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Photonic integrated neuro-synaptic core for
convolutional spiking neural network
Shuiying Xiang1*, Yuechun Shi2*, Yahui Zhang1, Xingxing Guo1,
Ling Zheng3, Yanan Han1, Yuna Zhang1, Ziwei Song1,
Dianzhuang Zheng1, Tao Zhang1, Hailing Wang4, Xiaojun Zhu5,
Xiangfei Chen6, Min Qiu7, Yichen Shen8, Wanhua Zheng4 and Yue Hao1

Neuromorphic photonic  computing has emerged as a competitive computing paradigm to overcome the bottlenecks of
the  von-Neumann  architecture.  Linear  weighting  and  nonlinear  spike  activation  are  two  fundamental  functions  of  a
photonic spiking neural network (PSNN). However, they are separately implemented with different photonic materials and
devices, hindering the large-scale integration of  PSNN. Here, we propose, fabricate and experimentally demonstrate a
photonic neuro-synaptic  chip enabling the simultaneous implementation of  linear  weighting and nonlinear  spike activa-
tion based on a distributed feedback (DFB) laser with a saturable absorber (DFB-SA). A prototypical  system is experi-
mentally constructed to demonstrate the parallel  weighted function and nonlinear spike activation. Furthermore, a four-
channel  DFB-SA  laser  array  is  fabricated  for  realizing  matrix  convolution  of  a  spiking  convolutional  neural  network,
achieving a recognition accuracy of 87% for the MNIST dataset. The fabricated neuro-synaptic chip offers a fundamental
building block to construct the large-scale integrated PSNN chip.

Keywords: neuromorphic  computation; photonic  spiking  neuron; photonic  integrated  DFB-SA  array; convolutional
spiking neural network
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 Introduction
The  deep  neural  network  has  developed  rapidly  and
achieved record-breaking performance in a  broad range
of applications,  including  computer  vision,  natural  lan-
guage  processing,  and  other  fields.  These  applications

produce huge amounts of data that need to be processed,

which  calls  for  advanced  processors  with  high  speed,

high  throughput  and  low  latency.  While  Moore’s  Law

approaches saturation  and  conventional  digital  com-

puters face the von-Neumann bottleneck due to the sep- 
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aration  of  memory  and  processor  units.  Neuromorphic
computing, which  emulates  the  structure  and  mechan-
ism of the brain, has emerged as a competitive computa-
tion  paradigm  in  the  post-Moore  era1−3.  Although  the
electronic  neuromorphic  computing  systems  based  on
the  well-known  complementary-metal-oxide-semicon-
ductor  (CMOS)  technique  or  emerging  electronic
devices have made notable progress, they still face limita-
tions  in  processing  speed and energy  efficiency4−11.  As  a
promising alternative, photonic computing has garnered
significant attention as it offers inherent advantages such
as ultra-high speed,  large bandwidth and massive paral-
lelism.  Different  photonic  computing  approaches  have
been proposed due to their potentials for addressing the
limitations of electronic counterparts12−21.

In  addition  to  the  advancements  in  neuromorphic
hardware, novel neural network models have also attrac-
ted  significant  attention.  In  contrast  to  traditional  non-
spiking artificial neural networks (ANNs), spiking neur-
al networks (SNNs) have been proposed and designed to
enable low power consumption computing on neuromor-
phic  hardware  by  using  discrete  spike  signals22−24.  The
implementation  of  SNNs  on  a  photonic  neuromorphic
hardware holds great promise for a wide range of applic-
ations in latency-critical and power-constrained scenari-
os, such as autonomous driving and edge computing25−29.

Spiking  neurons  serve  as  the  fundamental  units  of
SNNs, and are connected through plastic synapses. In an
SNN,  the  spiking  neuron  performs  the  nonlinear  spike
activation, while the synapse performs the linear weight-
ing  function.  For  the  majority  of  reported  photonic
neural  networks,  only  linear  operation  was  realized  in
the photonics domain29−38. For instance, two mainstream
approaches, namely the coherent synaptic network based
on  the  Mach-Zehnder  interferometer  (MZI)30,32,35−37 and
the  incoherent  synaptic  work  based  on  the  microring
resonator  (MRR)29,38 have  been  widely  explored  due  to
their  compatibility  with  CMOS-compatible  silicon
photonics  platform.  However,  these  approaches  suffer
from serious  loss  issues  and  are  not  well-suited  for  im-
plementing  nonlinear  computations  directly  in  the
photonic domain.  In  the  reported  photonic  neural  net-
work  architectures,  nonlinear  computations  are  mainly
implemented electronically,  relying  on  high-speed  pho-
todetectors (PDs) and analog-to-digital  (AD) converters
to convert the optical linear computation results back to
the digital domain. Such hybrid architectures, consisting
of  photonic  synapses  and  electronic  spiking  neurons,

present  obstacles  for  the  photonic  implementation  of
multi-layer or deep neural networks. The frequent optic-
electro (OE) and electro-optic (EO) conversions,  as well
as  the  AD  and  digital-to-analog  (DA)  conversions,
hinder the seamless integration of photonic functionalit-
ies across multiple layers.

Tremendous  efforts  have  been  made  to  realize
photonic  spiking  neurons,  aiming  to  enable  all-optical
SNNs without the need for frequent OE/EO and AD/DA
conversions.  Among  various  simplified  spiking  neuron
models in  computational  neuroscience,  the  leaky  integ-
rate-and-fire  (LIF)  model  has  gained  popularity  due  to
its simplicity.  Optical  implementations  of  the  LIF  neur-
on have received considerable attention39. Several optical
implementations of  the LIF neuron have been explored,
including  polarization  switching  vertical-cavity  surface-
emitting lasers (VCSELs)40,41, VCSEL with a saturable ab-
sorber  (VCSEL-SA)26,42,  graphene  excitable  laser43, hy-
brid  integrated  phase-change  material  (PCM)  and
MRR25,44, micropillar lasers45, integrated distributed feed-
back (DFB) laser and PD46, passive microresonator47, and
integrated  Fabry–Perot  laser  with  a  saturable  absorber
(FP-SA)28,48.  However,  these  photonic  spiking  neurons
have  been  designed  and  fabricated  independently  from
the  photonic  synapses,  limiting  the  scalability  of  fully-
functional photonic SNNs.

Here,  we  proposed,  fabricated  and  demonstrated  a
photonic  neuro-synaptic  chip that  enables  simultaneous
implementation  of  both  linear  weighting  and  nonlinear
spike  activation  based  on  a  photonic  integrated  DFB
laser with an intracavity saturable absorber (DFB-SA) for
the first time. By precisely tuning the external optical in-
jection and the time-varying bias current of the gain re-
gion of  the  DFB-SA  laser,  we  experimentally  demon-
strate both  the  intrinsic  excitability  plasticity  and  syn-
aptic plasticity in the same DFB-SA laser. The nonlinear
spike activation  and  linear  weighting  can  be  simultan-
eously  realized  in  a  single  DFB-SA  laser,  which  is  the
main  advantage  of  the  proposed  photonic  neuro-syn-
aptic chip. In addition, parallel linear weighting and non-
linear spike activation were demonstrated in a construc-
ted prototypical  neuromorphic  photonics  system  con-
sisting of two pre-synaptic DFB-SA lasers and one post-
synaptic  FP-SA  laser.  To  demonstrate  the  scalability  of
the  DFB-SA  laser,  a  four-channel  photonic  neuro-syn-
aptic array  was  further  fabricated  and  applied  to  per-
form  dot  product  between  two  vectors.  Through  time-
multiplexing  matrix  convolution,  we  successfully
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demonstrated pattern classification tasks. We further de-
veloped a  theoretical  model  to  numerically  simulate  the
photonic integrated DFB-SA laser, validating our experi-
mental findings. The integration of linear weighting and
nonlinear spike activation in a single chip opens up new
possibilities for  efficient  and  scalable  photonic  neur-
omorphic  computing,  presenting  a  promising  building
block for  constructing  multi-layer  photonic  SNN  hard-
ware  within  the  Indium  Phosphide  (InP)  integration
platform.

