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Recent advances in soft electronic materials for
intrinsically stretchable optoelectronic systems
Ja Hoon Koo 1†, Huiwon Yun1,2†, Woongchan Lee1†,
Sung-Hyuk Sunwoo1,2, Hyung Joon Shim1 and Dae-Hyeong Kim1,2,3*

In  recent  years,  significant  progress  has  been  achieved  in  the  design  and  fabrication  of  stretchable  optoelectronic
devices. In general, stretchability has been achieved through geometrical modifications of device components, such as
with serpentine interconnects or buckled substrates. However, the local stiffness of individual pixels and the limited pixel
density of  the array have impeded further  advancements in  stretchable optoelectronics.  Therefore,  intrinsically  stretch-
able optoelectronics have been proposed as an alternative approach. Herein, we review the recent advances in soft elec-
tronic materials for  application in intrinsically  stretchable optoelectronic devices.  First,  we introduce various intrinsically
stretchable electronic  materials,  comprised of  electronic  fillers,  elastomers,  and surfactants,  and exemplify  different  in-
trinsically  stretchable  conducting  and  semiconducting  composites.  We  also  describe  the  processing  methods  used  to
fabricate the electrodes, interconnections, charge transport layers, and optically active layers used in intrinsically stretch-
able optoelectronic devices. Subsequently, we review representative examples of intrinsically stretchable optoelectronic
devices,  including  light-emitting  capacitors,  light-emitting  diodes,  photodetectors,  and  photovoltaics.  Finally,  we  briefly
discuss intrinsically stretchable integrated optoelectronic systems.
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Introduction
Stretchable  optoelectronic  devices  (e.g.,  light-emitting
capacitors (LECs),  light-emitting  diodes  (LEDs),  photo-
detectors (PDs),  and photovoltaics (PVs)) have been in-
vestigated significantly over the past decade and its util-
ity has been demonstrated in several applications such as
soft  robotics1,2,  wearable  optical  sensors3−7,  wearable
smart  displays8−10,  and  bio-integrated  healthcare
systems11−13. Intrinsically-stretchable features of the opto-

electronic devices  enable  various  novel  device  applica-
tions,  especially  human-friendly  mobile  and  wearable
electronics/optoelectronics  applications.  Therefore,  both
academia and  industry  have  devoted  substantial  re-
search  efforts  to  develop  and  translate  the  futuristic
device  concepts  into  practical  and  user-friendly  device
applications. For  instance,  personal  biometric  informa-
tion  can  be  continuously  monitored  with  high  accuracy
by  using  wearable  and/or  implantable  optical  sensing 
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systems,  such as  an integrated device  of  LEDs and PDs,
in  a  point-of-care  manner.  The  measured  physiological
information can be used for real-time health monitoring
and on-site diagnosis, which will be helpful for the early-
diagnosis of many critical symptoms and the prevention
of fatal health damages in the emergency situations. Such
novel  bio-integrated  optoelectronic  systems  would
provide  new  opportunities  for  remote  and  ubiquitous
healthcare. However, there are several obstacles that pre-
vent  the  large-scale  fabrication  of  high-performance
stretchable optoelectronic devices. Especially, further in-
vestigations  are  required  on  novel  material  components
and  their  combinations  for  intrinsically  stretchable
device  components  to  ensure  that  they  have  the  desired
optical, electrical, and mechanical properties (e.g., trans-
parency, bandgap, and stretchability)14−18.

Ideally, stretchable optoelectronic devices should have
a comparable performance to that of non-stretchable op-
toelectronic devices,  especially  in  terms of  key perform-
ance  factors  such  as  high  areal  coverage,  high-quality
light-emission, high-sensitivity photodetection, and high
pixel  resolution.  In  general,  two  different  approaches
have been pursued to achieve such stretchable optoelec-
tronics – structure-based approaches and material-based
approaches.  Several  studies  have  been  conducted  on
stretchable optoelectronic  devices  that  employ  uncon-
ventional  device  designs  (e.g.,  serpentine  design19−21 and
buckled  structure22−24) and  rigid  semiconducting  opto-

electronic  materials25−29. Notably,  these  devices  have  ex-
hibited  high  optical  and  electrical  performances,  which
are comparable to those of rigid devices, and high mech-
anical  deformability.  However,  structural  engineering-
based  device  designs  decrease  the  overall  density  of  the
device as additional space is required for structural inter-
connects, decreasing  the  array  resolution.  Moreover,  ri-
gid device  components  can  cause  a  mechanical  mis-
match  with  the  soft  materials  that  interface  with  the
device, such as with soft human tissues in the case of bio-
integrated optoelectronics, leading to consequential side-
effects such as skin irritations30−34.

Owing to  the  limitations  of  structure-based  ap-
proaches, material-based approaches have received signi-
ficant attention  in  recent  years.  In  general,  existing  re-
search  on material-based  approaches  have  been  focused
on  the  synthesis  of  novel  soft  electronic  materials  and
their  application  to  device  fabrication35−39.  In  particular,
elastomeric  composites,  wherein  various  conducting/
semiconducting electronic fillers (e.g., metal-based nano-
materials40−42,  carbon-based nanomaterials43−45, and con-
jugated polymers46−48) are mixed inside elastomeric poly-
mers, and their fabrication techniques have been studied
extensively (Fig. 1 top). Intrinsically stretchable optoelec-
tronic  devices  with  soft  electronic  materials  can  endure
mechanical deformations without the need for addition-
al  structural  engineering.  Consequently,  soft-material-
based  optoelectronic  devices  are  suitable  for  large-area
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Fig. 1 | Strategy for the development of intrinsically stretchable optoelectronics, based on intrinsically stretchable materials and novel
fabrication techniques.
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fabrication with high pixel  density,  large  areal  coverage,
and  facile  bio-integration  with  the  human  body  (Fig. 1
bottom).

This article  reviews  the  recent  advances  in  soft  elec-
tronic materials  for  intrinsically  stretchable  optoelec-
tronic devices. First, we introduce the constituents of in-
trinsically  stretchable  electronic  materials,  which  can  be
classified into  electronic  fillers,  elastomers,  and  surfact-
ants.  These  materials  are  combined  with  each  other  to
prepare intrinsically  stretchable  conducting  and  semi-
conducting composites. The processing methods of these
soft  electronic  composites,  which  are  used  to  fabricate
various  devices,  are  reviewed  as  well.  Subsequently,  we
explore individual  device  components,  such  as  stretch-
able electrodes,  interconnections,  charge  transport  lay-
ers, and optically active layers, and review representative
examples  of  intrinsically  stretchable  optoelectronic
devices,  such  as  intrinsically  stretchable  LECs,  LEDs,
PDs, and PVs. Finally, we present examples of intrinsic-
ally  stretchable  integrated  optoelectronic  systems  and
conclude this  review  with  a  brief  discussion  on  the  re-
maining challenges  of  intrinsically  stretchable  optoelec-
tronic devices. 

Basic constituents of intrinsically
stretchable electronic materials
Intrinsically stretchable electronic materials are required
to  fabricate  intrinsically  stretchable  optoelectronic
devices. All  the  device  components,  including  the  elec-
trodes, interconnections, and charge transport layers/op-
tically active layers, must be intrinsically stretchable, with
controllable transparency and carrier dynamics. In terms
of stretchable conductors, metallic nanomaterials such as
nanowires and nanofibers have been widely investigated
since their high aspect ratio grants substantial stretchab-
ility  when  assembled  in  network  structures49,50.  Carbon-
based  nanostructures  such  as  carbon  nanotubes  and
graphene (flakes) have also been used as stretchable con-
ductors, owing  to  their  high  aspect  ratios  and  soft  car-
bon-based  material  constructions51,52.  Other  stretchable
conductors  include:  metallic  nanomesh53,  wherein
stretchability is  achieved  by  morphological  reconstruc-
tion of the photo-patterned thin metal film deposited on
the elastomeric substrate, ionic conductors54,55, which are
composed of hydrogels with conductive ions or ionic li-
quids, and liquid metals56,57 which consist of metal com-
ponents with low toxicity such as Ga, Ga alloyed with In
(EGain), and Ga alloyed with In and Sn (Galinstan).

In terms  of  stretchable  optically-active  layers,  elasto-
meric composites consisting of optically-active polymers
have  been  widely  used.  As  such,  functional  elastomeric
composites, wherein conducting or semiconducting elec-
tronic fillers  and  surfactants  are  incorporated  in  elasto-
meric  matrices,  have  been  extensively  investigated  for
stretchable  optoelectronic  device  applications58−62.  The
electrical,  optical,  and  mechanical  properties  of  these
functional composites  can  be  optimized  for  desired  ap-
plications by  controlling  the  mixing  ratios  of  the  indi-
vidual material  components.  Since  several  excellent  re-
views  on  the  stretchable  conductors  and  fabrication  of
intrinsically  stretchable  elastomeric  composites  are
already  available40−48,  we  mainly  focus  on  introducing
various  types  of  electronic  filler  materials,  elastomers,
and  surfactants  that  can  constitute  electrically/optically
functional elastomeric composites (Fig. 2). 

Electronic filler materials
The optoelectronic  properties  of  soft  elastomeric  com-
posites such  as  their  electrical  conductivity,  carrier  mo-
bility, and light  emission/absorption ability,  are  primar-
ily  dependent  on  the  incorporated  electronic  fillers.
These  electronic  fillers,  which  are  either  conducting  or
semiconducting in nature, form percolation networks in-
side  the  elastomeric  matrices  that  remain  undamaged
and  interconnected  under  mechanical  deformations,
thereby maintaining  their  electronic  and/or  optoelec-
tronic properties. In general, the optoelectronic perform-
ance of soft  elastomeric composites can be improved by
increasing  the  weight  fraction  of  the  electronic  fillers  in
the composites. This increases the junction density in the
percolation  network  and  improves  the  electrical/opto-
electrical performance  of  the  composite.  However,  ow-
ing to the reduced elastomer fraction, the mechanical de-
formability  of  the  composite  decreases  and  its  stiffness
increases.  Therefore,  the  type  and  concentration  of  the
electronic  fillers  must  be  carefully  considered  to  obtain
the desired electronic/optoelectronic performance, while
retaining the beneficial mechanical properties of the soft
composites.

Nanomaterials  and polymers  are  the  most  commonly
used electronic fillers in soft conducting and/or semicon-
ducting  composites  (Fig. 2(a))63−65. Metallic  nanomateri-
als have been widely used as conducting electronic fillers
in stretchable conductive composites owing to their high
conductivity  and  flexibility  in  a  networked  structure.
Gold,  silver,  and  platinum  nanostructures  with  zero-,
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one-, and  two-dimensional  (0D,  1D,  and  2D,  respect-
ively) geometries are representative examples of metallic
nanomaterials.  Carbon-based  nanomaterials  have  also
been  commonly  used  as  conductive  electronic  fillers  in
soft  composites  (Fig. 2(b))66−68.  Despite  their  relatively
lower electrical  conductivity  compared to that  of  metal-
lic nanomaterials, their low mass density enables the fab-
rication  of  highly  durable  and  lightweight  stretchable
devices. Moreover,  the  electronic  properties  of  1D  car-
bon nanostructures (i.e., single-walled carbon nanotubes,
SWCNTs) can be controlled based on their  chirality69,70,
thereby enabling the preparation of semiconducting elec-
tronic fillers  and  composites  as  well  as  stretchable  con-
ducting composites.

