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Cylindrical vector beams reveal radiationless
anapole condition in a resonant state
Yudong Lu1, Yi Xu1,2*, Xu Ouyang1,2, Mingcong Xian2, Yaoyu Cao1,
Kai Chen1 and Xiangping Li 1*

Nonscattering optical anapole condition is corresponding to the excitation of radiationless field distributions in open res-
onators, which offers new degrees of freedom for tailoring light-matter interaction. Conventional mechanisms for achiev-
ing such a condition relies on sophisticated manipulation of electromagnetic multipolar moments of all orders to guaran-
tee superpositions of suppressed moment strengths at the same wavelength. In contrast, here we report on the excita-
tion of optical radiationless anapole hidden in a resonant state of a Si nanoparticle utilizing a tightly focused radially po-
larized (RP) beam. The coexistence of magnetic resonant state and anapole condition at the same wavelength further
enables the triggering of resonant state by a tightly focused azimuthally polarized (AP) beam whose corresponding elec-
tric multipole coefficient could be zero. As a result, high contrast inter-transition between radiationless anapole condition
and ideal magnetic resonant scattering can be achieved experimentally in visible spectrum. The proposed mechanism is
general which can be realized in different types of nanostructures. Our results showcase that the unique combination of
structured light and structured Mie resonances could provide new degrees of freedom for tailoring light-matter interaction,
which might shed new light on functional meta-optics.
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Introduction
Optical  scattering  of  a  nanopaticle  under  the  excitation
of a  plane  wave  is  usually  determined  by  its  predomin-
ant  electromagnetic  multipole  moment1. Such  predom-
inant  multipole  moment  can even decide  the  electric  or
magnetic  nature  of  the  scattering  in  all-dielectric
photonics2. Therefore, tailoring such a predominant elec-
tromagnetic multipole moment becomes an effective and
unified  way  to  manipulate  optical  scattering3. Many  ab-
normal optical  scattering  phenomena  have  been  pro-
posed  to  enable  new  possibility  and  functionality  in

photonics3.  The  nonscattering  electromagnetic  state  is
one  of  the  typical  examples4−20 [see these  elaborated  re-
views  in  refs.21−24 for details].  In  contrast  to  the  embed-
ded  eigenstates  or  bound  state  in  the  continuum  which
cannot be accessed by the excitation in the continuum25,
the so-called electromagnetic anapole condition provides
a nonscattering condition sustained under the excitation
of external field5,26, which resembles a promising physic-
al  mechanism  for  tailoring  light-matter  interaction  in  a
nonscattering manner21−24,27. It is generally perceived that
such  an  anapole  condition  requires  that  all  of  the 

1Guangdong  Provincial  Key  Laboratory  of  Optical  Fiber  Sensing  and  Communications,  Institute  of  Photonics  Technology,  Jinan  University,

Guangzhou  510632,  China; 2Department  of  Electronic  Engineering,  College  of  Information  Science  and  Technology,  Jinan  University,

Guangzhou 510632, China.
*Correspondence: Y Xu, E-mail: yi.xu@osamember.org; XP Li, E-mail: xiangpingli@jnu.edu.cn
Received: 4 February 2021; Accepted: 7 April 2021; Published online: 18 February 2022

Opto-Electronic 
Advances 

Original Article
2022, Vol. 5, No. 4

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022. Published by Institute of Optics and Electronics, Chinese Academy of Sciences.

210014-1

 

https://doi.org/10.29026/oea.2022.210014
http://orcid.org/0000-0003-0955-2613
https://doi.org/10.29026/oea.2022.210014
http://orcid.org/0000-0003-0955-2613
http://creativecommons.org/licenses/by/4.0/.


induced electromagnetic  multipole  moments  are  sup-
pressed at the same wavelength, resembling the canonic-
al way of realizing the radiationless anapole condition4−20.
In  particular,  the  optical  anapole  condition corresponds
to a pronounced minimum in the far-field scattering as-
sociated  with  highly  confined  electromagnetic  near-
field6,28.  Such  condition  is  quite  challenge  to  meet  since
the degree  of  freedom for  tailoring  the  induced  electro-
magnetic  multipolar  moments of  a  nanoparticle  is  quite
limited.  Such  a  condition  can  also  be  readily  fulfilled
through  structured  light  illumination16 which  generally
extends the scopes of light-matter interaction from both
fundamental science and application prospective, such as
high numerical aperture (NA) focusing29−31, optical com-
putation32 ,  optical  data  storage33,  customized  excitation
of  electromagnetic  multipole  resonances17,33−40 and radi-
ationless anapole condition9,16,17,  enhancement of optical
nonlinearity41,42,  optical  tweezers43−45 and advanced met-
rology46,47.