 Experimental setup and method
 Principle for photonic neuro-synaptic core
In a  biological  neural  network,  the neurons are  connec-
ted  by  plastic  synapses.  As  depicted  in Fig. 1(a),  the
dendrites receive external stimuli or pre-synaptic spikes,
while  the  soma  converts  these  inputs  into  spike  events
and  performs  nonlinear  spike  activation.  The  synapses
adjust the connection strength, commonly referred to as
weight in ANNs. The weighted spike is then transmitted
to the dendrites of the neighboring neurons. To address
the challenge of implementing both linear weighting and
nonlinear spike  activation  in  a  single  device,  we  pro-
posed,  designed  and  fabricated  a  photonic  integrated
DFB-SA  laser,  which  we  refer  to  as  a  photonic  neuro-
synaptic chip. The structure of the DFB-SA laser chip is
illustrated in Fig. 1(b).  We introduce a  SA region in the
resonant  cavity  of  the  DFB  laser  to  obtain  Q-switching
effect.  The  grating  is  designed  with  a  sampled  grating.
We shift the half period of the sampling structure in the
middle  of  the  gain  region  of  the  DFB  laser,  which  can
equivalently introduce a π phase shift (π-EPS). This grat-
ing  structure  can  be  fabricated  with  the  reconstruction-
equivalent-chirp  (REC)  technique,  which  allows  for  a
large-scale DFB  laser  array  with  high  wavelength  preci-
sion49. Additionally, anti-reflection (AR) and high-reflec-
tion  (HR)  coating  are  applied  to  the  two  laser  facets  to
enhance  the  light  emission  power,  and  the  SA region  is
positioned  near  the  HR  side. Figure 1(c) provides  an
overview of the spike processing principle in the DFB-SA
laser. The gain region of the DFB-SA laser is driven by a
current source, denoted as the gain current IG, while the
SA region  is  reversely  driven  by  a  voltage  source,  de-
noted as VSA.  By applying a time-varying current to the
gain  region,  we  achieve  dynamically  linear  weighting
functionality. The interaction between photons and elec-
trons in the gain and SA regions enables the emulation of
a LIF-type spiking neuron.

We  further  designed  and  fabricated  a  four-channel
photonic neuro-synaptic array to implement two-dimen-
sional (2D) convolution for spiking convolutional  neur-
al networks  (CNNs).  To  fully  leverage  the  temporal  dy-
namics  of  the  SNN,  we  have  demonstrated  time-multi-
plexing matrix convolution. The fabricated four-channel
DFB-SA  laser  array  and  the  compact  packaged  module
are depicted in Fig. 1(d). The principle of using the DFB-
SA laser array to achieve spike-based matrix convolution
is  illustrated  in Fig. 1(e).  The  input  is  electro-optically
modulated  and  optically  injected  into  the  DFB-SA laser
array,  while  the  weight  is  directly  imported  to  the  bias
current of the gain region. Thus, the DFB-SA laser array
performs dot  product  operations and acts  as  a  photonic
dot product core. The input and weight signals were gen-
erated  using  an  FPGA  (Zynq  UltraScale+  RFSoC
ZCU216) equipped with a high-speed AD/DA array. The
FPGA was controlled by a digital computer. To generate
optical  carriers,  four-channel  continuous-wave  tunable
laser sources were utilized. The input signals were modu-
lated using the Mach-Zehnder modulators (MZMs). Po-
larization controllers were employed to align the polariz-
ation  state.  The  modulated  outputs  of  the  MZMs  were
then  optically  injected  into  the  DFB-SA  laser  array  via
three-port optical circulators. The kernel signals were ap-
plied to  the  gain  current  of  the  DFB-SA lasers  array  via
bias tees.  The outputs of  four DFB-SA lasers  were com-
bined by a four-port optical coupler.  The combined sig-
nal  was  detected  by  a  photodetector  (PD,  Agilent/HP
11982A)  and  then  recorded  by  an  oscilloscope  (OSC,
Keysight DSOV334A).

 Model of the DFB-SA laser
In order to gain a  deeper understanding of  the intrinsic
excitability plasticity and synaptic plasticity in the DFB-
SA  laser,  we  have  developed  a  comprehensive  model  of
the DFB-SA laser based on the time-dependent coupled-
wave  equations.  We  modified  the  model  to  incorporate
the gain region, SA region, and an external optical injec-
tion  term50.  The  rate  equations  governing  the  carrier
density  in  both  the  gain  and  absorber  regions,  and  the
coupled-mode  equations  describing  the  behavior  of  the
forward  and  backward  traveling  waves,  are  detailed  in
the Supplementary information Section 1.

 Results
 Intrinsic neuron excitability plasticity
The  experimental  setup  for  emulating  the  neuronal
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intrinsic plasticity and linear weighting using a DFB-SA
laser  is  presented  in Fig. 2(a).  An  arbitrary  waveform
generator (AWG) (Tektronix AWG70001A) was used to
generate  the  electronic  stimulus  and  the  time-varying
modulated current for the DFB-SA laser. The time-vary-
ing  current  was  combined  with  a  direct  current  source
using  a  bias  tee  and  then  applied  to  the  gain  region  of
DFB-SA  laser.  A  tunable  laser  (TL,  AQ2200-136  TLS
module)  provided  the  optical  carrier.  The  electro-optic

conversion was realized using an MZM. The modulated
optical stimulus was then injected into the gain section of
the DFB-SA laser via an optical circulator. In our experi-
ment,  we  maintained  a  fixed  temperature  of  25  °C.  The
threshold  current  of  the  DFB-SA laser  was  measured to
be  approximately IG=86  mA  when VSA=0  V  and IG=94
mA when VSA= −0.4  V.  The optical  spectrum of  a  free-
running DFB-SA laser is presented in Fig. 2(b). The side
mode  suppression  ratio  was  found  to  be  approximately
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50.9 dB,  indicating  a  high  level  of  suppression  of  un-
wanted side modes.