The  geometrical  dimensions  of  electronic  fillers  also
have a significant effect on the electrical and mechanical
performances of  the  resulting  soft  composites.  For  in-
stance,  1D  nanomaterials  can  form  better  percolation
networks  than  multi-dimensional  nanomaterials  as  a
lesser  amount  of  the  nanomaterials  is  required  to  form

an interconnected network owing to their high aspect ra-
tio. This either increases the deformability of  the result-
ing  soft  composites  or  increases  the  conductivity  while
providing the  same  mechanical  performance  as  a  com-
parable composite  made  of  multi-dimensional  nanoma-
terials. Owing to  the  lower  weight  fraction of  the  nano-
material, the weight fraction of the elastomer in the com-
posite  increases,  thereby  enhancing  the  mechanical
properties,  such  as  stretchability  and  softness,  of  the
composite.

Various semiconducting nanomaterials have been also
employed as electronics fillers in soft composites, includ-
ing ZnS nanoparticles (NPs)71−73, perovskite nanocrystals
(PeNCs)74−76,  and  quantum  dots  (QDs)77−79,  owing  to
their distinctive  optoelectronic  properties  such  as  emis-
sion  and/or  absorption  of  light  (Fig. 2(c))80−82.  ZnS  NPs
can  be  used  in  applications  that  require  light  emissive
electronic fillers in the soft composite, as their electrolu-
minescence  can  be  easily  modulated  by  incorporating
different types of dopants that form sulfide compounds.
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Metal halide  PeNCs  exhibit  several  desirable  optoelec-
tronic  properties  such  as  high  exciton  binding  energies,
photoluminescent  quantum  yields,  and  tunable
bandgaps. In addition, their absorption/emission spectra
can be easily tuned from the blue light range to the near-
infrared light  range  by  altering  the  chemical  composi-
tion of the PeNCs. Therefore, they have a significant po-
tential  for  application  as  optoelectronic  semiconducting
filler materials. Finally, core-shell type QDs are also con-
sidered  to  be  good  filler  materials  owing  to  their  easily
controllable and wide absorption/emission spectrum and
high quantum yield83,84.

In addition to the aforementioned nanomaterials, con-
jugated  polymers85−87 can serve  as  conducting  or  semi-
conducting  filler  materials  for  fabricating  intrinsically
stretchable  composites  (Fig. 2(d)).  Conjugated  polymers
not  only  exhibit  facile  miscibility  with  elastomers,  but
also  have  tunable  charge  transport  properties,  good
transparency,  and  light  weight.  Furthermore,  the  band
gap energies of conductive conjugated polymers can suit-
ably align with the energy level  of  optically  active layers
(i.e.,  photo-absorption  layers  or  light-emitting  layers).
Some representative  examples  of  conductive  conjugated
polymer  fillers  include  poly(3,4-ethylenedioxythio
phene):  polystyrene  sulfonate  (PEDOT:PSS)88,89, poly-
aniline  (PANI)90,91,  and  polypyrrole92,93.  Semiconducting
conjugated  polymer  fillers,  such  as  poly(3-hexyl-
thiophene)  (P3HT)94,95 and  diketopyrrolopyrrole-based
(DPP-based)  polymers96,97,  have  also  been  studied
extensively. 

Elastomers
The  mechanical  properties,  such  as  the  tensile  strength,
Young’s  modulus,  and  stretchability,  of  the  intrinsically
stretchable  materials  are  primarily  dependent  on  the
mechanical properties  and weight fraction of  the elasto-
meric matrices that envelop the percolation networks of
the  electronic  fillers98−100.  The mechanical  characteristics
of elastomers are determined by the degree of crosslink-
ing of  the  polymer  chains.  Dense  and  strong  crosslink-
ing  of  the  polymeric  chains,  which  is  made  possible  by
the  formation  of  side  chains  that  connect  long  polymer
chains,  can  result  in  relatively  stiff  but  mechanically/
chemically robust elastomers. In contrast, soft but fragile
mechanical/chemical  properties  are  induced  when  the
crosslinking density is low.

In general,  elastomers  can  be  classified  into  chemic-
ally  or  physically  crosslinked  elastomers  (Fig. 2(e)).  In

chemically crosslinked  elastomers  (e.g.,  silicone  elast-
omers), the polymer chains are  interconnected by cova-
lent bonds,  whereas in physically crosslinked elastomers
(e.g., styrenic  elastomers)  the  polymer  chains  are  inter-
connected through  relatively  weaker  ionic  or  hydro-
phobic  interactions.  Therefore,  the  mechanical  freedom
of  physically  crosslinked  elastomers  is  generally  higher
than that  of  chemically  crosslinked  elastomers.  Con-
sequently,  the  processing  and  fabrication  of  physically
crosslinked elastomers  are  much  easier  and  more  con-
venient  in  terms  of  solidification  and  reprocessing  by
heat,  pressure,  and  solvents.  Moreover,  the  maximum
fraction  of  the  electronic  filler  materials  in  chemically
crosslinked  elastomers  is  limited,  as  the  crosslinking
density can be decreased by an excessive amount of elec-
tronic fillers, resulting in poor controllability of the opto-
electronic/mechanical  properties.  In  contrast,  physically
crosslinked  elastomers  are  relatively  less  affected  by  an
excessive  amount  of  additives.  As  a  higher  fraction  of
electronic  fillers  can  be  added  to  physically  crosslinked
elastomers,  they  have  better  electronic/optoelectronic
performance,  without  any  change  in  their  mechanical
performances.

Polyurethane  (PU)-based  elastomers  are  synthesized
by  reactions  between  di-/poly-isocyanates  and  macro-
sized  polyols,  and  exhibit  both  physical  and  chemical
crosslinking.  They  have  long  soft  blocks  composed  of
polyol  chains  and  hard  blocks  composed  of  urethane
groups which involve the formation of hydrogen bonds.
Furthermore,  chemical  crosslinking also  occurs  through
allophanate  bonding  with  other  isocyanate  groups.
Therefore,  PU-based  elastomers  exhibit  the  advantages
of both types of crosslinking, i.e. facile processing, relat-
ively high maximum loading of filler materials, and relat-
ively high  mechanical/chemical  stability.  They  are  fre-
quently  used  in  intrinsically  stretchable  optoelectronics
owing  to  their  excellent  mechanical/chemical  stability,
facile processability, and high transparency101−103.

Besides  being  used  as  an  elastic  polymer  matrix  that
envelops the electronic filler networks, elastomers are of-
ten  used  as  an  elastic  substrate,  electrical  insulator,
and/or encapsulation layer in intrinsically stretchable op-
toelectronic  devices.  Typical  elastomers  used  for  such
purposes include chemically-crosslinked elastomers (e.g.,
silicone:  polydimethylsiloxane  (PDMS)  and  Ecoflex),
physically-crosslinked  elastomers  (e.g.,  block-co-poly-
mer: poly(styrene-butadiene-styrene) (SBS) and styrene-
ethylene  butylene-styrene  (SEBS)),  and  elastomers  that
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have both chemical  covalent  bonds  and physical  hydro-
gen  bonds  (e.g.,  polyurethane  (PU)).  These  elastomers
with  the  thickness  of  a  micrometer  range  exhibit  high
optical  transparency  and  reliable  mechanical  elasticity,
both of which are critical factors for the use as substrates
in  intrinsically  stretchable  optoelectronic  devices.  Their
low surface  energies  ensure  smooth  and  uniform  sur-
faces such that additional layers can be deposited on top
using various deposition tools after proper surface treat-
ments.  Furthermore,  these elastomers can potentially be
used as  a  stretchable  insulating  layer  in  the  phototran-
sistor applications by reducing their thickness down to a
few  hundreds  of  nanometers.  More  detailed  chemical
and  mechanical  properties  and  their  structural  features
can be found in other review articles97,102. 

Surfactants
The  use  of  suitable  surfactants  (Fig. 2(f)) in  the  fabrica-
tion  of  intrinsically  stretchable  electronic  materials  can
significantly improve the mechanical performance of the
resulting  composite  materials104. Furthermore,  com-
pared  to  composites  fabricated  without  any  surfactant,
the  addition  of  a  suitable  surfactant  can  improve  the
electrical/optical performance  of  the  composite  by  in-
creasing the maximum loading amount of the functional
fillers. Notably,  the  mechanical  properties  of  the  elasto-
meric composite  are  maintained  by  the  surfactant,  des-
pite the  higher  fraction  of  the  electronic  fillers.  Surfact-
ants  can also  be  used to  modulate  the  surface  energy  of
the material. For instance, a fluorosurfactant – Zonly FS
– 300 was added to a PEDOT:PSS solution to improve its
wetting,  enabling  the  facile  and  uniform  deposition  of
PEDOT:PSS films on various stretchable substrates105.

Surfactants can also be used to cause interchain reac-
tions  between  the  polymeric  chains  to  modulate  their
electrical  and  mechanical  performances.  For  example,
the  conductivity  and  stretchability  of  PEDOT:PSS  films
can  be  significantly  enhanced  by  adding  1-butyl-3-
methylimidazolium octyl sulfate – an ionic additives–as-
sisted  stretchability  and  electrical  conductivity  (STEC)
enhancer106.  The  STEC  enhancer  induces  an  effective
phase separation  between  the  conductive  PEDOT  re-
gions and  the  soft  PSS  regions  and  aggregates  the  PE-
DOT domain, thereby increasing the conductivity of the
PEDOT:PSS film. The STEC enhancer also increases the
stretchability  of  the  PEDOT:PSS  film  owing  to  the
softening of the PSS domains.

Meanwhile,  a  poly-(4-vinyltriphenylamine)-b-poly(3-

hexylthiophene)-b-poly(4-vinyltriphenylamine)  (PTPA-
P3HT-PTPA) surfactant  was  used  to  suppress  the  ag-
gregation  of  phenyl-C61-butyric  acid  methyl  ester
(PCBM)  in  a  P3HT/PCBM  composite  mixture107. Spe-
cifically,  the  PTPA  and  PCBM  domain  mix  inside  the
P3HT/PCBM  composite,  preventing  the  aggregation  of
PCBM. Solar cells based on these P3HT/PCBM films ex-
hibited a higher power conversion efficiency than a con-
trol device.

A  small-molecule  surfactant  such  as  2-[4-(2,4,4-tri-
methylpentan-2-yl)phenoxy]ethanol  (Triton  X)  can  be
also  used  to  control  the  phase  separation  of  polymeric
chains.  For  instance,  the  addition  of  Triton  X  to  a
poly(phenylenevinylene)  (PPV)-based  intrinsically
stretchable emissive material  decreased interchain inter-
actions, which increased the mechanical stretchability of
the  material108.  Triton  X  has  also  been  used  to  enhance
the conductivity  of  PEDOT:PSS  by  inducing  phase  sep-
aration of the PEDOT and PSS domains109.

In Section Basic constituents of intrinsically stretchable
electronic  materials,  various  component  materials  (i.e.,
electronic  fillers,  elastomers,  and  surfactants)  used  for
the  development  of  functional  elastomeric  composites
have  been  introduced.  For  the  electronic  fillers,  either
conducting  or  semiconducting  fillers,  their  geometrical
dimensions/shapes and the amounts/compositions to be
added to the composite must be carefully considered for
the optimized electrical, mechanical, and optical proper-
ties. Elastomers are used as either polymer matrices that
carry  the  percolated  networks  of  the  electronic  fillers  to
provide  stretchability  to  the  composite,  or  as  substrates
and  insulation/encapsulation  layers  of  the  intrinsically
stretchable  devices.  Surfactants  are  often  adopted  in  the
composites  to  enhance  their  electrical  and  mechanical
properties,  which  can  improve  mechanical/electrical
properties  by  inducing  microscale  phase  separation
and/or modulating the surface energy of the component
materials. 

