,  denotes the Fourier transform,  is  the
output  POH  of  the  U-Net,  is  the  wavelength  of  the
light  sources,  and  is  the  distance  between  the  two
planes.  By  changing  the  parameters  and  ,  full-color
and multi-plane holographic displays can be obtained by
the 4K-DMDNet.  The calculation process of the Fresnel
diffraction model  is  realized  in  the  network  layer  man-
ner,  as  shown  in Fig. 5(b).  Because  the  neural  network
can only backpropagate with real numbers, the light field
distribution on the hologram plane is split  into real and
imaginary parts at the beginning according to the Euler’s
formula: 

exp[iΦ (x0, y0)] = cos[Φ (x0, y0)] + isin[Φ (x0, y0)]. (4)

Since  the  FFT  results  of  real  numbers  are  complex
numbers,  they  need  to  be  split  again  according  to  the
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following formulas:
 

Re
(
Ĉshift

)
= Rc + i · i · Is = Rc − Is ,

Im
(
Ĉshift

)
= Ic + Rs , (5)

Ĉshift

Rc

Ic
Rs Is

Î =
∣∣∣Ĉ∣∣∣2 = Re

(
Ĉ
)2
+

Im
(
Ĉ
)2

where  is the complex amplitude distribution on the
object  plane before the second fftshift  operation,  and

 are  the  real  and  imaginary  parts  of  FFT  result  in  the
cos  path,  and  are  the  real  and  imaginary  parts  of
FFT result  in the sin path.  The intensity distribution on

the  object  plane  is  calculated  by 

 Oversampling method

S

Although the model-driven deep learning is  an effective
tool  for  high-quality  POH  generation,  the  insufficient
constraints  cause  the  artifacts  on  the  reconstructions.
Here we propose to strengthen the constraints in the fre-
quency  domain  for  solving  this  problem.  The  spectrum
of the light field is zero padded to double the size in the
calculation  process.  The  spectrum  of  the  object  plane 
can be calculated as
 

S = F
{
Ĉ (x, y)

}
= F {F {exp[iΦ (x0, y0)]}}

= exp[iΦ (−x0,−y0)] . (6)

So  the  spectrum S is  the  inverted  image  of
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exp[iΦ (x0, y0)]. The zero padding operations are directly
added after the sin and cos layer, as shown in Fig. 5(b).

In addition,  this  method  also  plays  the  role  of  over-
sampling. Here we discuss  the cause and practical  elim-
ination  method  of  the  undersampling  problem  in  the
Fresnel  diffraction  calculation.  The  frequency  analysis
below  is  one-dimensional  for  simplicity.  According  to
the  Nyquist-Shannon  sampling  theorem,  the  maximum
sampling  interval  on  the  object  plane  is  determined  by
the  maximum  spatial  frequency  of  the  light  field.  The
light  ray  formed  by  connecting  the  edge  point  of  the
hologram  and  the  center  point  of  the  object  represents

the maximum spatial frequency that the hologram needs
to recover, as shown in Fig. 5(a). It can be formulated as 

fmax =
2
λ
sinθmax =

np
λd

, (7)

where n and p are the pixel number and pixel pitch of the
hologram, respectively. The maximum sampling interval
satisfying the Nyquist-Shannon sampling theorem is 

Δmax =
1

2fmax
=

λd
2np

. (8)

However,  according  to Eq.  (3), the  complex  amp-
litude field  on  the  object  plane  is  obtained  by  multiply-
ing  the  spherical  phase  and  performing  a  single  FFT.
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According to  the  corresponding  relationship  in  the  fre-
quency domain, the sampling interval of the object plane
in the Fresnel diffraction calculation process is 

Δ =
λd
np

= 2Δmax . (9)

Therefore,  the  Fresnel  diffraction  model  generally
faces the  undersampling  problem.  The  numerical  simu-
lations  can’t accurately  represent  the  practical  recon-
structions, as shown in Fig. 5(c). The speckle noise often
exists  in  experiments,  which  is  a  common  problem  of
POH that need to be addressed45. According to the recip-
rocal  relationship  between  the  frequency  domain  range
and the spatial sampling interval, the zero-padding to the
spectrum is Fourier transferred to the double pixel num-
ber and half pixel pitch on the object plane, as shown in
Fig. 5(d). Therefore, the Nyquist-Shannon sampling the-
orem is satisfied without any additional information.