For a LIF spiking neuron, temporal  integration,  spike
threshold and generation as well as the refractory period
are  crucial  information  processing  mechanisms.  Here,
we successfully  demonstrated  these  spike-based  nonlin-
ear processing mechanisms using the fabricated DFB-SA
laser chip. As shown in Fig. 2(c),  we designed five input
pulses with varying amplitudes for a given external stim-

ulus strength  and  injection  power,  and  obtained  differ-
ent  nonlinear  spike  activations  simply  by  adjusting  the
gain  current.  For  instance,  when IG=88  mA,  only  the
stimulus  pulse  with  the  highest  amplitude  exceeded  the
excitability  threshold,  resulting  in  a  successful  response
spike.  With  the  increase  of  gain  current,  the  number  of
responded  spikes  increased  in  a  completely  controllable
manner. Note that, the external stimulus strength corres-
ponding  to  the  synapse  weight  remained  fixed
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throughout the experiment. The different spike response
was  solely  achieved  by  adjusting  the  excitability
threshold  of  the  DFB-SA  laser  spiking  neuron.  This
demonstrates  the  presence  of  intrinsic  excitability
threshold  plasticity  in  the  fabricated  DFB-SA  laser,
which  is  similar  to  its  biological  counterpart51.  Thus,
nonlinear  spike  activation  for  a  photonic  SNN  can  be
achieved in the DFB-SA laser.

Similarly, we fixed the external stimulus strength, and
designed 10 pulse pairs with increasing inter-spike inter-
val (ISI)  to explore the intrinsic  plasticity  of  the refract-
ory period and temporal integration behavior.  Here, the
ISI for each input pulse pair is 0.4 ns, 0.6 ns, 0.8 ns, 1 ns,
1.2 ns, 1.4 ns, 1.6 ns, 1.8 ns, 2 ns, and 2.2 ns, respectively.
As presented in Fig. 2(d), for different input pulse pairs,
the number of response spikes was either 1 or 2 depend-
ing on the ISI. For IG=91 mA, the first 5 pulse pairs with
relatively  small  ISIs  resulted  in  a  single  response  spike,
while the last 5 pulse pairs with larger ISIs triggered two
response spikes  each.  With the increase of IG, the num-
ber  of  pulse  pairs  leading  to  a  single  response  spike
gradually decreased to 4, 3 and 2, respectively. This beha-
vior emulates  the refractory period of  a  biological  neur-
on, which  means  that  the  spiking  neuron  cannot  pro-
duce  another  response  spike  to  the  stimulus  in  a  short
time due to the carrier recovery process, if it just respon-
ded  a  spike  to  the  preceding  stimulus28. Note,  the  spik-
ing response rate is limited by the inverse of the refract-
ory  period.  For IG=91  mA,  the  refractory  period  is
between 1.2 ns and 1.4 ns, corresponding to a spiking re-
sponse rate of around 0.77 GHz (inverse of 1.3 ns). Sim-
ilarly,  the  spiking  response  rate  is  about  0.91  GHz  for
IG=94 mA, 1.11 GHz for IG=104 mA, and 1.43 GHz for
IG=110 mA.  Note,  the  refractory  period  is  mainly  de-
termined by the carrier lifetime, which can be reduced by
using a shorter cavity length. Thus, it is desirable to fur-
ther optimize  the  DFB-SA  laser  chip  to  reduce  the  re-
fractory period and increase  the  spike  processing speed.
To  demonstrate  the  temporal  integration  behavior,  the
injecting  power  was  decreased  to  a  level  where  a  single
stimulus  pulse  alone  could  not  elicit  a  response  spike.
Note, the excitability threshold is determined together by
the  injection  power  and  bias  current.  As  the  injection
power  is  reduced,  the  bias  current  needs  to  be  adjusted
accordingly  in  order  to  achieve  spike  response.  In Fig.
2(e), when IG=92.5 mA, only the first pulse pair with the
smallest  ISI  could  be  temporally  integrated,  exceeding
the  excitability  threshold  and  eliciting  a  response  spike.

With the  increase  of  gain  current,  the  number  of  re-
sponse spikes  also  increased.  In  other  words,  the  re-
sponse spike resulting from the temporal integration ef-
fect could be controlled by simply adjusting the gain cur-
rent of the DFB-SA laser.

Note,  the  demonstrated  intrinsic  neuron  excitability
plasticity  implies  that,  when  developing  a  supervised
training algorithm for a photonic SNN consisting of the
DFB-SA laser, not only the weights can be considered as
adjustable  parameters,  but  the  excitability  threshold  of
the  DFB-SA laser  can  also  be  trainable  to  accelerate  the
training process.  Thus,  a  novel  hardware-aware training
algorithm that combines both the weight and excitability
threshold modulation is  highly  desirable  to  enhance the
performance of photonic SNNs.

 Continuously tunable synaptic plasticity
Next, we experimentally demonstrated the linear weight-
ing function of the fabricated DFB-SA laser chip by em-
ploying  a  statically-varying  bias  current.  We  defined  a
periodic  optical  pulse  train  as  the  external  stimulus  and
adjusted  the  gain  current,  ensuring  that  the  DFB-SA
laser operated in an LIF-like response manner.  As illus-
trated  in Fig. 3(a),  the  peak  amplitude  of  the  response
spike gradually  increased  as  the  gain  current  was  in-
creased, ranging from 90 mA to 110 mA in 4 mA incre-
ments.  In Fig. 3(b),  we  present  long  time  traces  of  the
weighted optical spike trains for IG=90 mA, 100 mA and
110 mA. It is verified that a higher gain current contrib-
utes  to  a  larger  spike  amplitude.  Moreover,  for  a  given
gain current,  the amplitude of the weighted spike main-
tains a relatively stable state across different periods, in-
dicating the  stability  of  the  weighting  function.  We fur-
ther present the peak amplitude of the response spike as
a function of the gain current in Fig. 3(c). The bias cur-
rent is varied from 88 mA to 112 mA. Here, the stimulus
pulse with  sufficiently  large  intensity  is  required  to  en-
sure that each can trigger a response spike in the DFB-SA
laser  for  each bias  current.  Notably,  the  peak amplitude
of  the  weighted  spike  increases  almost  linearly  with  the
gain  current,  which  can  be  attributed  to  the  gain-
switched  operation  mechanism.  Consequently,  in  a
photonic  SNN,  the  synapse  weight  can  be  readily
mapped to the gain current of the DFB-SA laser, facilitat-
ing straightforward weight modulation.

By simply tuning the bias current of the gain region of
the DFB-SA laser,  we successfully  achieved precise  con-
trol  over  the  amplitude  of  the  weighted  optical  spikes,
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thus enabling a photonic integrated spiking neuron with
incorporated spike  weighting  capability.  Note,  in  com-
parison to biological  counterparts  that  operate  on milli-
second timescales, the photonic neuro-synaptic unit util-
izing  the  fabricated  DFB-SA  laser  offers  significantly
faster  operation  speed  in  the  sub-nanosecond  range,
thanks  to  the  short  carrier  lifetime  inherent  to  these
chips.  Therefore,  the  proposed  photonic  neuron-syn-
aptic unit  avoids  the  use  of  additional  photonic  weight-
ing  elements,  making  it  highly  desirable  for  the  further
scalability of photonic SNN hardware.