Intrinsically stretchable electronic materials
In this section, we review actual examples of intrinsically
stretchable  conducting/semiconducting  composites  as
well  as  their  processing  techniques,  such  as  deposition
and patterning methods.  Representative examples  of  in-
trinsically  stretchable  conducting  and  semiconducting
composites  are  listed  in Tables 110,110−132 and 287,96,133−149,
respectively;  they  are  categorized  based  on  the  type  of
filler  or  elastomer  used in  the  composite,  in  addition to
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their  electrical  performance,  mechanical  properties,  and
applications. In the following, we focus on reviewing in-
trinsically  stretchable  conducting  and  semiconducting
composites which  were  used  in  optoelectronic  applica-
tions,  such  as  stretchable  transparent  electrodes  and
stretchable photo-active layers. 

Intrinsically stretchable conducting and
semiconducting composites
Figure 3(a–d) depict a  few  representatives  of  intrinsic-
ally  stretchable  conducting  materials  with  0D,  1D,  and
2D  nanomaterial-based  electronic  fillers.  For  example,
Bhagavatheswaran  et  al.  fabricated  an  intrinsically
stretchable  conducting  composite  using  carbon  black
(CB)  particles,  spherical  silica  particles,  and  styrene
butadiene rubber (SSBR) (Fig. 3(a))121. The CB and silica
particles served as fillers,  wherein the silica particles en-
hanced  the  percolation  of  the  CB  particles.  Specifically,

the  silica  particles  applied  high  shear  forces  on  the  CB
particles  during the melt  mixing process of  the fillers  in
the  SSBR,  resulting  in  the  dissociation  and reduction in
the size  of  the  CB  particles,  which  reinforced  their  per-
colation networks. The resulting intrinsically stretchable
conducting  composite  had  an  electrical  conductivity  of
40  S/m,  with  a  mechanical  performance  comparable  to
that of highly reinforced elastomer vulcanizate.

Roh  et.  al.  fabricated  an  optically  transparent  and
stretchable  conducting  composite  using  SWCNTs  and
PU-PEDOT:PSS  (Fig. 3(b))150. The  intrinsic  stretchabil-
ity  and  optical  transparency  could  be  simultaneously
achieved  by  the  incorporation  of  SWCNTs  with  a  low
concentration.  Despite  the  low  concentration,  the  1D
nature  of  the  SWCNTs  facilitated  effective  percolation.
Furthermore,  the  spin-coated  SWCNTs  on  the  PU-PE-
DOT:PSS layer maintained percolation with the PEDOT
phases  at  the  interfaces  between  the  layers  during

 
Table 1 | Electrical/mechanical performances of intrinsically stretchable conducting materials.

 

Materials Conductivity Max. stretchability
Changes in electrical performance

under applied strains
Application Reference

Metal-based
nanomaterials

Ag NW/SBS
12000
S cm–1

100% Maintained up to 100% strain Wearable heater ref.110

Ag–Au NW/SBS
41850
S cm–1

266% σ/σ0= 0.1 at 266% strain
Heater, sensors,

cardiac mesh
ref.111

Au-TiO2 NW/PDMS 0.63 Ω sq–1 150–200% 7 Ω sq–1 at 100% strain Neural electrode ref.112

Ag NW–Ag NP/SBS 2450 S cm–1 220% σ/σ0 = 4.4% at 100% strain Strain sensor ref.113

Cu-Ag NW/PDMS 2040 S cm–1 250–350% ΔR/R0 = 1.46 at 150% strain Interconnection ref.114

Ag flake–Ag NP/PDMS 5695 S cm–1 50% 300 S cm–1 at 50% strain Strain sensor ref.115

Ag flakes/silicone adhesive 15100 S cm–1 240% 1110 S cm–1 at 240% strain Conductor ref.116

Ag flake/fluorinated rubber 6168 S cm–1 400% 935 S cm–1 at 400% strain Interconnection ref.117

Ag flake-EGaInPs/EVA 8331 S cm–1 1000% ΔR/R0 = 6.2 at 1000% strain
Touch sensor,
interconnection

ref.118

Ag flake/Ecoflex 542 S cm–1 1780% ΔR/R0 = 154 at 1780% strain Interconnection ref.119

Ag flake/Ecoflex 1428 S cm–1 500% ΔR/R0 = 9 at 500% strain Interconnection ref.120

Carbon-based
nanomaterials

Carbon black/SBS 0.4 S cm–1 200% Maintained up to 50% strain Pressure sensor ref.121

CNT/fluorinated rubber 57 S cm–1 134% 8 S cm–1 at 134% strain Interconnection ref.122

CNT/fluorinated rubber 100 S cm–1 118% Maintained up to 29% strain
Active matrix organic
light-emitting diodes

ref.10

Graphene/PDMS 10 S cm–1 90% ΔR/R0 = 1.8 at 90% strain Interconnection ref.123

Graphene/PMMA 1994 Ω sq–1 40% ΔR/R0 = 0.5 at 20% strain Temperature sensor ref.124

Graphene, CNT/PDMS 0.01 S cm–1 100% 100 Ω cm over 100% strain ECG sensor ref.125

Polymers

PEDOT:PSS/ionic compounds 3100 S cm–1 800% 4100 S cm–1 at 100% strain Interconnection ref.126

PEDOT:PSS/WPU,
d-sorbitol

545 S cm–1 38% ΔR/R0 = 0.11 at 30% strain
Electrophysiology

sensor
ref.127

PEDOT:PSS/hydrogel 23 S m–1 100% 10 S m–1 at 100% strain Interconnection ref.128

PEDOT:PSS/PUD 168 S cm–1 100% ΔR/R0 = 1.5 at 100% strain Pressure sensor ref.129

PAAMPSA/PANI/PA 2 S m–1 1935% ΔR/R0 = 3.7 at 300% strain Strain sensor ref.130

PEDOT:PSS-reduced GO/PDMS 1010 S cm–1 20% Maintained up to 15% strain Conductor ref.131

PEDOT/PU/hydrogel 40 S cm–1 100% 120 S cm–1 at 100% strain Stimulator ref.132
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stretching,  thereby  preserving  the  conductivity  of  the
composite. The  conductivity  of  the  composite  was  fur-
ther enhanced by stacking another PU-PEDOT:PSS lay-
er on top,  resulting in a  sandwich-like stacked structure
with higher mechanical stability.

Figure 3(c) and 3(d) illustrates the formation of an in-
trinsically  stretchable  conducting  composite  composed
of 1D Au-coated Ag nanowires (Ag-Au NWs) in SBS111.
The stretchability  of  the  composite  was  further  en-
hanced by inducing a phase separation to form separate
conductive and  stretchable  regions.  The  phase  separa-
tion forms a toluene-rich phase and a hexylamine-phase,
which,  after  solvent  evaporation,  becomes  a  stretchable
SBS-rich region  and  a  conductive  Ag-Au  NW-rich  re-
gion,  respectively.  The  resulting  optimized  composite
had a high conductivity of 41850 S/cm with a maximum
stretchability of 840%.

An intrinsically stretchable conducting composite was
also fabricated using 2D Ag flakes, fluorine rubbers, and
fluorine  surfactants117. Generally,  pre-synthesized  con-
ducting  nanomaterials  are  mixed  with  the  elastomers
while  fabricating  elastomeric  conducting  composites.
However,  in  this  case,  Ag  NPs  were  synthesized  in  situ

during  the  mixing  process,  as  Ag+ ions  were  diffused
from the oxidized surfaces of the Ag flakes. The Ag NPs
increased  the  electrical  conductivity  of  the  resulting
elastomeric composite by condensing the percolated net-
works between the Ag flakes.

Figure 3(e) and 3(f) show  examples  of  intrinsically
stretchable conducting  composites  composed  of  con-
ducting  polymers126.  Wang  et  al.  fabricated  a  highly
stretchable PEDOT:PSS film by adding STEC enhancers
to PEDOT:PSS.  The  STEC  enhancers  modified  the  in-
ternal  morphology  of  the  film  to  promote  stretchability
and served as  conductivity-enhancing dopants.  Further-
more, owing to the addition of STEC enhancers, the rhe-
ological  characteristics  of  the  PEDOT:PSS  film  became
similar  to  those  of  viscoelastic  solids.  In  particular,  the
electrostatic  interaction  between  the  PEDOT  and  PSS
domains was weakened by the introduction of the STEC
enhancers, and PEDOT aggregate networks were formed
inside the PSS matrices, resulting in a highly-conductive
soft composite  structure.  Thus,  an  intrinsically  stretch-
able film could be achieved, without mixing PEDOT:PSS
with elastomeric materials.

Sustainable homogeneity of the elastomeric composite

 
Table 2 | Electrical/mechanical performances of intrinsically stretchable semiconducting materials.

 

Materials Mobility Max. stretchability Changes in mobility under applied strains Application Reference
Carbon-based
nanomaterials

SWCNT/SEBS 6.18 cm2 V–1 s–1 60% – Transistor ref.133

Polymers

DPP2TTVT-PDCA 1.32 cm2 V–1 s–1 110%
0.74 cm2 V–1 s–1

Transistor ref.96

after 100 cycles of 25% strain

DPP-10C5DE 0.25 cm2 V–1 s–1 100% 0.2 cm2 V–1 s–1 at 100% strain Transistor ref.134

P3HpT 0.00055 cm2 V–1 s–1 54% – Transistor, PV ref.135

P3HT-PMA 0.0009 cm2 V–1 s–1 140% – Transistor ref.136

DPP >0.1 cm2 V–1 s–1 100% 0.07 cm2 V–1 s–1at 100% strain Transistor ref.137

P3HT-PE 0.05 cm2 V–1 s–1 660% – Transistor ref.138

C12-DPP 0.463 cm2 V–1 s–1 100% 0.1 cm2 V–1 s–1 at 100% strain Transistor ref.139

20D PPTTEC/PDMS 0.66 cm2 V–1 s–1 150%
0.4 cm2 V–1 s–1

Transistor ref.140

after 500 cycles of 20% strain

P3HT/SEBS <0.006 cm2 V–1 s–1 50% >0.002 cm2 V–1 s–1 at 50% strain Transistor ref.141

P3HT/PDMS 0.00785 cm2 V–1 s–1 100% 0.000374 cm2 V–1 s–1 at 100% strain Transistor ref.142

DPPT-TT/SEBS 0.59 cm2 V–1 s–1 100% 0.55 cm2 V–1 s–1 at 100% strain Transistor ref.143

29-DPP-SVS/SEBS 1.37 cm2 V–1 s–1 600% 0.99 cm2 V–1 s–1 at 100% strain Transistor ref.144

PCDTPT/P3HT 0.09 cm2 V–1 s–1 75% 0.16 cm2 V–1 s–1 at 75% strain Transistor ref.145

P3HT/PDMS 1.4 cm2 V–1 s–1 50% – Transistor ref.87

P3HT/PDMS 3.3 cm2 V–1 s–1 50% 1.7 cm2 V–1 s–1 at 50% strain Transistor ref.146

P3HT/CNT/PDMS 7.46 cm2 V–1 s–1 50% 3.57 cm2 V–1 s–1 at 50% strain Transistor ref.147