 Loss function

I
Î

The  network  training  process  is  realized  by  calculating
the loss function between the image dataset and the cor-
responding output  images,  and  updating  the  convolu-
tion kernel by the Adam optimization algorithm accord-
ing to the loss46. The negative Pearson correlation coeffi-
cient  (NPCC) is  chosen as  the  loss  function for  the  4K-
DMDNet.  It  guarantees  linear  amplification  and  bias-
free  reconstruction,  which  increases  the  convergence
probability.  The  NPCC  between  the  input  image  and
output image  can be formulated as 

LNPCC
(
Î, I

)
= −

∑n
i

(
Îi − Î

) (
Ii − I

)
{∑n

i

(
Îi − Î

)2 ∑n
i

(
Ii − I

)2}1/2 .

(10)

 Display demonstration of 4K-DMDNet
We verified the feasibility  of  the proposed 4K-DMDNet
by both  numerical  simulations  and  optical  reconstruc-
tions.  The  training  epoch  is  set  as  40  and  the  distance
between  the  object  plane  and  the  hologram  plane  is  0.3
m. The network is  trained and tested with public  image
datasets, DIV2K_train_HR  and  DIV2K_valid_HR,  re-
spectively. And we use the Matlab Deep Learning Tool-
box  to  realize  the  network  building  and  training.  The
trained  network  model  and  training  code  are  shown  in
ref.47. All  the algorithms were run on the same worksta-
tion  with  an  Intel  Xeon  Gold  6248R  CPU  and  an

NVIDIA  Quadro  GV100  GPU.  Note  that  the  transfer
training  was  employed  in  our  previous  Holo-Encoder
work for  better  display  effects.  In  order  to  more  intuit-
ively  compare  the  performance  of  different  algorithms,
this method was not used for all the following results.

We  first  compared  the  full-color  simulations  of  the
POHs generated  by  the  traditional  GS  algorithm,  Holo-
Encoder,  and  the  proposed  4K-DMDNet,  as  shown  in
Fig. 6(a–c).  The  test  image  was  selected  from  the
DIV2K_valid_HR dataset, which wasn’t seen by the net-
work before. From the detail views, we can see the GS al-
gorithm  faces  the  speckle  noise  problem  caused  by  the
initial random phase and the amplitude information loss.
The  contrast  of  the  simulation  was  low.  The  Holo-En-
coder  faces  the  quality  reduction  caused  by  the  limited
learning capability.  The  4K-DMDNet  effectively  sup-
pressed  the  above  problems  and  obtained  the  natural-
looking reconstruction. The blurs in Fig. 6(c) are mainly
caused by  the  detailed  information  loss  in  the  down-
sampling path. And it can be effectively improved by us-
ing other advanced network structures for POH genera-
tion. For example, the HRNet maintains high resolution
through  the  whole  process,  while  the  U-Net  recovers
high resolution from low resolution48. Fig. 6(d) shows the
PSNR values under different runtimes of the above three
algorithms.  The  GS  algorithm  achieved  a  better  quality
with more  iterations  and converged to  an  average  qual-
ity of 16 dB for above 100 s. However, the 4K-DMDNet
broke the  trade-off  between  computation  time  and  re-
construction  quality.  It  can  generate  the  POH  in  just
0.26 s, with the PSNR of 20.49 dB.