 Simultaneous implementation of nonlinear spike
activation and linear weighting
In the following, we considered the scenario where a dy-
namically  time-varying  gain  current  was  applied  to  the
DFB-SA laser, allowing for the simultaneous implement-
ation of nonlinear spike activation and linear weighting.
Note, the nonlinear spike activation is implemented due
to the  excitability  threshold  modulation.  For  the  pur-
pose of comparison, we employed a time-varying optical

input  stimulus  and  considered  different  constant  gain
currents,  as depicted in Fig. 4(a).  It  is  evident that,  for a
given gain  current,  as  long  as  the  stimulus  intensity  ex-
ceeds the  excitability  threshold,  the  spike  amplitude  re-
mained  nearly  constant  regardless  of  varying  stimulus
strengths. In addition,  the excitability  threshold was de-
creased  with  the  increase  of  gain  current,  enabling  a
greater number of input pulses that can trigger response
spikes.  However,  it  is  important  to  note  that  the  spike
amplitude differs across different gain currents, with lar-
ger gain currents resulting in higher spike amplitudes.

Then, we  considered  a  fixed  input  strength  and  ap-
plied a  dynamically  modulated  gain  current.  In  this  ex-
periment, the repetition rate of the input pulse train was
set  as  0.5  GHz.  As  presented  in Fig. 4(b), the  gain  cur-
rent was modulated using 5 discrete constant levels with
an AWG corresponding to 5 distinct weight values.  The
modulated current was then combined with a static bias
current via  a  bias  tee.  The  total  gain  current  can  be  ex-
pressed  as IG=IG0+IM,  where IG0 =80  mA  denotes  the
static bias current and IM represents the modulated bias
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current.  It  is  evident that each case exhibited a different
excitability threshold. When the injection power was 171
μW, only the highest level of IM resulted in spike output.
Increasing the injection power to 215 μW led to weighted
spikes  with  two  distinguishable  amplitude  levels.
Namely, only the last two levels of IM lead to spike activ-
ation.  The  activated  spike  amplitudes  are  modulated  by
different IM corresponding  to  distinct  weights.  Further
increasing the injection power enabled the attainment of
three or four clusters of weighted spikes, each with vary-
ing spike amplitudes. In addition, we also considered the
scenario  of  continuously  time-varying  gain  current.  As
depicted  in Fig. 4(c),  the  excitability  threshold  plasticity
and  linear  weighting  function  was  simultaneously
achieved  by  simply  modulating  the  gain  current  of  the

DFB-SA  laser.  Thus,  the  results  demonstrated  that  the
single DFB-SA  laser  chip  enables  simultaneous  imple-
mentation  of  nonlinear  spike  activation  and  high-speed
(0.5 GHz) linear weighting.  The enlargement of a single
period  in Fig. 4(c) is further  illustrated  in  the  Supple-
mentary information Section 2.

We also considered other input spike trains with high-
er  repetition  rates,  and  found  that  the  linear  weighting
function was degraded. Some spikes cannot be normally
weighted, which is mainly limited by the refractory peri-
od. Note, the spike weighting rate can be increased when
a larger static bias current is utilized.

We further numerically reproduced the linear weight-
ing function and nonlinear spike activation. The numer-
ical results obtained from the model are presented in the
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Supplement  material  Note  3.  These  results  demonstrate
that  different  gain  currents  result  in  distinct  excitability
thresholds.  In  addition,  the  modulation  of  gain  current
produces weighted  spikes  with  distinguishable  amp-
litude  levels.  Namely,  the  numerical  results  agree  well
with the experimental findings, thus providing a compu-
tational  model  that  facilitates  hardware-algorithm  co-
design and optimization of  photonic  SNNs utilizing  the
DFB-SA lasers.

 Fully-functional photonic neuromorphic prototypical
system
We  further  constructed  a  fully-functional  prototypical
photonic  neuromorphic  system  utilizing  the  fabricated
DFB-SAs  for  parallel  linear  weighting  and  nonlinear
spike activation. Note, as the packaged DFB-SAs operate
at  different  wavelengths,  we  adopted  an  FP-SA  as  the
post-synaptic neuron because it can support wide band-
width  operation28. The  system  configuration  is  illus-
trated in Fig. 5(a),  where DFB-SA1 and DFB-SA2 act  as
pre-synaptic photonic  spiking  neurons  and  the  corres-
ponding weighting devices, while the FP-SA serves as the
post-synaptic  photonic  spiking  neuron.  The  weighted
spike  outputs  of  the  DFB-SAs  were  optically  combined
and injected into the FP-SA laser. The optical spectra of
the DFB-SA lasers and FP-SA laser are displayed in Fig.
5(b). In this setup, the binary patterns 1101 and 0110 are
employed as  inputs  for  the  DFB-SA1 and DFB-SA2,  re-
spectively. By setting different gain currents of the DFB-
SAs, they performed digital-to-spike conversion and par-
allel linear  weighting.  The  optical  coupler  then  per-
formed the  summation  of  the  two weighted  spikes.  The
weighted sum was subsequently injected into the FP-SA
for nonlinear spike activation.

The output of the FP-SA reveals that it can yield either
0100 or 1111, depending on the weighting conditions of
the  DFB-SAs  or  the  excitability  threshold  of  the  FP-SA.
Consequently, the  constructed  neuromorphic  prototyp-
ical system can be flexibly reconfigured to execute spike-
based  AND  as  well  as  OR  operations.  Note,  both  the
weighted addition operation and nonlinear spike activa-
tion  are  achieved  within  this  photonic  neuromorphic
prototypical  system  based  on  the  DFB-SAs  and  FP-SA,
which  can  be  integrated  onto  the  same  InP  integration
platform.

 Time multiplexing matrix convolution with four-
channel DFB-SA laser array
To demonstrate the scalability of the proposed photonic

neuro-synaptic unit based on the DFB-SA, we fabricated
a  four-channel  DFB-SA array  and applied  it  to  perform
matrix  convolution  for  a  convolutional  SNN.  The
threshold  for  each  DFB-SA  laser  is  about  86  mA  when
VSA=0  V.  The  measured  optical  spectra  for  the  four-
channel DFB-SA laser array is presented in Supplement-
ary information Section 5.  The operation principle  is  il-
lustrated in Fig. 6(a). In this configuration, the convolu-
tional kernel  size  is  2×2,  the  stride  step  is  1.  Each  ele-
ment in the convolutional kernel is mapped to a respect-
ive  DFB-SA  within  the  array.  The  gain  currents  of  the
fabricated  DFB-SAs  array  are  configured  according  to
the trained kernels. The convolved results are obtained as
the output of the optical coupler. The layout of the DFB-
SA array is  shown in the inset of Fig. 6(a), which exem-
plifies the potential for scalability of the photonic neuro-
synaptic unit.