P3HT/PDMS 0.18 cm2 V–1 s–1 120% – Transistor ref.86

DPP-DTT/PDMS 1.23 cm2 V–1 s–1 100% <1 cm2 V–1 s–1 at 100% strain Transistor ref.148

IDTBT 1.8 cm2 V–1 s–1 100% 0.6 cm2 V–1 s–1 at 100% strain Transistor ref.149
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in an intrinsically stretchable semiconducting composite
is essential for maintaining a uniform electrical perform-
ance, which  is  vital  for  optoelectronic  device  applica-
tions.  Wang  et  al.  fabricated  an  intrinsically  stretchable
semiconducting  composite  using  ZnS:Cu  microparticles
and PDMS (Fig. 3(g))151.  Owing to the chemically-stable
nature of  the PDMS, the homogeneously mixed ZnS:Cu
microparticles could be well protected against solvent at-
tack  during  the  remaining  device  fabrication  processes,
resulting in robust  emissive  performances.  Thus,  simple
fabrication of an electroluminescent (EL) device could be
realized  by  directly  embedding  the  electrodes  into  the
polymer matrix.  The  ZnS:Cu/PDMS  composite  also  ex-
hibited excellent stretchability, as no significant degrada-
tion  in  its  optoelectronic  properties  could  be  observed

after being stretched up to 100%.
Bade  et  al.  fabricated  an  intrinsically  stretchable

emissive  composite  by  incorporating  methylammonium
lead  tribromide  (MAPbBr3)  microparticles  in  a
poly(ethylene  oxide)  (PEO)  matrix  (Fig. 3(h))152. Micro-
scale MAPbBr3 particles were formed and embedded in-
side  the  PEO  matrix  through  homogeneous  mixing  of
the  MAPbBr3 and  PEO  precursors  in  a  weight  ratio  of
1:0.5. The composite solution was spin-coated and dried
on a hot plate to obtain a pin-hole free film, wherein the
gaps  between  the  MAPbBr3 perovskite  microcrystals
were  filled  by  the  PEO  polymer.  Therefore,  despite  the
mechanical  fragility  of  the  original  perovskite  material,
the spin-coated film had excellent  stretchable  and opto-
electronic properties, with the PEO matrix serving as an
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elastic connector.
In  addition  to  0D  particles,  1D-structured  nanofibers

such as  P3HT  have  also  been  widely  used  as  semicon-
ducting  fillers  in  intrinsically  stretchable  composites.
Shin et  al.  fabricated  an  intrinsically  stretchable  elasto-
meric  composite  by  blending  P3HT  nanofibers  with  an
SEBS elastomeric matrix,  and then spin-coating the res-
ulting  mixture  on  a  PDMS  substrate  (Fig. 3(i))141.  The
phase  separation  between  the  P3HT  nanofibers  and  the
SEBS matrix induced the formation of nanofiber bundles
inside  the  blended  mixture,  providing  good  electrical
performance. However, the stretchability of this compos-
ite  was  limited  as  the  nanofiber  bundles  experienced
severe cracking when an external strain was applied par-
allel to the aligned bundles. Song et al. solved this prob-
lem by directly embedding the P3HT nanofiber compos-
ites in the PDMS matrix (Fig. 3(j) and 3(k))142. The per-
colation  networks  of  the  P3HT  nanofibers  could  rotate
more freely under an applied strain as the PDMS matrix
inhibited the  formation  of  junctions  between  the  nan-
ofibers;  however,  tightly-bonded  P3HT  nanofibers
without the  PDMS  matrix  were  broken  under  the  ap-
plied strain.

The two  studies  discussed  above  developed  intrinsic-
ally  stretchable  semiconducting  composites  using  pre-
grown  nanofibers.  Xu  et  al.  devised  a  different  method,
wherein semiconducting polymer nanofibers of poly(2,5-
bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)diketopyrrolo
[3,4-c]pyrrole-1,4-dione-altthieno[3,2-]thiophene)
(DPPT-TT) developed percolation networks through the
nanoconfinement effect during phase separation in SEBS
(Fig. 3(l))143.  The  modulus  of  the  conjugated  polymer
was reduced  significantly  owing  to  the  increased  poly-
mer chain  dynamics,  thereby  enhancing  the  stretchabil-
ity of  the  composite  without  affecting  its  charge  trans-
port properties. 

Fabrication methods for intrinsically stretchable
composites
Functional elastomeric  materials  require  proper  pro-
cessing  before  they  can  be  fabricated  into  electronic
components. They must be capable of being deposited as
a  uniform  film  and  patterned  into  the  desired  design
and/or structure. Conventional film deposition and pho-
tolithography-based patterning techniques involve vacu-
um-based deposition  processes,  photoresist  develop-
ment processes, and chemical/physical etching processes,
which  are  rarely  compatible  with  elastic  materials.

Therefore, several  unconventional  fabrication  tech-
niques have been introduced for depositing and pattern-
ing  intrinsically  stretchable  electronic  materials.  This
section  will  review  some  of  the  most  widely  used  and
state-of-the-art fabrication techniques that allow the pro-
cessing  of  the  intrinsically  stretchable  composites,  such
as printing and light-supported patterning techniques.

Various printing techniques that deposit an “ink” (i.e.,
intrinsically stretchable  composites)  onto  a  target  sub-
strate can be applied to the deposition and patterning of
intrinsically stretchable materials. Stencil printing is one
of  the  simplest  printing  processes,  and  only  requires  a
patterning  mask,  a  blade,  and  a  solution-state  material
(Fig. 4(a))153. The mask is aligned on the substrate, and a
uniform  coating  of  the  solution-phase  target  material  is
applied on the mask using the blade.  The solidified ma-
terial  retains  the  desired  pattern  on  the  substrate  after
solvent  evaporation  (Fig. 4(b))154.  However,  although
stencil  printing  is  simple  and  cost-effective,  the  pattern
edge  may  have  a  poor  resolution  owing  to  the  surface
tension of the solvent.

The  stamping  method  has  also  been  used  to  deposit
intrinsically stretchable materials  in a patterned manner
(Fig. 4(c))155. In this method, the target materials are first
spin-coated  on  a  temporary  substrate.  Subsequently,  a
structured elastomeric stamp is applied on the target ma-
terial  with pressure and/or heat  to  pick up the material.
Finally,  the  retrieved  material  is  transfer-printed  on  the
desired  substrate.  This  technique  can  be  employed  for
large-area  patterning  by  repeating  the  aforementioned
stamping  process.  The  adhesion  strength  between  the
target  material  and  the  stamp or  the  receiving  substrate
must be carefully controlled to maximize the print yield
and quality.

Solution-state  functional  elastomeric  materials  can
also  be  deposited  and  patterned  using  inkjet  printing.
The “ink” is dropped on to the target substrate through a
nozzle in the desired pattern (Fig. 4(d))156. The width and
spacing  of  the  pattern  can  be  controlled  by  modulating
the  nozzle  size,  ink  outlet  power,  nozzle  speed,  and  ink
viscosity.  Compared  to  other  methods  such  as  screen
printing or transfer printing, the inkjet printing method
minimizes material wastage.

Owing to  the  recent  advances  in  3D  printing  pro-
cesses, they can also be applied to the deposition and pat-
terning of intrinsically stretchable materials (Fig. 4(e))157.
In 3D printing, the first layer of a solution-state material
is printed on a substrate. After the first layer solidifies, a
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second layer can be printed on top of the first layer. This
process can be repeated to fabricate a 3D structure (Fig.
4(f))158. The target material must solidify quickly, and the
orthogonality  of  the  solvent  between the  adjacent  layers
must be considered. Firm and facile interlayer bonding is
also vital to build a reliable 3D structure.

Light-supported patterning methods  can also  be  used
to pattern  and  fabricate  intrinsically  stretchable  materi-
als.  The  laser-cutting  technique  can  pattern  the  target
material  using a high-energy laser ablation process (Fig.

4(g))159. The  target  material  can  be  rapidly  sliced,  en-
graved,  or  marked  with  a  high  resolution  (Fig. 4(h) and
4(i))160.  However,  flammable  or  heat-resistant  materials
cannot be used with this patterning method. In addition,
some  materials  exhibit  swelling  under  the  high
temperature.

Photolithography is  a  representative  patterning  pro-
cess that transfers an original pattern of a photomask on
to a target  material.  Notably,  photolithography provides
a  remarkably  high  resolution.  However,  a  photoresist
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should be coated on the target  surface before ultraviolet
exposure,  which  is  then  followed  by  chemical  and/or
physical  etching  processes  (Fig. 4(j))161. These  proced-
ures  often  cannot  be  applied  to  intrinsically  stretchable
materials that contain elastic matrices.  Therefore,  meth-
ods have been developed wherein the filler materials are
first patterned using photolithography and then embed-
ded  in  the  elastomeric  matrix  (Fig. 4(k) and 4(l))162.
Therefore,  elastomeric  composites  with  various  desired
patterns  of  the  functional  fillers  can  be  fabricated  using
this method.

In Section Intrinsically stretchable electronic materials,
various examples  of  the  intrinsically  stretchable  func-
tional  composites  have  been  reviewed,  with  a  focus  on
the materials.  These  composites  incorporate  the  con-
ducting and semiconducting fillers with diverse geomet-
rical  dimensions/shapes  and  employ  various  strategies
for  enhancing  the  dispersion/distribution  of  the  filler
materials in the elastomer matrix, which lead to the im-
provement  of  the  mechanical,  electrical,  and  optical
properties  of  the  composites.  In  addition,  the  recently
developed techniques for the facile processing of the in-
trinsically  stretchable  functional  composites  have  been
briefly  discussed.  The  application  of  these  intrinsically
stretchable functional  composites  as  key  material  com-
ponents  of  the  intrinsically  stretchable  optoelectronic
devices will be reviewed in the following section. 

Components of intrinsically stretchable
optoelectronic devices
The fabrication of  intrinsically  stretchable  optoelectron-
ic  devices  is  typically  involved  with  bottom-up  material
preparation  processes,  wherein  intrinsically  stretchable
materials  are  prepared  and  used  as  components  of  the
optoelectronic  devices.  Although  various  components
are  employed  for  different  types  of  optoelectronic
devices, they can be classified into three main categories
based  on  their  purposes:  1)  active  layers,  either  photo-
emissive or photo-absorptive,  which are used to achieve
the  desired  optoelectronic  properties;  2)  charge-trans-
port  layers,  which  provide  efficient  charge  transfer
between the electrodes and the active layers; and 3) elec-
trically  conductive  layers,  which  are  used  as  electrodes
and interconnects.  In this section, we review various in-
trinsically stretchable  device  components  for  intrinsic-
ally stretchable optoelectronic devices based on this clas-
sification. 

Intrinsically stretchable active layers
Intrinsically  stretchable  active  layers  either  emit  light
through electroluminescence or absorb photon energy to
detect external light despite severe mechanical deforma-
tion. They are usually composed of an elastic matrix and
emissive/photo-absorbing  nanomaterials.  The  elastic
matrix prevents crack generation and propagation due to
mechanical  deformation.  The  materials  and  internal
structure of the elastic matrix have a significant effect on
the  mechanical  stability  of  the  composite.  The
emissive/photo-absorbing nanomaterials  primarily  de-
termine  the  emissive/photo-absorption  spectrum  and
band-gap energy of the composite. Therefore, the mech-
anical  and  optoelectrical  properties  of  the  intrinsically
stretchable active layers depend significantly on the types
and internal/intramolecular structures of the elastic mat-
rix and emissive/photo-absorbing nanomaterials.