According to Mie theory, the total scattering power of
a spherical  nanoparticle  excited  by  a  plane  wave  is  de-
termined by both contributions of electric and magnetic
multipole moments of different order n 1. 

Ptotal =
π|Ei|2

kωμ0

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2) , (1)

an bn

where Ei, k and ω are the amplitude, k-vector and angu-
lar  frequency  of  the  incident  plane  wave,  respectively.
There  are  numerous  zeros  of  Mie  scattering  coefficients

 and ,  which are corresponding to zero contribution
to the  total  scattering  from  the  electromagnetic  multi-
pole moments of different orders48. It was suggested that
the electromagnetic  anapole  condition  could  be  inter-
preted  as  the  destructive  interference  between  toroidal
moments and  Cartesian  electromagnetic  multipole  mo-

an bn

a1

ments4−7,14,21,49−51. In  general,  the  zero  amplitude  condi-
tions  of  and  are  usually  accompanied  with  other
spectral overlapping  electromagnetic  multipole  mo-
ments. As  a  result,  such  zero  conditions  of  Mie  scatter-
ing  coefficients  could  be  physically  hidden  in  far-field
scattering response. For example, zero | | can even coex-
ist with the resonant magnetic dipole (MD) condition at
the same frequency48.

In  this  paper,  we  show  that  sophisticated  tailoring  of
electromagnetic  multipolar  moments  in  nanoparticles  is
not essential for the realization of the anapole condition,
which  is  different  from  previous  efforts  in  realizing  the
anapole  condition4−19.  In  particular,  we  experimentally
demonstrate that the combination of tightly focused cyl-
indrical vector  beam  (CVB)  and  structured  Mie  reson-
ances  can  reveal  the  radiationless  anapole  condition
which  is  overlapped  in  spectrum  with  a  resonant  state.
More importantly,  it  subsequently  enables  reconfigur-
able  optical  scattering  of  a  silicon  nanoparticle  with
simple  morphology,  where  the  optical  scattering  of  the
nanoparticle  at  a  specified  wavelength  can  be  switched
from the radiationless anapole condition to the magnet-
ic resonant scattering condition and vice versa, as shown
in Fig. 1. 

Mechanism and numerical results
The  electric  field  of  a  focused  CVB can  be  expressed  in
terms of the electric and magnetic multipole fields52: 

Ef (r) =
∞∑
l=1

l∑
−l

[p0ElN0
l ( r) + p0MlM0

l (r )] , (2)

p0El p0Ml

N0
l M0

l

where  and  are  the  strength  of  the  electric  and
magnetic multipole components,  and  are the vec-
tor spherical  harmonics  related to the electric  and mag-
netic multipole components, respectively. For a RP beam

 

a b

Anapole condition Magnetic multipole resonance

Fig. 1 | Schematic of a reconfigurable optical antenna which supports the radiationless anapole condition hidden in a magnetic reson-
ances at the same frequency. Tightly focused RP (a) or AP (b) beam is used to selectively realize the nonscattering and resonant scattering