The spiking  CNN  was  trained  using  a  digital  com-
puter  to  classify  the  MNIST  dataset52,  which  consists  of
handwritten digits ranging from 0 to 9.  The training set
contains  60000  samples  and  the  test  set  contains  10000
samples.  The  size  of  each  image  is  28×28  pixels.  The
spiking  CNN  consists  of  a  convolutional  layer  with  16
convolutional kernels,  an activation layer, a pooling lay-
er,  and  two  fully-connected  layers,  as  depicted  in Fig.
6(b). The trained 16 convolutional  kernels  were  presen-
ted in  Supplementary  information Section 4.  In  this  ex-
periment,  a  hardware-software  collaborative  approach
was  adopted  for  inference.  The  photonic  hardware  was
utilized to realize the convolutional layer. For evaluation,
100  test  images  were  considered,  and  the  experimental
results for some representative input samples are presen-
ted  in Fig. 6(c) (Please refer  to  Supplementary  informa-
tion Section 6 for additional input samples). The 16 con-
volutional kernels were time-multiplexed to take full ad-
vantage of the dynamically weight modulation capability
of the DFB-SA laser array. The sampling rate of the DA
was set at 6.4 Gbits/s. Considering the refractory period,
15  zeros  were  inserted  between  two  pixels  to  match  the
FPGA bitwidth, resulting in a temporal duration of each
pixel  of  1/6.4  Gbits/s×16=2.5  ns.  For  each  image,  the
temporal output of the convolved results for the 16 con-
volutional  kernels  includes  27×27×16  pixels.  Thus,  the
total  length  of  each  measured  output  time  series  is  2.5
ns×27×27×16=29.16 μs.  To  demonstrate  fast  dynamic-
ally weight modulation, we calculated the convolved res-
ults row by row. Each row of pixels was convolved with
16  different  weights  corresponding  to  different
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convolutional kernels. As a result, the temporal duration
of a fixed weight was 2.5 ns×27=67.5 ns, yielding a mod-
ulation rate of approximately 14.8 MHz. Post-processing
was  performed  with  a  digital  computer.  The  feature
maps are  displayed  in  Supplementary  information  Sec-
tion 7.  After subsequent processing steps,  the results in-
dicate that  pattern  classification  with  a  recognition  ac-
curacy of  87%  was  achieved.  Note,  with  the  same  net-
work structure, by using pure software inference, the re-

cognition accuracy is 92.29% (for 10000 test images) and
90% (for 100 test images). The training accuracy, confu-
sion  matrix  for  software  inference  and  hardware-soft-
ware  inference  can be  found in Fig. 6(d–f).  The  3% loss
in inference accuracy observed in the hardware-software
inference scenario may be attributed to noise present in
the experimental setup.

We further  conducted  numerical  simulations  to  ex-
plore  time-multiplexing  parallel  dot  product  using  our
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developed  time-dependent  traveling  wave  model.  The

numerical results  of  four-channel  parallel  linear  weight-

ing are presented in Supplementary information Section

8. The simulations revealed that the linear weighting op-

eration could be effectively realized in parallel using this

configuration. Moreover,  we  considered a  larger  convo-

lution kernel size and simulated the case of a 3×3 convo-

lution  kernel.  The  numerical  results  of  9-channel

 

A1,1
X1,1(t)

ω1,1(t)~ω1,4(t)

Binary

image

1×28×28 1×28×28

0.2

0.1

0
0.2

0.1

0
0.2

0.1

0
0

0.9

0.8

0.7

A
c
c
u

ra
c
y

0.6

0.5
0 50 100

944 0 1 2 4 9 3 2 14 1

0 1111 3 2 1 1 4 0 13 0

8 0 0 0 0 0 0 0 0 0

0 13 0 1 0 0 0 0 0 0

0 0 8 0 0 0 0 0 0 0

1 0 2 8 0 0 0 0 0 0

0 0 0 0 13 0 1 0 0 0

0 0 0 0 0 6 1 0 0 0

0 0 2 0 0 0 9 0 0 0

0 0 0 0 0 0 0 14 0 1

0 0 0 0 0 0 0 0 2 0

0 0 0 0 2 0 0 2 0 6

5 5 937 15 12 2 8 9 35 4

1 0 16 950 0 7 0 7 23 6

0 0 10 2 921 0 4 3 11 31

5 6 6 41 7 779 10 4 29 5

10 4 19 0 11 17 887 0 10 0

0 7 22 21 15 0 0 908 9 46

3 8 12 29 9 15 6 2 882 8

4 7 2 17 39 5 0 9 16 910

Epoch

150 200

5 10

0

1

2

3

4

P
re

d
ic

te
d
 l
a

b
le

5

6

7

8

9

0 1 2 3 4

True lable

5 6 7 8 9

0

1

2

3

4

P
re

d
ic

te
d
 l
a

b
le

5

6

7

8

9

0 1 2 3 4
True lable

5 6 7 8 9

15 20 25 14250 14375
Time (ns)Time (μs)

V
o
lt
a
g

e
 (

V
)

2×2

Conv2d T 01000101
10010101
10101101
01010111

01101
11011
01101IF Node

MaxPool2d

6×16×27×27 6×16×13×13

Linear1

0.1

0.0

0.0

0.2

0.0

0.1

0.0

0.6

0.0

0.0

Linear2

16×27×27

X1,2(t)

X1,3(t)

X1,4(t)

A
1,2

A1,2

A1,3

A1,3

F1,1 F1,2

F1,3 F1,4

O
1
=A

1 ,1×F
1 ,1+A

1 ,2×F
1 ,2+A

1 ,4×F
1 ,3+A

1 ,5×F
1 ,4

O
2
=A

1 ,2×F
1 ,1+A

1 ,3×F
1 ,2+A

1 ,5×F
1 ,3+A

1 ,6×F
1 ,4

O
3
=A

1 ,4×F
1 ,1+A

1 ,5×F
1 ,2+A

1 ,7×F
1 ,3+A

1 ,8×F
1 ,4

O
4
=A

1 ,5×F
1 ,1+A

1 ,6×F
1 ,2+A

1 ,8×F
1 ,3+A

1 ,9×F
1 ,4

O
1
(t)

A1,4

A1,4

A1,5

A1,5

A
1,5

A1,6

A1,6

A1,7A1,8

A1,9 A1,8

a

b

c

d e f

DFB-SA1

DFB-SA2

DFB-SA3

DFB-SA4

OC

T1T2T3T4

T1

T2

T3

T4

A1,1

A1,7 A1,8 A1,9

A1,2
A1,3

A1,4 A1,5 A1,6

O
1

O
2

O
3 O

4

Fig. 6 | Experimental results of matrix multiplication with a four-channel DFB-SA laser array. (a) Schematic diagram of the parallel linear

weight with the DFB-SA laser array. (b) Network structure for spiking CNN. (c) The temporal output of the convolved results for 16 convolutional

kernels  for  three  input  samples,  the  right  column represents  the  enlargement  of  the  region  denoted  by  the  dashed lines.  (d–f)  Represent  the

training accuracy, confusion matrix for software inference and hardware-software inference.

Xiang SY et al. Opto-Electron Adv  6, 230140 (2023) https://doi.org/10.29026/oea.2023.230140

230140-11

 



parallel  linear  weighting are  provided in  Supplementary
information Section 9. It indicates that, 9-channel paral-
lel dot product could be achieved by employing an array
of  nine  DFB-SAs  as  the  photonic  dot  product  core.  We
further  consider  a  spiking  CNN  network  similar  to  the
one shown in Fig. 6(b) but with 3×3 convolution kernels.
The  simulation  results  are  presented  in  Supplementary
information Section 10. The inference accuracy is 92.45%
for the spiking CNN comprises one convolutional layer.
Additionally, spiking  CNN networks  with  two convolu-
tional layers are also simulated, and the inference accur-
acy is  93.76% and 94.42% for convolution kernel  size of
2×2 and 3×3, respectively. The numerical findings valid-
ate the feasibility and scalability of the proposed photon-
ic  neuro-synaptic  unit  for  larger  convolutional  kernel
operations.