In an intrinsically  stretchable  light-emissive  layer,  the
injected electrons and holes are recombined to emit light
through electroluminescence, even under mechanical de-
formations.  Zhou  et  al.  developed  an  intrinsically
stretchable light emitting layer by mixing PeNCs encap-
sulated by ionic ligands with SEBS (Fig. 5(a))163. A freest-
anding stretchable  light-emitting  composite  was  pre-
pared by spin-coating this on an octadecyltrimethoxysili-
ane (OTMS)-treated  Si  substrate,  followed  by  evapora-
tion of the solvent and peeling off of the film. The result-
ing PeNC/SEBS  film  exhibited  good  tolerance  to  mech-
anical deformations and external humidity. The photolu-
minescence (PL)  intensity  of  the  PeNC/SEBS  film  de-
creased slightly  as  the  film stretched from zero to  100%
(Fig. 5(b)).  Nevertheless,  when the mechanical  strain on
the PeNC/SEBS film was released, the PL intensity of the
film almost recovered to its initial level. Furthermore, the
PeNC/SEBS  film  maintained  its  high  PL  quantum  yield
(> 60%) and emissive spectrum even at a relative humid-
ity of > 70% (Fig. 5(c)).

Bade et al. fabricated an intrinsically stretchable emit-
ting  layer  using  a  perovskite-polymer  composite  (Fig.
5(d))152. A perovskite precursor solution was mixed with
PEO and spin-coated on a substrate.  As the spin-coated
film was  heated,  the  perovskite  precursor  solution  crys-
tallized,  forming  micro-sized  perovskite  crystals  inside
the PEO matrix (left frame of Fig. 5(e)). The PEO matrix
in  the  composite  dissipates  external  mechanical  strain,
and the  perovskite-polymer  composite  film  can  with-
stand an external strain of up to 30%, without any crack
initiation  (middle  frame  of Fig. 5(e)).  The  PEO  matrix
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begins  to  crack  under  an  external  strain  of  50%  (right
frame of Fig. 5(e)), resulting in a slight decrease in the PL
intensity of the perovskite-polymer composite (Fig. 5(f)).

Photo-absorbing layers can absorb photon energy and
form electron-hole pairs to generate electrical energy. In-
trinsically stretchable  photo-absorbing  layers  are  gener-
ally fabricated using a non-fullerene acceptor and a plas-
ticizer,  which  increases  the  mechanical  stability  of  the
composite. Kim et al. developed a highly-durable photo-
absorbing layer by using a non-fullerene acceptor164. Spe-
cifically,  a  mixture  of  poly[4,8-bis(5-(2-ethylhexyl)

thiophen-2-yl)benzo[1,2-b:4,5-b0]dithiophene-alt-1,3-
bis(thiophen-2-yl)-5-(2-hexyldecyl)-4H-thieno[3,4-
c]pyrrole-4,6(5H)-dione]  (PBDTTTPD)  and  poly
[[N,N0-bis(2-hexyldecyl)-naphthalene-1,4,5,8-bis(dicar-
boximide)-2,6-diyl]-alt-5,50-thiophene]  (P(NDI2HD-
T)), which  acted  as  the  electron  donor  and  electron  ac-
ceptor,  respectively,  were  used  in  the  photo-absorbing
layer.  Unlike  fullerene-based  acceptors,  a  non-fullerene
acceptor  like  naphthalene  diimide-based  copolymer
P(NDI2HD-T) exhibits  an  extended  π-conjugated  in-
ternal  structure  and  intramolecular  π-π  stacking
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interactions, providing strong mechanical stability to the
photo-absorbing  layers.  Owing  to  the  internal/in-
tramolecular  structures  of  P(NDI2HD-T),  no  cracks
were formed in the PBDTTTPD:P(NDI2HD-T) blended
film  even  under  a  mechanical  elongation  of  6.3%  (Fig.
5(g)).  Compared  to  PBDTTTPD  films  with  a  fullerene-
based acceptor,  the PBDTTTPD:P(NDI2HD-T) blended
film had a relatively low elastic modulus of 0.43 GPa and
a  high  elongation  of  up  to  7.16%  (Fig. 5(h)). Further-
more,  the  toughness  of  the  PBDTTTPD:P(NDI2HD-T)
blended  film  was  also  significantly  higher  than  that  of
PBDTTTPD  films  with  fullerene-based  acceptors
(Fig. 5(i)).

Wang et  al.  fabricated a  photo-absorbing layer  by  in-
corporating a trimethylsiloxy terminated PDMS additive
into  a  mixture  of  a  polymer  donor  and  a  non-fullerene
acceptor165.  The  polymer  donor  was  poly{4,8-bis[5-(2-
ethylhexyl)thiophen-2-yl]benzo[1,2-b:4,5-b′]-dith-
iophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)
carbonyl]-thieno[3,4-b]thiophene-4,6-diyl}  (PTB7-Th),
the  non-fullerene  acceptor  was  2,2′-((2Z,2′Z)-(((4,4,9,9-
tetrakis(4-hexylphenyl)-4,9-dihydro-sindaceno[1,2-
b:5,6-b′]dithiophene-2,7-diyl)bis(4-((2-ethylhexyl)
oxy)thiophene-5,2-diyl))bis  (methanylylidene))  bis  (5,6-
difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))
dimalononitrile (IEICO-4F), and the PDMS additive ac-
ted as the plasticizer.  The three compounds were mixed
together  and  spin-coated  on  top  of  an  OTMS-treated
glass  substrate,  and  the  film  was  peeled  off  (Fig. 5(j)).
Without the PDMS, the PTB7-Th in the blended film ex-
hibits strong  interchain  interaction  between  each  poly-
mer chain,  resulting  in  a  small  free  volume in  the  blen-
ded  film  (Fig. 5(k)). The  incorporation  of  PDMS  in-
creases the free volume between the polymer chains ow-
ing  to  the  plasticization  of  the  film.  The  blended  film
with a small amount of PDMS had an elastic modulus of
0.99  GPa,  and  crack  generation  was  hindered  under  a
mechanical strain of up to 20% (Fig. 5(l)). 

Intrinsically stretchable charge-transport layers
Charge transport  layers  are  placed  between  the  elec-
trodes  and  the  active  layer  of  an  optoelectronic  device.
They enable charge transport by aligning the band struc-
tures. Generally,  intrinsically  stretchable  charge  trans-
port  layers  are  fabricated  by  incorporating  additives  to
alter  the  molecular  interactions  of  the  polymeric  charge
transport  layers.  Kim  et  al.  fabricated  intrinsically
stretchable hole transport layers by incorporating a non-
ionic  surfactant  into  PEDOT:PSS  and  inducing  strong

phase  separation  (Fig. 6(a))109. Pristine  PEDOT:PSS  ex-
hibits strong  electrostatic  interaction  between  the  PE-
DOT chains, which form coil-like structures, resulting in
a  relatively  high  Young’s  modulus  (approximately  100
MPa)  and  a  low  crack  onset  strain  (<  10%)  (Fig. 6(b)).
The  addition  of  Triton  X  –  a  non-ionic  surfactant  –
screens  the  electrostatic  interaction  of  PEDOT:PSS  and
induces  a  strong  phase  separation.  Consequently,  the
structure  of  the  PEDOT  chains  in  PEDOT:PSS  changes
from a  coil-like  structure  to  a  linear  structure,  as  con-
firmed by Raman spectroscopy (Fig. 6(c)). Owing to this
linear structure, the Triton X containing PEDOT:PSS has
a  Young’s  modulus  of  2.5  MPa and a  crack onset  strain
of  over  160%  (Fig. 6(b), 6(d),  and 6(e)).  Thus,  it  can
withstand  severe  mechanical  deformation  and  serve  as
an intrinsically stretchable charge transport layer.

Hsieh et al. developed an intrinsically stretchable elec-
tron  transport  layer  by  mixing  nitrile  butadiene  rubber
(NBR)  with  poly[(9,9-bis(3′-(N,N-dimethylamino)pro-
pyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN)166.
When  NBR  is  mixed  with  PFN,  the  carboxyl  group  in
NBR protonates and chemically interacts with the amine
groups in PFN (Fig. 6(f)). The interactions between NBR
and PFN significantly increase the ductility of the hybrid
NBR/PFN film. Consequently, it can withstand mechan-
ical  deformation  under  an  external  strain  of  up  to  60%
(Fig. 6(g)). Furthermore,  the  protonation  of  PFN  in-
creases  its  solubility  in  a  polar  solvent  and  modifies  its
work  function,  thereby  improving  the  charge  transport
properties of the hybrid NBR/PFN film (Fig. 6(h)).

In  a  recent  report  by  Matsuhisa  et  al,  detailed
strategies  for  developing the stretchable  anode,  cathode,
and current collecting layer have been reported, of which
the mechanical property, work function, and processabil-
ity of  the  stretchable  films  could  be  deliberately  con-
trolled  for  the  fabrication of  the  intrinsically  stretchable
device  with  desired  electrical  and  mechanical
properties167.  For  the  stretchable  anode,  a  blend  film  of
PEDOT:PSS, fluorosurfactant (FS30), and a zwitterion 4-
(3-ethyl-1-imidazolio)−1-butanesulfonate  (ION  E)  was
developed.  FS30  was  incorporated  to  facilitate  surface
wetting  of  the  solution,  and  ION  E  served  as  both  a
stretchability  enhancer  and  a  work  function  changer.
The  blend  film exhibited  the  crack-on-set  strain  at  93%
and a work function of 5.23 eV, which was controlled to
form  ohmic  contact  with  the  semiconductor,  3,6-
di(thiophen-2-yl)diketopyrrolo[3,4-c]pyrrole-1,4-dione-
alt-1,2-dithienylethene  (DPP4T-oSi10).  For  the
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stretchable cathode, a blend film of PEDOT:PSS, ION E,
and  a  high-molecular-weight  PSSNa  (molar  weight  =  1
MDa)  was  developed.  The  PSSNa  was  incorporated  to
tune  the  viscosity  of  the  blended  solution  for  stencil
printing.  The  surface  of  the  deposited  stretchable  film
was  modified  using  polyethylenimine  ethoxylated
(PEIE),  which  lowered  the  work  function  to  4.73  eV  to
form  Schottky  contact  with  DPP4T-oSi10.  Finally,  a
stretchable composite using Ag NWs and tough thermo-
plastic PU (TPU) was developed for the stretchable cur-
rent collector.  The  importance  of  the  mechanical  prop-
erty of  the  elastomeric  matrix  was  verified  by  embed-
ding  Ag  NWs  in  various  elastomers  such  as  soft  SEBS,
tough  SEBS,  soft  TPU,  and  tough  TPU.  The  stretching
test results revealed that only the tough TPU-based com-
posite exhibited no crack formation at 50% strain, which
was critical to the device performance. 