scenarios of the optical antenna.
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p0Ml p0El
without orbital  angular  momentum,  the  magnetic  com-
ponent  is  zero  while  the  electric  component  is
zero  for  a  AP beam52.  As  a  result,  the  focused  RP beam
can be used to excite the electric and toroidal dipole mo-
ments  because  of  their  similarity  of  far-field
radiation9,16,39 while the focused AP beam can be used to
excite  the  magnetic  multipole  modes17,34−38. As  the  ex-
cited strength of an electromagnetic multipolar mode de-
pends  on  both  the  vectorial  properties  of  the  excitation
source  and  the  eigenmodes  supported  by  the  spherical
nanoparticle,  therefore,  the  key  enablers  for  realizing
high  contrast  reconfigurable  optical  scattering  include
two points: 1) a nanoparticle supports a pure electromag-
netic  multipole  mode  at  a  specified  frequency,  which  is
spectrally overlap with an anapole condition; 2) the spa-
tial overlapping between the electromagnetic field of the
nanoparticle’s eigenmode and that of the tightly focused
CVBs. High  permittivity  dielectric  nanoparticles  re-
semble a promising platform that fulfills both conditions.
For  a  spherical  Au  core/Si  shell  nanoparticle  (SN),  the
contributions of the spherical electric dipole (ED) can be
designed to be totally  suppressed at  the resonant condi-
tion  of  MD48.  One  of  the  typical  solution  under  plane
wave excitation is shown in Fig. 2(a). If the scattering of a
tightly  focused  AP  beam  is  considered,  it  can  be  seen
from Fig. 2(b) that  all  electric  multipole  moments  have
zero  contribution  to  the  total  scattering,  resembling  the
ideal MD scattering. On the contrary, the total scattering
is zero at the same frequency of the MD resonance if the
excitation of a tightly focused RP beam is applied, realiz-
ing the  optical  anapole  condition,  as  shown in Fig. 2(c).
Such  a  sharp  contrast  in  optical  scattering  power  of  a
nanoparticle at the same wavelength enables the realiza-
tion of reconfigurable optical scattering.

In order to show the generality of this mechanism, we
further consider a simple dielectric nanostructure where
its  magnetic  quadrupole  resonance  overlaps  with  the
anapole condition. Such dielectric nanostructure is much
easier to fabricate in experiment than the core-shell nan-
oparticle.  The  Si  nanodisk  is  optimized  to  fulfill  the
aforementioned enablers  to  realize  high  contrast  recon-
figurable optical  scattering  in  the  visible  spectrum.  Ac-
cording to  the  Cartesian  electromagnetic  multipole  de-
composition results under the excitation of a focused RP
beam  shown  in Fig. 3(a),  the  destructive  interference
between the Cartesian ED and toroidal  dipole  moments
results in the anapole condition where the contributions
of  high  order  electromagnetic  multipole  moments  are

negligible.  The schematic of current geometry (red) and
the corresponding magnetic field (blue) are shown in the
inset  of Fig. 3(a).  The  calculated  electromagnetic  near-
field  distributions  at  different  cross  sections  of  the  Si
nanodisk are shown in Fig. 3(b) and 3(c) which manifest
themselves  as  typical  signatures  of  near-field  excitation
under  the  anapole  condition6.  If  the  excitation source  is
switched to a tightly focused AP beam, the Si nanodisk is
turned into the resonant scattering condition, where the
dominant  Cartesian  electromagnetic  multipole  is  the
electric  quadrupole  (EQ)  moment.  The  corresponding
electromagnetic  near-field  distributions  are  shown  in
Fig. 3(e) and 3(f), which validates qualitatively the dom-
inant  excitation  of  an  MQ  resonance.  It  should  be
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Fig. 2 | Numerical results  of  electromagnetic  multipolar  decomposi-

tion for  the normalized scattering power of  a Au core/Si  shell  nano-

particle  under  the  excitation  by  (a)  a  plane  wave,  (b) a  tightly  fo-

cused AP beam and (c) a tightly focused RP beam. The radius of Au

core is  86 nm while  the outer  radius of  Si  shell  is  226 nm.  The NA

and magnification  factor  of  the  objective  lens  are  0.95  and  60,  re-

spectively. TED represents the contribution of toroidal and electric di-

pole to total scattering.
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pointed out that there is still a residual induced MD mo-
ment accessed  by  the  focused  AP  beam.  More  import-
antly, such  high  contrast  reconfigurable  optical  scatter-
ing  is  tunable  by  simply  changing  the  radius  of  the  Si
nanodisk, as shown in Fig. 4(a) and 4(b). As can be seen
from  this  figure,  the  MQ  resonance  overlaps  with  the
anapole  condition  quite  well  when  the  radius  of  the  Si
disk is changed. According to the calculated results of the
Si nanodisk with different radius under the excitation of
AP and RP beams, the wavelength of reconfigurable op-
tical  scattering  can  be  effectively  tuned  about  50  nm,
indicating  sufficient  tolerance  for  experimental
demonstration. 