 Discussions and conclusions
The computation  speed  of  the  linear  weighting  opera-
tion  in  the  fabricated  four-channel  DFB-SA  laser  array,
with  statically  configured  weights,  can  be  estimated  at
2×4×10  G=80  GOPS.  On  the  other  hand,  the  nonlinear
computation speed for a single channel is approximately
2 G Spike/s, limited by the refractory period. The energy
consumption  per  spike  is  approximately  19.99  pJ.  The
area  occupied  by  a  single  DFB-SA  laser  chip  is  around
1500 μm ×300 μm=0.45 mm2. It is important to note that
there is significant potential for improving these metrics.
Further  optimization  can  be  achieved  by  reducing  the
threshold of the DFB-SA laser to around or below 5 mA,
and by reducing the area of a single DFB-SA laser chip to
300 μm×127 μm. The reconfigurable rate, which is asso-
ciated with  the  speed  of  dynamics  weight  update,  is  es-
timated  at  0.5  GHz,  significantly  faster  than  that  of  the
thermos-optic phase shifters based on silicon photonics.
Moreover, the dynamical weighting speed can be further
increased to approximately 10 GHz by reducing the cav-
ity length of the DFB-SA laser to 300 μm, which is com-
patible  with  the  time-multiplexing  matrix  convolution
requiring fast  weight  modulation.  Additionally,  a  previ-
ously  demonstrated  60-channel  DFB  laser  array  with
high  wavelength  precision49 can  substantially  increase
the  computation  speed  due  to  its  high  parallelism.  In
such a configuration, a computation speed of 2×60×10 G =
1.2  TOPS  can  be  expected.  In  addition,  combined  with
the time-multiplexed spike encoding proposed in ref.28, it
has great potential to realize large-scale photonic spiking
neurons array that is needed for a real-world problem.

Compared to  silicon  photonics-based  weighting  ele-
ments, the proposed DFB-SA laser offers several advant-
ages. Firstly, it eliminates the loss issue as gain amplifica-
tion can  be  easily  achieved  in  the  InP  integration  plat-
form. This characteristic is particularly beneficial for the
implementation  of  multi-layer  photonic  SNNs.  On  the
other  hand,  weight  control  using  thermo-optic  phase
shifters  in  the  silicon  photonics  platform is  limited  to  a
tuning rate  in  the kHz range.  In contrast  to  the weight-
ing devices based on the VCSEL biased below the lasing
threshold53,54, the  DFB-SA  laser  is  biased  above  the  las-
ing threshold but below the self-pulsating threshold. This
allows  for  efficient  spike  amplification  using  the  gain
provided by  the  DFB-SA  laser,  which  is  crucial  for  cas-
caded  propagation  of  weighted  spikes.  Moreover,  the
DFB-SA  laser  enables  the  simultaneous  realization  of
both linear weighting and activation functions in a single
device.  This  capability  avoids  frequent  OE/EO  and
AD/DA conversions among different layers in a photon-
ic  weighting  and  electronic  activation  architecture,  and
alleviates  the inherent challenge of  optical  coupling that
arises  when attempting  to  implement  large-scale  all-op-
tical  SNNs through hybrid  integration of  weighting and
activation  elements  fabricated  using  different  materials
and devices.

In conclusion, we have proposed and successfully fab-
ricated  a  novel  photonic  spiking  neuron  chip  based  on
an integrated DFB-SA laser, which enables simultaneous
spike  activation  and  linear  weighting  functions  for  the
first  time.  This  chip  has  a  simple  structure  and  can  be
readily  integrated  on  a  large  scale  using  commercially
mature  fabrication  processes  available  in  photonics
foundries.  By  adjusting  the  gain  current  applied  to  the
DFB-SA  laser,  the  chip  can  be  flexibly  reconfigured  to
function as  a  linear  weighting device  or  nonlinear  spike
activation  device.  The  fully-functional  neuromorphic
prototypical  system,  comprising  DFB-SA lasers  and FP-
SA  laser,  successfully  performed  spike-based  AND  as
well  as  OR  operations.  Furthermore,  using  a  fabricated
four-channel  DFB-SA  laser  array,  we  benchmarked  the
hardware-software collaborative inference on the MNIST
dataset, achieving an inference accuracy of 87%. Overall,
our  work  demonstrates  the  potential  of  the  integrated
DFB-SA laser  for  advancing  the  field  of  photonic  neur-
omorphic  computing,  offering  scalability  of  fully-func-
tional integration of lossless multilayer or deep photonic
SNN in a single integrated chip.

Xiang SY et al. Opto-Electron Adv  6, 230140 (2023) https://doi.org/10.29026/oea.2023.230140

230140-12

 



References
 Indiveri G, Liu SC. Memory and information processing in neur-
omorphic systems. Proc IEEE 103, 1379–1397 (2015).

1.

 Roy K, Jaiswal A, Panda P. Towards spike-based machine intel-
ligence  with  neuromorphic  computing. Nature 575,  607–617
(2019).

2.

 Marković D, Mizrahi A, Querlioz D, Grollier J. Physics for neur-
omorphic computing. Nat Rev Phys 2, 499–510 (2020).

3.

 Nawrocki RA, Voyles RM, Shaheen SE. A mini review of neur-
omorphic architectures and implementations. IEEE Trans Elec-
tron Devices 63, 3819–3829 (2016).

4.

 Schuman CD,  Potok  TE,  Patton  RM,  Birdwell  JD,  Dean ME et
al. A survey of neuromorphic computing and neural networks in
hardware. arXiv preprint arXiv: 1705.06963 (2017).

5.

 Painkras  E,  Plana  LA,  Garside  J,  Temple  S,  Galluppi  F  et  al.
SpiNNaker:  a  1-W 18-core system-on-chip  for  massively-paral-
lel  neural  network  simulation. IEEE  J  Solid-State  Circuits 48,
1943–1953 (2013).

6.

 Benjamin  BV,  Gao  PR,  McQuinn  E,  Choudhary  S,
Chandrasekaran  AR  et  al.  Neurogrid:  a  mixed-analog-digital
multichip  system for  large-scale  neural  simulations. Proc  IEEE
102, 699–716 (2014).

7.

 Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J
et  al.  A million spiking-neuron integrated circuit  with a scalable
communication  network  and  interface. Science 345,  668–673
(2014).

8.

 Shen JC, Ma D, Gu ZH, Zhang M, Zhu XL et al. Darwin: a neur-
omorphic hardware  co-processor  based  on  spiking  neural  net-
works. Sci China Inform Sci 59, 1–5 (2016).

9.

 Davies M, Srinivasa N, Lin TH, Chinya G, Cao YQ et al. Loihi: a
neuromorphic  manycore  processor  with  on-chip  learning. IEEE
Micro 38, 82–99 (2018).

10.

 Pei J, Deng L, Song S, Zhao MG, Zhang YH et al. Towards arti-
ficial  general  intelligence  with  hybrid  Tianjic  chip  architecture.
Nature 572, 106–111 (2019).

11.

 Wetzstein G, Ozcan A, Gigan S, Fan SH, Englund D et al. Infer-
ence  in  artificial  intelligence  with  deep  optics  and  photonics.
Nature 588, 39–47 (2020).