Intrinsically stretchable electrodes and
interconnects
The  intrinsically  stretchable  optoelectronic  devices  emit

light under an applied electrical bias (e.g.,  light emitting
diode), transform light energy into electrical energy (e.g.,
photovoltaic device), or respond to light sources of vari-
ous  wavelengths  with  photocurrent  generation  (e.g.,
photodetector). It  is  important  that  light  can  be  effect-
ively  emitted  or  garnered  from  the  photoactive  layers
that  are  interfaced  with  the  electrodes,  and  thus  such
electrodes need to simultaneously exhibit  key properties
including  high  optical  transparency,  high  mechanical
stability, and high conductivity. In general, these proper-
ties can be manipulated by controlling the amount of the
electronic  fillers  added  to  the  elastomeric  matrices.  The
general  material  guideline  and  consequent  electrode
properties  are  as  follows.  Higher  amounts  of  the  fillers
result  in  the  improved  electrical  performance,  however,
in sacrifice  of  the  optical  transmittance  and  stretchabil-
ity.  Lower  amounts  of  the  fillers  result  in  the  improved
transparency of  the  composite,  but  the  electrical  per-
formance  as  well  as  the  mechanical  performance  might
be sacrificed owing to the easy disconnection of the per-
colation networks of the low-density fillers. Therefore, in
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the following,  several  strategies  for  optimizing  the  in-
trinsically  stretchable  electrodes  and  interconnects  will
be  reviewed,  in  terms  of  materials  used  and  fabrication
methods.

Yu et al. developed transparent SWCNT-based elasto-
meric  composite  electrodes,  which  were  applied  to
poly(tert-butyl acrylate) (PtBA)-based LECs168. The SW-
CNT-polymer  composite  electrodes  were  prepared
through photopolymerization of a liquid-state monomer
during  its  penetration  into  a  porous  SWCNT  film  on  a
glass substrate,  and  were  then  peeled  off  from  the  sub-
strate. As shown in the atomic force microscopy image in
Fig. 7(a),  the  SWCNT  networks  were  well-percolated  in
the elastomeric matrix of PtBA, with exceptional surface
smoothness  (average  surface  roughness  below  10  nm).
Owing to their high optical transmittance (Fig. 7(b)) and
stable electrical conductance (Fig. 7(c) and 7(d)) up to a
strain  of  50%,  these  electrodes  were  applied  as  both  the
anode  and  the  cathode  in  a  stretchable  polymer-based
LEC,  which  comprised  of  a  polymeric  emissive  layer
sandwiched  between  the  stretchable  electrodes.  The  EL
properties  of  the  fabricated  device  remained  unchanged
up to a strain of 45%.

Wang  et  al.  fabricated  stretchable  and  transparent
electrodes using welded networks of Cu NWs embedded
on  the  surface  of  pre-strained  Ecoflex169.  The  electrodes
were used in stretchable organic solar cells and commer-
cial  LEDs.  The  fabrication  process  was  as  follows.  First,
thin  films  of  Cu  NW  networks  were  prepared  through
vacuum filtration.  The  resulting  films  were  treated  with
hydrogen  plasma  for  20  min  to  remove  the  organic
residues and  surface  oxides,  while  simultaneously  weld-
ing the Cu NWs. This welding method can help achieve
high  stretchability  and  conductivity,  by  preventing  the
sliding  of  the  NWs  during  repetitive  deformations.  As
such, no  debonding  or  breakage  of  the  Cu  NWs  oc-
curred  during  stretching.  These  durable  Cu  NW-based
electrodes  can  replace  indium  tin  oxide  (ITO)  as  the
transparent electrode in solar cells, and can be used as in-
terconnects in commercial LEDs under various deforma-
tion modes.

Dauzon et  al.  systematically investigated the electrical
and mechanical performances of the intrinsically stretch-
able  electrodes  that  were  fabricated  by  mixing
PEDOT:PSS,  PEO, and Zonyl170.  The 3D matrix of  PEO
provides  high  mechanical  recoverability  and  elasticity,
and the incorporation of Zonyl improves the ductility of
PEDOT:PSS.  They  revealed  that  the  inclusion  of  5  wt%

of PEO and 1 wt% of Zonyl optimized the electrode per-
formance:  no  crack  formation  occurred  till  an  applied
strain  of  80%  (Fig. 7(e)),  minimized  resistance  changes
occurred  at  an  applied  strain  of  80% (Fig. 7(f)),  and the
electrodes exhibited high stability under a cyclic stretch-
ing  up  to  a  strain  of  80%  (Fig. 7(g)).  The  fabricated
stretchable electrodes also exhibited a high optical trans-
mittance of approximately 95% at 550 nm. The practical
feasibility  of  these  stretchable  electrodes  was  verified  by
fabricating solar cells, which had a power conversion ef-
ficiency of 12.5%.

Ionic conductors (or so called electrolytes), which use
ions as current carriers, have also been mixed with elast-
omers to simultaneously achieve high transparency, con-
ductivity,  and  elasticity.  Shi  et  al  reported  on  the  facile
fabrication of an ionic conducting elastomer (ICE) by us-
ing  an  instant  photocuring  process.  Specifically,  lithium
bis(trifluoromethane sulfonimide)  (LiTFSI),  butyl  ac-
rylate  (BA),  polyethyleneglycol  diacrylate  (PEGDA),  1-
hydroxycyclohexyl  phenyl  ketone  (photo-initiator  184)
were  used  as  the  electrolyte  salt,  monomer,  crosslinker,
and  photo-initiator,  respectively.  Due  to  its  solvent-free
nature, the ICE, which was produced by curing the mix-
ture solution injected onto a glass mold coated with a re-
lease film with ultraviolet light for 10 minutes, exhibited
excellent  air  stability.  The ICE was also not corrosive to
common  metal  electrodes  since  it  does  not  contain  any
water  nor  absorb  any  moisture  from  the  air.  A  1-mm
thick  sample  displayed  a  transmittance  of  92.4%  at  550
nm, a  conductivity  of  1.27 × 10–7 S/cm, and stretchabil-
ity with an elongation at break of approximately 1100%.
Moreover,  the  decomposition  voltage  of  the  developed
ICE  was  several  times  higher  than  that  of  the  hydrogel
electrolytes, making  the  ICE an  appealing  material  can-
didate for the stretchable and transparent electrode.

The  intrinsically  stretchable  functional  composites
have  been  applied  as  stretchable  active  layers,  charge
transport layers,  and electrodes to construct  the intrins-
ically  stretchable  optoelectronic  devices.  Whereas  each
device component  of  the  intrinsically  stretchable  opto-
electronic  devices  has  been  reviewed  in  Section  4  in
terms of the performance metrics and fabrication meth-
ods, the details of the various intrinsically stretchable op-
toelectronic  devices  (Section Intrinsically stretchable  op-
toelectronic  devices)  and optoelectronic  systems (Section
Intrinsically stretchable optoelectronic systems) will be re-
viewed in the following sections. 
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Intrinsically stretchable optoelectronic
devices
As  discussed  in  Section Components  of  intrinsically
stretchable  optoelectronic  devices, the  bottom-up  ap-
proach  is  generally  adopted  to  fabricate  intrinsically
stretchable optoelectronic devices,  wherein the constitu-
ent materials  are  first  prepared  separately  and  then  as-
sembled together  to  construct  the  target  devices.  Con-
sequently, compatibility between the constituent materi-
als  is  important,  especially  in  terms  of  their  processing
and materials properties. The detailed working mechan-
isms  of  various  optoelectronic  devices  can  be  readily
found elsewhere171−173.  In this  section,  we review various
intrinsically  stretchable  optoelectronic  devices,  such  as
LECs, LEDs,  PDs,  and  PVs,  with  a  focus  on  their  con-
stituent materials and processing methods. 

Intrinsically stretchable LECs
Intrinsically stretchable  light-emitting  devices  have  sev-
eral  next-generation  applications  such  as  foldable/ex-
pandable displays, epidermal biomedical devices, and de-
formable  mobile  electronic  devices.  As  the  constituent
elements of the devices must be intrinsically stretchable,
LECs, which have simpler structures compared to LEDs,
have  been  investigated  for  application  to  stretchable

light-emitting devices. The key challenge has been to sus-
tain the light-emitting performances such as emission in-
tensity under large strains and maintain their functional-
ities  after  large  strain cycles.  Thus,  research efforts  have
been  focused  on  developing  stretchable  conductors  and
EL layers with high mechanical stability, and their integ-
ration strategies for enhanced durability.

Liang et al. fabricated elastomeric polymer light-emit-
ting  devices  using  transparent  and  stretchable  Ag  NW-
poly(urethane acrylate) (PUA) composite electrodes and
a  polymer  light-emitting  electrochemical  cell174.  The
polymer light-emitting electrochemical cell comprises of
a blend  of  a  yellow  light-emitting  polymer,  PEO,  eth-
oxylated trimethylolpropanetriacrylate,  and  lithium  tri-
fuoromethane  sulphonate.  The  device  had  a  simple
structure with the polymer light-emitting electrochemic-
al cell  layer  sandwiched  between  the  composite  elec-
trodes  to  form  an  in  situ  light-emitting  PIN  junction,
thereby  enabling  efficient  hole  and  electron  injection
from the Ag NWs. By optimizing the ratio of siliconized
urethane acrylate  oligomer  (UA)  and  ethoxylated  bi-
sphenol A  dimethacrylate  (EBA),  they  obtained  stretch-
able composite  electrodes  with  excellent  optical  trans-
mittance and  stretchability,  providing  stable  perform-
ance under a strain of up to 120%. The scalability of the
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materials and  the  fabrication  technique  were  demon-
strated by developing a passive matrix display with a 5 ×
5  pixel  array,  which  exhibited  stable  operation  under
stretching.

Larson  et  al.  fabricated  LEC  with  an  unprecedented
stretchability of  approximately 500%175. This  hyperelast-
ic  LEC  consisted  of  a  ZnS  phosphor-doped  Ecoflex-
based stretchable  EL  dielectric  layer  that  was  sand-
wiched  between  stretchable  hydrogel  electrodes  (Fig.
8(a)). The electrodes were fabricated by dissolving N,N’’-
methylenebisacrylamide  crosslinker,  polyacrylamide
(PAM), and  acrylamide  monomer  in  aqueous  LiCl,  fol-
lowed by sequential  casting on an Ecoflex substrate  and
curing using  ultraviolet  irradiation.  The  electrodes  ex-
hibited high  stretchability  and  transparency.  Con-
sequently,  the  LEC  exhibited  intrinsic  stretchability,  as
confirmed by the stress-stretch curves (Fig. 8(b)) and rel-
ative illuminance  measurements  under  uniaxial  stretch-
ing (Fig. 8(c)). After encapsulating the device in Ecoflex,
the fabricated LEC was stretched by nearly 500% without
device failures (Fig. 8(d)).  The practical  feasibility of the
stretchable  LEC  display  was  successfully  demonstrated
by  developing  multipixel  displays  (Fig. 8(e))  and  a  bio-
inspired skin display (Fig. 8(f)). 

Intrinsically stretchable LEDs
Whereas LECs have a rather simple structure of  a light-
emitting dielectric  layer  sandwiched  between  two  elec-
trodes,  LEDs  require  additional  charge  transport  layers

such as hole and electron injection layers. Consequently,
the  fabrication  of  intrinsically  stretchable  LEDs  is  more
complex,  requiring  the  development  of  intrinsically
stretchable  charge  transport  layers  and  their  integration
with  the  remaining  layers.  As  discussed  in  Section In-
trinsically  stretchable  charge-transport  layers, few  re-
search efforts  have  been  devoted  toward  the  develop-
ment of stretchable charge transport layers, and research
on  intrinsically  stretchable  charge  transport  layers  and
their integration  in  stretchable  devices  is  still  in  its  in-
fancy.  Nevertheless,  several  attempts have been made to
develop intrinsically stretchable LEDs due to the advant-
ages of LEDs such as low operation voltages, high lumin-
ance, and  compatibility  with  the  existing  display  in-
dustry.  These  approaches  are  reviewed  in  this  section,
with  a  focus  on  the  materials  used  and  their
mechanical/optoelectronic performances.