Results and discussion
The  Si  nanodisk  shown  in Fig. 3 can be  readily  fabric-
ated on  a  glass  substrate  (see  Supplementary  informa-
tion Section  1).  The  substrate  effect  only  has  minor  ef-
fect  on  the  results  of Fig. 3,  as  will  be  addressed  in  the

following.  The  geometry  parameters  of  the  Si  nanodisk
are outlined in Fig. 5(a), where the radius r of the Si nan-
odisk  is  150  nm  while  the  height h is  160  nm.  The  top
and  side  views  of  scanning  electron  microscopy  (SEM)
images  of  the  fabricated  Si  nanodisk  are  shown  in Fig.
5(b) and 5(c), respectively. The side view is taken by tilt-
ing  the  sample  stage  of  SEM  by  30  degrees.  As  can  be
seen in Fig. 5(e), the back-scattering spectra measured by
the home-built optical setup shown in Fig. 5(d) features a
resonant scattering  at  around 735  nm under  the  excita-
tion  of  tightly  focused  AP  beam.  The  resonance
wavelength  is  red-shifted  compared  with  the  result  of
Fig. 3(d) because  of  the  substrate  effect.  However,  the
scattering  intensity  at  the  same wavelength is  one  order
of magnitude smaller than the AP case when a tightly fo-
cused RP beam is  used.  This  results  quantitatively agree
with the theoretical results of Fig. 3. The reason for small
scattering signal collected at the anapole condition might
be  attributed  to  the  morphology  deformation  (size
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Fig. 3 | Cartesian electromagnetic multipolar decomposition results for the scattering power of a Si nanodisk under the excitation of (a) a tightly

focused RP beam and (d) a tightly focused AP beam, respectively. Multipolar moments up to quadrupole are considered. The radius of Si nanod-

isk is r = 150 nm while its height is h = 160 nm. The corresponding electric and magnetic field distributions at several cross sections are shown in

(b), (c) and (e), (f) under the anapole condition and magnetic quadrupole (MQ) resonance, respectively. All the wavelength are 720 nm. The NA

and magnification factor of the objective lens are 0.95 and 60, respectively.
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difference  and  surface  roughness)  in  the  fabricated
sample utilizing mask based inductively coupled plasma
reactive  ion  etching  (see  Supplementary  information
Section 1), as shown in the inset of Fig. 5(b) and 5(c). In
order to  further  access  the  scatteringless  anapole  condi-
tion,  the  preparation  of  Si  nanodisks  with  well-defined
morphology is subject to further optimization by e-beam
lithography  technology6 and colloidal  synthesis  techno-
logy16.  Furthermore, we can confirm from the dark-field
back  scattering  images  that  the  radiationless  anapole
condition is approached under the RP excitation [see Fig.
5(g)] while clear resonant scattering can be visualized in
Fig. 5(f).  These  experimental  results  validate  that  the
anapole  condition  can  be  realized  without  sophisticated
tailoring of electromagnetic multipole moments of nano-
particle.  More  importantly,  one  can  simply  turn  on  or
turn  off  the  optical  scattering  of  a  fixed  nanoparticle  at
the same wavelength utilizing tightly focused AP and RP
beams,  validating  the  concept  of  reconfigurable  optical
scattering for meta-optics. It is also expected that such a
mechanism can be applied in the nonlinear scattering re-
gion, where distinct harmonic generation, stimulated Ra-
man scattering and saturated scattering can be manipu-
lated by different CVBs. 

Conclusions
In summary, we propose a new mechanism to excite the
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radiationless  anapole  condition  without  sophisticated
manipulation of electromagnetic multipolar moments of
all orders  to  realize  superpositions  of  suppressed  mo-
ment strengths at the same wavelength. As a result, high
contrast  reconfigurable  optical  scattering  utilizing  the
unique  combination  of  structured  light  and  structured
Mie resonances can be realized. It means that a Si nano-
particle whose anapole condition is hidden in an electro-
magnetic multipolar  resonance  can  be  selectively  ac-
cessed as the radiationless condition or resonant scatter-
ing  state  by  utilizing  different  tightly  focused  CVBs.
More  importantly,  experimental  validation  based  on  a
simple Si nanodisk in the visible spectrum is provided to
further  consolidate  the  proposed  reconfigurable  optical
scattering. Our results might provide a basic idea to real-
ize  a  reconfigurable  electromagnetic  atom  for  meta-op-
tics. By  combining  both  degrees  of  freedom  in  struc-
tured light and structured Mie resonances, one might an-
ticipate the possibility to realize ultrafast manipulation of
optical signal without applying optical nonlinear and op-
tomechanic effects.
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