The experimental setup is shown in Fig. 7(a). A coher-
ent beam  was  attenuated,  expanded,  and  polarized  be-
fore  illuminating  the  SLM.  A  Holoeye  GAEA-2  phase-
only SLM with the resolution of 3840 × 2160 pixels was
employed. The pixel pitch of the SLM was 3.74 μm. The
POHs  of  the  target  object  were  uploaded  on  the  SLM.
The reconstructed pattern was photographed at  the dis-
tance of 0.3 m. Color holographic display was realized by
time-multiplexing  with  the  638  nm  red,  520  nm  green,
and  450  nm  blue  laser  sources,  as  shown  in Fig. 7(b).
During  the  time  period T,  the  POHs  corresponding  to
the three channels were loaded onto the SLM in turn. A
programmable  light  switch  synchronously  controls  one
of the red, green, and blue lasers that passes through and
illuminates the SLM. When the period T is less than the
human eye  response  time,  the  reconstructed  images  be-
come  a  color  image.  It  was  high-fidelity  and  without
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interference-induced  noise,  as  shown  in Fig. 7(c).  As  to
the GS algorithm, since the practical light propagation is
not ideal, the speckle noise problem is always magnified
on  the  optical  reconstructions.  An  incoherent  Light
Emitting  Diode  (LED) or  a  partially  coherent  Self-scan-
ning Light Emitting Device (SLED) source could be em-
ployed to reduce the speckle noise. However, the low-co-
herence light  sources  also  create  blurred  details  and  re-
duced  image  sharpness.  By  contrast,  in  this  work,  the
POHs  predicted  by  the  4K-DMDNet  are  too  smooth  to
generate the vortex phase. Therefore, compared with the

simulations, the optical reconstructions with the laser il-
lumination have no quality  degradation and the speckle
noise is mostly suppressed.

The 4K-DMDNet learns the latent encodings of POHs
in an unsupervised way, which enables a better generaliz-
ation compared with the  data-driven deep learning net-
works.  In  the  field  of  two-photon  microscopic  imaging,
optical micromanipulation, and laser nuclear fusion, the
patterns with simple shapes and high contrast are widely
used. A binary object was experimentally reconstructed to
demonstrate the high generalization of the 4K-DMDNet,
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as  shown  in Fig. 8.  The  intensity  of  the  signal  part  was
uniform and the background showed no bottom noise. It
is  pretty  applicable  to  the  head-up  display  (HUD)  and
diffractive optical elements (DOEs) design.

The ability to reconstruct 3D scenes of the 4K-DMD-
Net is  presented in Fig. 9.  The objects  in the scene were
at different depths which is indicated by the grayvalue in
Fig. 9(b). The 4K-DMDNet could be applied to generate
POHs for the layer-oriented objects with the value of the
depth.  The  reconstruction  distances  were  set  as  0.28  m,
0.3 m and 0.32 m, respectively. The obvious focusing and
defocusing effects can be observed by using a camera.

 Conclusions
In summary, we propose the 4K-DMDNet model-driven
neural  network  capable  of  generating  high-fidelity  4K
computer-generated holograms. The constraint of the re-
constructions  in  the  frequency  domain  is  strengthened,
which ensures the high-precision optical reconstructions.
The  sub-pixel  convolution  method  solves  the  limited
learning  capability  problem  which  typically  appears  in
the  existing  hologram  generation  networks.  Compared
with the transposed convolution method and NN-resize
convolution method, the image quality can be improved to
19.27  dB.  Full-color  and  binary  optical  reconstructions
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have been obtained. The display quality outperforms the
traditional  iterative  algorithms  and  data-driven  deep
learning algorithms.  We  believe  that  our  approach  fur-
ther  makes  the  computer-generated holographic  display
theory to be a viable technology for productive practice.

The current network architecture is based on the uni-
versal  U-Net.  It  is  suggested  that  the  accurate  physical
models and smart mapping relations can also be applied
to other advanced network architectures,  such as gener-
ative  adversarial  network  and  graph  neural  network.
More efforts  will  be needed to accelerate the calculation
speed in the future. The proposed 4K-DMDNet can also
be  integrated  for  laboratory  studies  such as  metasurface
design  and  additive  manufacturing.  It  should  be  a  very
powerful  algorithm  for  portable  virtual  and  augmented
reality  with  the  rapid  development  of  ASICs.  And  it
provides a versatile CNN framework for the solutions of
various ill-posed inverse problems with mass data.
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