Liang  et  al.  fabricated  fully  stretchable  polymer  light-
emitting  diodes  (PLEDs)176. They  comprised  of  stretch-
able  transparent  conductive  electrodes  (TCEs)  with
graphene oxide (GO)-soldered Ag NW networks in PUA
as  both  the  cathode  and  the  anode,  polyethylenimine
(PEI)  as  the  electron  transporting  layer  (ETL),
PEDOT:PSS  as  the  hole  transporting  layer  (HTL),  and
1,3-bis[(4-tert-butylphenyl)-1,3,4-oxidiazolyl]phenylene
(OXD-7)  mixed  with  a  white-light-emitting  polymer  as
the  emission  layer  (EML)  (Fig. 9(a)).  The  thicknesses  of
the  HTL,  ETL,  and  EML  were  optimized  for  the  best
mechanical  and  optoelectronic  performances,  resulting
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in  a  stretchability  of  130% (Fig. 9(b))  and an endurance
of up to 100 stretching cycles under a linear strain of 40%
(Fig. 9(c)). Recently, Jao et al. fabricated stretchable blue
LEDs  using  a  poly[2,7-(9,9-dioctylfluorene)]-block-
poly(isoprene)  (PF-b-PI)  copolymer  as  the  stretchable
EML. The effect of the PF/PI mixing ratios on the photo-
luminescent and  mechanical  properties  of  the  stretch-
able  LEDs  was  systematically  investigated  (Fig. 9(d))177.
Using  solution-based  processes,  stretchable  LEDs  were
fabricated on a PU substrate (PEDOT:PSS/PEO and Ein-
Ga were used as the anode and cathode, respectively), ex-

hibiting a stretchability of 150% (Fig. 9(e)). The results of
cyclic stretching tests revealed that the LEDs could stably
maintain their  optoelectronic  performance  under  a  lin-
ear strain of 20% (Fig. 9(f)).

Kim  et  al.  fabricated  intrinsically  stretchable  organic
light-emitting diodes (OLEDs), wherein all the constitu-
ent materials were modified with small-molecule surfact-
ants to impart stretchability (Fig. 9(g))109. For the EML, a
commercial  emissive  material  Super  Yellow  (SY)  was
mixed  with  Triton  X,  which  increased  the  stretchability
of SY by reducing the number of interchain interactions.
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For the HTL, PEDOT:PSS was mixed with Triton X, and
the  resulting  phase  separation  into  PEDOT-rich  and
PSS-rich  domains  improved  stretchability.  For  the  ETL,
doped polyethyleneimine ethoxylated (d-PEIE) and ZnO
NPs  were  used;  d-PEIE  significantly  lowered  the  work
function  and  imparted  stretchability  to  the  composite.
Finally,  Ag  NW  networks  were  used  as  the  anodes  and
cathodes;  Ag  NWs  embedded  in  the  PDMS  matrix
served  as  the  anode,  and  Ag  NWs  that  were  directly
coated on the stretchable ETL served as the cathode. The
resulting stretchable OLED had a turn-on voltage of  8.3
V  with  a  maximum  luminescence  of  2500  cd/m,  which
remains  the  highest  reported  value  for  an  intrinsically
stretchable  light-emitting  devices  (Fig. 9(h)). Further-
more,  the OLED maintained its  excellent optoelectronic
properties up to an applied strain of 40% (Fig. 9(i)), en-
during 200 stretching cycles  without any degradation in
its  luminescent  properties  (Fig. 9(j)). Notably,  its  stabil-
ity  remained  unaffected  even  after  it  was  poked  with  a
ballpoint  pen  with  a  tip  radius  of  0.7  mm  (Fig. 9(k)).
Therefore, this  stretchable  OLED  could  be  used  in  de-
formable displays. 

Intrinsically stretchable PDs and PVs
Intrinsically  stretchable  PDs,  such  as  photoresistors,
photodiodes,  and  phototransistors,  convert  light  signals
into electrical signals, whereby the absorbed photons are
converted into  photocurrent  or  photovoltage.  Conven-
tional stretchable PDs utilize inorganic photo-active ma-
terials  for  high  optoelectronic  performances  and
wavy/stretchable  interconnects  to  effectively  protect  the
active  device  area  against  external  strains.  However,  the
device  density  and  resolution  are  sacrificed,  even  more
so  upon  the  exertion  of  strain  as  the  active  devices  are
separated  further  apart.  On  the  contrary,  intrinsically
stretchable  PDs  can  be  built  with  substantially  higher
device density and resolution. This is critical for practic-
al  applications  such  as  artificial  eye  cameras.  The  key
challenge  has  been  achieving  both  high  photoresponse
sensitivity and mechanical durability at the same time.

Wang et al. fabricated a stretchable transparent photo-
detector  using  stretchable  composites  with  percolating
networks of conducting and photosensitive NWs178.  The
photodetector  comprised  of  Ag  NW  electrodes,  a
Zn2SnO4 NW photo-absorbing layer,  and a PDMS mat-
rix.  It  was  fabricated  by  sequentially  spray-coating  Ag
NWs  and  Zn2SnO4 NWs  on  a  glass  substrate,  using
shadow  masks  to  pattern  the  electrodes  and  photo-ab-

sorbing  layer,  respectively.  Subsequently,  Zonyl-modi-
fied  PDMS  was  poured  onto  the  glass  substrate  and
cured.  Zonyl  aids  in  the  formation  of  strong  chemical
bonds between the PDMS matrix and the NWs, forming
a percolation network of NWs inside the PDMS. Finally,
the photodetector  was  delaminated  from  the  glass  sub-
strate (Fig. 10(a)). The resulting photodetector exhibited
good detectivity and responsivity to ultraviolet light (Fig.
10(b)),  with a  fast  response  and reset  times  of  0.8  s  and
~3 s,  respectively. Furthermore, it  withstood an external
stain  of  up  to  50%  (Fig. 10(c)) and  had  stable  photore-
sponses under various applied strain modes (Fig. 10(d)).

Yan  et  al.  developed  an  intrinsically  stretchable  NW-
based photodetector  by  embedding  NW-based  elec-
trodes  and  a  photo-absorbing  layer  in  PDMS179.  The
electrodes  were  Ag NWs and the  photo-absorbing  layer
was composed of ZnO NWs. The photodetector was fab-
ricated by  sequentially  pouring  Ag  and  ZnO  NW  solu-
tions  onto  a  polycarbonate  filter  membrane  through
PDMS filtration masks,  followed by pouring and curing
PDMS  on  top  of  the  patterned  NW  films.  Finally,  the
cured PDMS was peeled away from the membrane to ob-
tain an  intrinsically  stretchable  NW-based  photodetect-
or  array  (Fig. 10(e)).  The  contact  barrier  and  switching
speed of the photodetector are dependent on the oxygen
concentration of the ZnO NWs, as the oxygen molecules
adsorbed on the surface of the NWs contribute to higher
performances.  When  the  photodetector  is  stretched,
these oxygen molecules detach from the NW surface ow-
ing to the packing of PDMS polymer chains (Fig. 10(f)).
Thus,  when the  photodetector  array  was  stretched from
zero to 100%, the on/off ratio of the photodetector array
decreased  from  188  (strain  at  zero)  to  116  (strain  =
100%) (Fig. 10(g)), and its response time increased from
30.3 s to 46.5 s (Fig. 10(h)).

More recently,  intrinsically  stretchable  PDs  employ-
ing  highly  crystalline  perovskite  quantum  dot  (PQD)
films  with  unique  morphology  have  been  reported180.
The  generation  of  the  unique  morphology  in  the  PQD
film was the key to achieving the intrinsic stretchability,
although  the  film  was  originally  mechanically-suscept-
ible. Namely, a PQD film with a worm-like morphology
could be  made  by  depositing  the  film  on  a  PDMS  sub-
strate whose surface energy was modified to 15.5 mJ/m2

via the surface hydroxylation treatment. Despite the dif-
ferent  morphology,  the  worm-like  PQD  film  exhibited
almost identical  crystallinity  as  compared  to  the  tradi-
tional  fly-like  PQD  film  obtained  on  a  Si  wafer  by  spin
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coating process. The worm-like PQD film also exhibited
a  significantly  smooth  surface  with  a  film  roughness  of
6.55  nm,  owing  to  the  formation  of  the  homogeneous
and compact nucleation sites on the surface-energy-con-
trolled  PDMS  surface.  This  enabled  even  coverage  and
excellent interfacial  contact  onto  an  organic  semicon-
ductor  layer  after  its  transfer  from  the  PDMS  substrate
for the fabrication of  the intrinsically stretchable photo-

transistor.  The  fabricated  phototransistor  showed  high
detection  performance  to  X-ray  (detection  limit  of  79
nGy/s)  and  ultraviolet  (photosensitivity  of  5  ×  106 and
detectable  light  intensity  of  50  nW/cm2). The  intrinsic-
ally stretchable phototransistor, which consists of a SEBS
substrate, carbon-nanotube-network S/D/G electrodes, a
SEBS  gate  dielectric  layer,  a  photosensitive  hetero-
junction  of  the  worm-like  PQD  film  and  polymeric
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Fig. 10 | PDs and PVs with intrinsic stretchability. (a) Photograph of the intrinsically stretchable PD based on Zn2SnO4 NW/PDMS composite

and  Ag  NW  electrodes.  (b)  Current-voltage  characteristic  of  the  PD.  (c)  Photographs  of  the  PD  during  stretching  with  different  strains.  (d)

Photoresponses of the PD with respect to applied strains with different amounts. (e) Photograph of the intrinsically stretchable PD based on ZnO

NW/PDMS composite and Ag NWs. (f)  Schematic  showing the effect  of  stretching on the NW surface.  Changes in  (g)  on/off  ratio  and (h) re-

sponse time of the PD array at different stretching strains. (i) Structure of intrinsically stretchable solar cell based on SWCNT/Ag NW-PUA com-

posite  electrodes  and  (PTB7)/PC71BM  photo-absorbing  layer.  (j)  Photographs  of  the  solar  cell  before  and  during  stretching.  Stability  of  the

stretchable solar cell in terms of (k) J-V characteristics and (l) PCE during stretching. (m) Structure of the intrinsically stretchable solar cell based

on Ag NW/TPU composite electrodes and PTB7-Th:IEICO-4F heterojunction film. (n) Schematic showing the adhesion of photo-absorbing layer

and HTL. (o) Optical image of the photo-absorbing layer under 20% strain. (p) PCE of the solar cell during stretching. Figure reproduced with per-

mission from: (a–d) ref.178,  The Royal Society of Chemistry; (e–h) ref.179,  John Wiley and Sons; (i–l) ref.180,  American Chemical Society; (m–p)

ref.165, John Wiley and Sons.
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semiconductor  blend  of  poly(3,6-di(2-thien-5-yl)-2,5-
di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione)thi-
eno[3,2-b]thiophene)/SEBS,  exhibited  high  mechanical
tolerance (insignificant  changes  in  the  device  perform-
ance by applying external strains up to 100%) in the par-
allel and perpendicular direction to the charge transport.