12.

 Shastri BJ,  Tait  AN,  Ferreira  de  Lima  T,  Pernice  WHP,  Bhas-
karan H  et  al.  Photonics  for  artificial  intelligence  and  neur-
omorphic computing. Nat Photonics 15, 102–114 (2021).

13.

 Zhou  HL,  Dong  JJ,  Cheng  JW,  Dong  WC,  Huang  CR  et  al.
Photonic matrix multiplication lights up photonic accelerator and
beyond. Light Sci Appl 11, 30 (2022).

14.

 Huang CR, Sorger VJ, Miscuglio M, Al-Qadasi M, Mukherjee A
et  al.  Prospects  and  applications  of  photonic  neural  networks.
Adv Phys X 7, 1981155 (2022).

15.

 Qi HX,  Du  ZC,  Hu  XY,  Yang  JY,  Chu  SS  et  al.  High  perform-
ance integrated photonic circuit based on inverse design meth-
od. Opto-Electron Adv 5, 210061 (2022).

16.

 Li CH,  Du W,  Huang YX,  Zou JH,  Luo  LZ et  al.  Photonic  syn-
apses with ultralow energy consumption for artificial  visual per-
ception and brain storage. Opto-Electron Adv 5, 210069 (2022).

17.

 Jiao SM, Liu JW, Zhang LW, Yu FH, Zuo GM et al. All-optical lo-
gic gate  computing  for  high-speed  parallel  information  pro-
cessing. Opto-Electron Sci 1, 220010 (2022).

18.

 Meng XY, Zhang GJ, Shi NN, Li GY, Azaña J et al. Compact op-
tical convolution  processing  unit  based  on  multimode  interfer-
ence. Nat Commun 14, 3000 (2023).

19.

 Zhang F, Guo YH, Pu MB, Chen LW, Xu MF et al. Meta-optics
empowered vector visual cryptography for high security and rap-
id decryption. Nat Commun 14, 1946 (2023).

20.

 He C, Zhao D, Fan F, Zhou HQ, Li X et al. Pluggable multitask
diffractive  neural  networks  based  on  cascaded  metasurfaces.
Opto-Electron Adv 7, 230005 (2024).

21.

 Maass W. Networks of  spiking neurons:  the third generation of
neural network models. Neural Netw 10, 1659–1671 (1997).

22.

 Gütig  R,  Sompolinsky  H.  The  tempotron:  a  neuron  that  learns
spike timing–based decisions. Nat Neurosci 9, 420–428 (2006).

23.

 Ponulak  F,  Kasiński  A.  Supervised  learning  in  spiking  neural
networks  with  ReSuMe:  sequence  learning,  classification,  and
spike shifting. Neural Comput 22, 467–510 (2010).

24.

 Feldmann J,  Youngblood N,  Wright  CD,  Bhaskaran H,  Pernice
WHP. All-optical spiking neurosynaptic networks with self-learn-
ing capabilities. Nature 569, 208–214 (2019).

25.

 Xiang SY,  Ren ZX,  Song ZW, Zhang YH,  Guo XX et  al.  Com-
puting  primitive  of  fully  VCSEL-based  all-optical  spiking  neural
network for supervised learning and pattern classification. IEEE
Trans Neural Netw Learn Syst 32, 2494–2505 (2021).

26.

 Jha  A,  Huang  CR,  Peng  HT,  Shastri  B,  Prucnal  PR.  Photonic
spiking neural  networks  and  graphene-on-silicon  spiking  neur-
ons. J Lightwave Technol 40, 2901–2914 (2022).

27.

 Xiang SY,  Shi  YC,  Guo  XX,  Zhang  YH,  Wang  HJ  et  al.  Hard-
ware-algorithm  collaborative  computing  with  photonic  spiking
neuron  chip  based  on  an  integrated  Fabry–Perot  laser  with  a
saturable absorber. Optica 10, 162–171 (2023).

28.

 Tait AN, Ferreira de Lima T, Zhou E, Wu AX, Nahmias MA et al.
Neuromorphic  photonic  networks  using  silicon  photonic  weight
banks. Sci Rep 7, 7430 (2017).

29.

 Shen YC, Harris NC, Skirlo S, Prabhu M, Baehr-Jones T et  al.
Deep learning with coherent nanophotonic circuits. Nat Photon-
ics 11, 441–446 (2017).

30.

 Cheng  ZG,  Ríos  C,  Pernice  WHP,  Wright  CD,  Bhaskaran  H.
On-chip photonic synapse. Sci Adv 3, e1700160 (2017).

31.

 Zhou HL, Zhao YH, Wang X, Gao DS, Dong JJ et al. Self-con-
figuring  and  reconfigurable  silicon  photonic  signal  processor.
ACS Photonics 7, 792–799 (2020).

32.

 Feldmann  J,  Youngblood  N,  Karpov  M,  Gehring  H,  Li  X  et  al.
Parallel  convolutional  processing  using  an  integrated  photonic
tensor core. Nature 589, 52–58 (2021).

33.

 Xu  XY,  Tan  MX,  Corcoran  B,  Wu  JY,  Boes  A  et  al.  11  TOPS
photonic  convolutional  accelerator  for  optical  neural  networks.
Nature 589, 44–51 (2021).

34.

 Xu SF, Wang J, Shu HW, Zhang ZK, Yi SC et al. Optical coher-
ent dot-product chip for sophisticated deep learning regression.
Light Sci Appl 10, 221 (2021).

35.

 Zhang H, Gu M, Jiang XD, Thompson J, Cai H et al. An optical
neural  chip  for  implementing  complex-valued  neural  network.
Nat Commun 12, 457 (2021).

36.

 Guo XH, Xiang JL, Zhang YJ, Su YK. Integrated neuromorphic
photonics:  synapses,  neurons,  and  neural  networks. Adv
Photonics Res 2, 2000212 (2021).

37.

 Cheng JW, Zhao YH, Zhang WK, Zhou HL, Huang DM et al. A
small microring  array  that  performs  large  complex-valued  mat-
rix-vector multiplication. Front Optoelectron 15, 15 (2022).

38.

 Prucnal  PR, Shastri  BJ,  Ferreira de Lima T,  Nahmias MA, Tait
AN.  Recent  progress  in  semiconductor  excitable  lasers  for
photonic  spike  processing. Adv  Opt  Photonics 8,  228–299
(2016).

39.