The intrinsically  stretchable  solar  cells  as  power  sup-
ply devices  with unconventional  form factors  have been
investigated by numerous scholars. Similar to the intrins-
ically stretchable LEDs, the complex multi-layered struc-
ture of the solar cells has been a huge hurdle for the de-
velopment  of  high-performance  intrinsically  stretchable
devices. Here, the key challenge has been achieving high
power conversion  efficiency  (PCE)  while  imparting  in-
trinsic  stretchability  to  the  different  device  constituent
layers  including  charge  transport  layers,  electrodes,  and
photo-active materials. Li et al. designed a solid-state in-
trinsically  stretchable  polymer  solar  cell  composed  of
SWCNT/Ag  NW  bi-layered  electrodes  and  a  blend
film  of  poly(thieno[3,4-b]-thiophene/benzodithiophene)
(PTB7)/PC71BM  as  a  photo-absorbing  layer  (Fig.
10(i))181.  The  mechanical  stability  of  the  photo-absorb-
ing layer was enhanced by incorporating a small amount
of  diiodooctane  (DIO)  into  the  blend film.  Without  the
addition  of  DIO,  the  PC71BM in  the  blend  film aggreg-
ated once its solubility limit was exceeded, and the blend
film  exhibited  relatively  poor  mechanical  performance.
The  addition  of  DIO  increased  the  miscibility  between
PTB7  and  PC71BM,  which  increased  the  free  volume
between the  small  PTB7  grains,  allowing  them  to  with-
stand  external  strain.  The  stretchable  polymer  solar  cell
can withstand an external strain of 100% without tearing,
delamination,  or  crack  formation  (Fig. 10(j)). Further-
more, the solar cell maintained its J-V characteristics and
PCE  even  after  100  stretching  cycles  (Fig. 10(k) and
10(l)).

Wang et  al.  fabricated  an  intrinsically  stretchable  or-
ganic solar cell using the transfer printing technique165. A
composite  film  of  Ag  NWs  and  thermoplastic  urethane
(TPU) was used as the stretchable electrodes. The photo-
absorbing  active  layer  was  a  heterojunction  film  of
PTB7-Th:IEICO-4F,  whose  mechanical  properties  were
modified by incorporating a small  amount of trimethyl-
siloxy-terminated  PDMS  additive.  The  resulting  blend
film exhibited enhanced intrinsic stretchability (5%–20%
strain)  without  any  loss  in  photovoltaic  performance.
Solar cells were fabricated by transferring the active lay-
er  onto  a  hole-transport  layer  (HTL)  of  PEDOT:PSS

modified with D-sorbitol, which was deposited on the Ag
NW/TPU  electrode  layer  (Fig. 10(m)).  As  the  carboxyl
group  in  PTB7-Th  and  the  fluorine  atom  in  IEICO-4F
formed  hydrogen  bonds  with  the  hydroxyl  group  of  D-
sorbitol, the active layer firmly attached to the HTL, pre-
venting any  delamination  under  mechanical  deforma-
tions  (Fig. 10(n)).  Furthermore,  the  trimethylsiloxy-ter-
minated PDMS  additive  acted  as  a  plasticizer  and  in-
creased  the  free  volume  between  the  polymer  chains.
Consequently,  the  active  layer  did not  exhibit  any crack
generation  under  an  external  strain  of  up  to  20%  (Fig.
10(o)). The  solar  cells  with  5%  PDMS  additive  main-
tained  their  original  PCE  up  to  a  strain  of  20%  (Fig.
10(p)). 

Intrinsically stretchable optoelectronic
systems
The fabrication  of  the  intrinsically  stretchable  optoelec-
tronic system is a challenging task. It requires the integ-
ration of various intrinsically stretchable device compon-
ents with  different  functionalities  such  as  circuits,  dis-
plays,  data  transmission/receiving/storage  devices,  and
power supplies, as one stretchable system platform. Such
integration needs  to  consider  different  material  proper-
ties  (e.g.,  solvent  orthogonality)  and  fabrication/pro-
cessing conditions (e.g., temperature and pressure condi-
tions).  Furthermore,  the  performance  of  intrinsically
stretchable  optoelectronic  device  components  should  be
carefully considered and matched with each other for the
optimized performance  of  the  complete  integrated  sys-
tem. Despite these difficulties,  a  few attempts have been
reported to construct such integrated systems.

An  intrinsically  stretchable  system  equipped  with  a
display can provide intuitive information or feedback to
users, significantly improving the usability of the system.
An intrinsically stretchable display can be made using an
array of  intrinsically  stretchable  LEDs or  LECs.  Zhou et
al. developed a stretchable four-digit, seven-segment dis-
play  that  can  be  integrated  with  human  skin62. It  com-
prised  of  an  LEC  array  with  an  EL  layer  sandwiched
between shared  top  electrodes  and  patterned,  individu-
ally  addressable  seven-segment  bottom  electrodes  made
of an Ag NW and elastomer composite (Fig. 11(a)). The
display array adheres conformally with human skin, can
be stretched as the skin deforms, and can deliver mean-
ingful  information  to  the  user  in  real  time  (Fig. 11(b)).
LECs have  advantages  over  LEDs in  terms of  the  devel-
opment of intrinsically stretchable systems as LECs have
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simpler  structures  than LEDs,  which facilitate  the easier
system integration. Meanwhile, stretchable active matrix
displays require  the  development  and  integration  of  in-
trinsically  stretchable  transistors;  therefore,  only  simple
passive  matrix  displays  with  a  limited  resolution  have
been developed thus far. One remaining challenge is the
distortion  of  the  displayed  image  when  the  display  is
stretched (Fig. 11(c))182.

Son  et  al.  demonstrated  an  intrinsically  stretchable
biomedical  system  that  comprises  of  stretchable  strain
sensors for electrocardiogram monitoring, and a stretch-
able LEC  display  for  displaying  the  measured  informa-
tion to the user in real time183.  A stretchable self-healing
polymer  (SHP)  composed  of  a  PDMS-MPU0.4-IU0.6

(MPU  stands  for  4,4′-methylenebis(phenylurea)  unit,
and  IU stands  for  isophorone  bisurea  unit)  was  used  as
the  elastomeric  matrices  for  the  electrodes  and  LECs,
which used either carbon nanotubes or Ag NWs and Cu-
doped  ZnS  microparticles,  respectively.  Owing  to  the
self-healing property  of  the  elastomeric  matrix,  the  per-
colation  networks  could  be  reconstructed  a  few  hours
after severe  mechanical  damage.  An integrated  biomed-
ical platform  was  devised  wherein  the  developed  elec-
trodes were used to perform an electrocardiogram to de-
tect the heartbeat of the user, and the LECs were used to
visually inform the user of the recorded data. 

Conclusion and remaining challenges
Recent  advances  in  intrinsically  soft  materials  and  their
device  fabrication  techniques  have  opened  up  several
possibilities  for  the  development  of  optoelectronic

devices with unusual form factors. However, despite sub-
stantial  progresses,  the  fabrication  of  intrinsically
stretchable optoelectronic  devices  for  practical  applica-
tions  has  significant  remaining challenges.  For  instance,
for intrinsically stretchable light-emitting devices,  a  ma-
jority of the works reported utilizing NW network-based
stretchable electrodes, which have known issues on their
reliability.  When these  NW-based stretchable  electrodes
are exposed to large strain cycles, the percolation of NW
networks  could  be  destroyed  due  to  disjointing  of  the
NWs,  which  would  result  in  decreased  conductivity.  In
addition,  the  reported  intrinsically  stretchable  emission
layers  exhibited  inferior  EL  performances  as  compared
to the  well-established  rigid  materials,  and  further  ad-
vances are required for commercialization.

In  terms  of  intrinsically  stretchable  PD  and  PV
devices, significant  innovations  are  still  required  to  en-
hance  the  optoelectronic  performances.  A  high-level
noise is a known issue for devices with decreased dimen-
sions, which hinders the achievement of high pixel dens-
ity and resolution. Novel processing techniques that can
ensure a robust contact between the intrinsically stretch-
able photo-active materials and electrodes is required to
facilitate efficient  collection  and  transport  of  photogen-
erated carriers, as high-temperature processing is not ap-
plicable  to  most  elastomeric  materials.  Proper  circuit
designs are also required to minimize the adverse effects
of  adopting  intrinsically  stretchable  electronic/optoelec-
tronic materials.

The  biocompatibility  of  the  intrinsically  stretchable
optoelectronic  devices  has  to  be  critically  considered,

 

a c Initial state

Stretchedb

Fig. 11 | Intrinsically stretchable optoelectronic systems. (a) Photographs of an intrinsically stretchable alternating current EL display stably

operating before and after stretching. (b) Photographs of the intrinsically stretchable display mounted on hand skin. (c) Photographs showing an

intrinsically stretchable display being distorted by stretching. Figure reproduced with permission from: (a, b) ref.62, (c) ref.182, American Chemical

Society.
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especially  for  wearable  applications.  Although  most  of
the  elastomeric  hosts  and  substrates  such  as  PDMS,
SEBS,  Ecoflex,  and  tough  hydrogels  are  biocompatible,
the intrinsically stretchable devices must be properly en-
capsulated/passivated  as  toxic  elements  may  be  leaked
from the electronic fillers after repetitive mechanical de-
formation and  fatigue  accumulation.  Such  encapsula-
tion/passivation is also essential to enhance the moisture
stability  of  the  intrinsically  stretchable  optoelectronic
devices,  which  would  result  in  increased  lifetime  of  the
devices. In this regard, additional research is required on
the  development  of  stretchable  encapsulation  layers,
which  remain  an  unexplored  area  at  this  current  stage.
Finally,  thermal  management  is  also  an  important  issue
in  wearable  applications,  as  considerable  heat  can  be
generated from electrical energy at high-level injection of
the light-emitting devices.

In  conclusion,  further  improvements  of  the  material
performances,  either  electrical  or  optical  performances,
are required. Reliability, long-term stability, and biocom-
patibility  are  also  important  issues  in  consideration  of
human-friendly applications. Also, the processing meth-
ods  of  various  constituent  materials  for  specific  device
applications  may  not  be  compatible  with  one  another.
Unlike  vacuum-based  thin  film  deposition  techniques
and photolithography  patterning  methods,  the  sequen-
tial  deposition  of  different  layers  is  often  relying  on
printing  methods  such  as  transfer  printing  or  solution-
based printing. However, these techniques generally res-
ult  in  low  throughputs  and  resolutions,  which  hinders
highly complicated and integrated device fabrication.  In
addition, the  integration  of  various  intrinsically  stretch-
able devices such as circuits, energy devices, and wireless
platforms requires further investigations. The current re-
search on  intrinsically  stretchable  electronics  and  opto-
electronics,  regardless  of  the type of  device,  is  still  in  its
infancy.  Consequently,  it  may  be  too  early  to  consider
the system integration considering the required specific-
ations  of  the  device  performance,  material  designs,  and
fabrication  strategies.  Nevertheless,  these  initial  efforts
are  vital  to  hasten  the  development  of  intrinsically
stretchable  optoelectronic  systems,  which  could  enable
novel mobile  and  human-friendly  deformable  optoelec-
tronics applications.  Continuous research efforts  in  ma-
terials, fabrication methods, device designs, and integra-
tion techniques for the intrinsically stretchable optoelec-
tronics  would  eventually  lead  to  technical  translation
from academia to industry.
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