Xiang SY et al. Opto-Electron Adv  6, 230140 (2023) https://doi.org/10.29026/oea.2023.230140

230140-13

 

https://doi.org/10.1109/JPROC.2015.2444094
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1038/s42254-020-0208-2
https://doi.org/10.1109/TED.2016.2598413
https://doi.org/10.1109/TED.2016.2598413
https://doi.org/10.1109/TED.2016.2598413
https://doi.org/10.1109/JSSC.2013.2259038
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1038/s41586-020-2973-6
https://doi.org/10.1038/s41566-020-00754-y
https://doi.org/10.1038/s41377-022-00717-8
https://doi.org/10.29026/oea.2022.210061
https://doi.org/10.29026/oea.2022.210069
https://doi.org/10.29026/oes.2022.220010
https://doi.org/10.1038/s41467-023-38786-x
https://doi.org/10.1038/s41467-023-37510-z
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1038/nn1643
https://doi.org/10.1162/neco.2009.11-08-901
https://doi.org/10.1038/s41586-019-1157-8
https://doi.org/10.1109/TNNLS.2020.3006263
https://doi.org/10.1109/TNNLS.2020.3006263
https://doi.org/10.1109/JLT.2022.3146157
https://doi.org/10.1364/OPTICA.468347
https://doi.org/10.1038/s41598-017-07754-z
https://doi.org/10.1038/nphoton.2017.93
https://doi.org/10.1038/nphoton.2017.93
https://doi.org/10.1038/nphoton.2017.93
https://doi.org/10.1126/sciadv.1700160
https://doi.org/10.1021/acsphotonics.9b01673
https://doi.org/10.1038/s41586-020-03070-1
https://doi.org/10.1038/s41586-020-03063-0
https://doi.org/10.1038/s41377-021-00666-8
https://doi.org/10.1038/s41467-020-20719-7
https://doi.org/10.1002/adpr.202000212
https://doi.org/10.1002/adpr.202000212
https://doi.org/10.1007/s12200-022-00009-4
https://doi.org/10.1364/AOP.8.000228


 Robertson  J,  Wade  E,  Kopp  Y,  Bueno  J,  Hurtado  A.  Toward
neuromorphic photonic networks of ultrafast spiking laser neur-
ons. IEEE J Sel Top Quantum Electron 26, 7700715 (2020).

40.

 Zhang YH, Robertson J, Xiang SY, Hejda M, Bueno J et al. All-
optical  neuromorphic  binary  convolution  with  a  spiking  VCSEL
neuron  for  image  gradient  magnitudes. Photonics  Res 9,
B201–B209 (2021).

41.

 Nahmias MA,  Shastri  BJ,  Tait  AN,  Prucnal  PR.  A  leaky  integ-
rate-and-fire  laser  neuron  for  ultrafast  cognitive  computing.
IEEE J Sel Top Quantum Electron 19, 1800212 (2013).

42.

 Shastri  BJ,  Nahmias  MA,  Tait  AN,  Rodriguez  AW,  Wu B et  al.
Spike  processing  with  a  graphene  excitable  laser. Sci  Rep 6,
19126 (2016).

43.

 Chakraborty I, Saha G, Sengupta G, Roy K. Toward fast neural
computing using all-photonic phase change spiking neurons. Sci
Rep 8, 12980 (2018).

44.

 Selmi F, Braive R, Beaudoin G, Sagnes I, Kuszelewicz R et al.
Relative  refractory  period  in  an  excitable  semiconductor  laser.
Phys Rev Lett 112, 183902 (2014).

45.

 Peng HT,  Angelatos  G,  Ferreira  de  Lima T,  Nahmias  MA,  Tait
AN  et  al.  Temporal  information  processing  with  an  integrated
laser  neuron. IEEE  J  Sel  Top  Quantum  Electron 26,  5100209
(2020).

46.

 Xiang JL, Zhang YJ, Zhao YT, Guo XH, Su YK. All-optical silic-
on  microring  spiking  neuron. Photonics  Res 10,  939–946
(2022).

47.

 Zheng DZ, Xiang SY, Guo XX, Zhang YH, Gu BL et al. Experi-
mental  demonstration  of  coherent  photonic  neural  computing
based  on  a  Fabry–Perot  laser  with  a  saturable  absorber.
Photonics Res 11, 65–71 (2023).

48.

 Shi YC, Li SM, Chen XF, Li LY, Li JS et al. High channel count
and high  precision  channel  spacing  multi-wavelength  laser  ar-
ray for future PICs. Sci Rep 4, 7377 (2014).

49.

 Shi YC, Xiang SY, Guo XX, Zhang YH, Wang HJ et al. Photon-
ic integrated spiking neuron chip based on a self-pulsating DFB
laser with a saturable absorber. Photonics Res 11,  1382–1389
(2023).

50.

 Beck  H,  Yaari  Y.  Plasticity  of  intrinsic  neuronal  properties  in
CNS disorders. Nat Rev Neurosci 9, 357–369 (2008).

51.

 The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/.

52.

 Alanis JA, Robertson J, Hejda M, Hurtado A. Weight adjustable
photonic synapse by nonlinear gain in a vertical cavity semicon-
ductor optical amplifier. Appl Phys Lett 119, 201104 (2021).

53.

 Robertson J, Alanis JA, Hejda M, Hurtado A. Photonic synaptic
system  for  MAC  operations  by  interconnected  vertical  cavity
surface  emitting  lasers. Opt  Mater.  Express 12,  1417–1426
(2022).

54.

Acknowledgements
We are grateful for financial supports from National Key Research and De-
velopment  Program  of  China  (2021YFB2801900,  2021YFB2801901,
2021YFB2801902, 2021YFB2801904); National Natural Science Foundation
of China (No. 61974177); National Outstanding Youth Science Fund Project
of National  Natural  Science  Foundation  of  China  (62022062);  The  Funda-
mental Research Funds for the Central Universities (QTZX23041). We also
would like to thank Prof. Xun Li for his helpful discussions.

Author contributions
S. Y. Xiang proposed the idea, Y. C. Shi, X. F. Chen, and H. L. Wang fabric-
ated the samples.  Y.  H.  Zhang,  X.  X.  Guo,  L.  Zheng performed system ex-
periments.  Y.  N.  Zhang,  D.  Z.  Zheng  tested  the  chips.  Y.  N.  Han,  Z.  W.
Song, T. Zhang developed the algorithms. S. Y. Xiang, Y. C. Shi,  X. J.  Zhu,
M. Qiu, and Y.C. Shen analyzed the data. S. Y. Xiang, Y. C. Shi prepared the
manuscript.  S.  Y.  Xiang,  W.  H.  Zheng,  and  Y.  Hao  supervised  the  overall
projects. All the authors analyzed and discussed the results.

Competing interests
The authors declare no competing financial interests.

Supplementary information
Supplementary information for this paper is available at
https://doi.org/10.29026/oea.2023.230140

Xiang SY et al. Opto-Electron Adv  6, 230140 (2023) https://doi.org/10.29026/oea.2023.230140

230140-14

 

https://doi.org/10.1364/PRJ.412141
https://doi.org/10.1038/srep19126
https://doi.org/10.1038/s41598-018-31365-x
https://doi.org/10.1038/s41598-018-31365-x
https://doi.org/10.1103/PhysRevLett.112.183902
https://doi.org/10.1364/PRJ.445954
https://doi.org/10.1364/PRJ.471950
https://doi.org/10.1038/srep07377
https://doi.org/10.1364/PRJ.485941
https://doi.org/10.1038/nrn2371
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1063/5.0064374
https://doi.org/10.1364/OME.450923
https://doi.org/10.29026/oea.2023.230140

	Introduction
	Experimental setup and method
	Principle for photonic neuro-synaptic core
	Model of the DFB-SA laser

	Results
	Intrinsic neuron excitability plasticity
	Continuously tunable synaptic plasticity
	Simultaneous implementation of nonlinear spike activation and linear weighting
	Fully-functional photonic neuromorphic prototypical system
	Time multiplexing matrix convolution with four-channel DFB-SA laser array

	Discussions and conclusions
	References

