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Graphene-empowered dynamic metasurfaces
and metadevices
Chao Zeng 1, Hua Lu1, Dong Mao1, Yueqing Du1, He Hua1, Wei Zhao2*
and Jianlin Zhao1*

Metasurfaces, with extremely exotic capabilities to manipulate electromagnetic (EM) waves, have derived a plethora of
advanced  metadevices  with  intriguing  functionalities.  Tremendous  endeavors  have  been  mainly  devoted  to  the  static
metasurfaces and metadevices, where the functionalities cannot be actively tuned in situ post-fabrication. Due to the in-
trinsic advantage of active tunability by external stimulus, graphene has been successively demonstrated as a favorable
candidate to empower metasurfaces with remarkably dynamic tunability, and their recent advances are propelling the EM
wave manipulations to a new height: from static to dynamic. Here, we review the recent progress on dynamic metasur-
faces  and metadevices  enabled by  graphene with  the  focus  on electrically-controlled  dynamic  manipulation  of  the  EM
waves covering the mid-infrared, terahertz, and microwave regimes. The fundamentals of graphene, including basic ma-
terial properties  and  plasmons,  are  first  discussed.  Then,  graphene-empowered  dynamic  metasurfaces  and  met-
adevices  are  divided  into  two  categories,  i.e.,  metasurfaces  with  building  blocks  of  structured  graphene  and  hybrid
metasurfaces integrated with graphene, and their recent advances in dynamic spectrum manipulation, wavefront shap-
ing, polarization control, and frequency conversion in near/far fields and global/local ways are elaborated. In the end, we
summarize the progress, outline the remaining challenges, and prospect the potential future developments.
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Introduction
Metasurfaces, artificial  subwavelength  structured  inter-
faces,  exhibit  unprecedented  capabilities  to  manipulate
electromagnetic (EM) waves ranging from visible to tera-
hertz  (THz)  and  microwave  frequencies1−8.  By  precisely
managing the  geometric  size,  orientation,  and  arrange-
ment of each metaatom in metasurfaces, one can control
the  amplitude,  phase,  polarization,  and/or  frequency  of
EM waves on demand9−14. In the past decade, this fascin-
ating  area  has  undergone  rapid  developments,  and  a

plethora  of  advanced  metadevices  with  outstanding
functionalities have been exploited including diffraction-
limited  focusing15−21,  holography22−26,  structured  light
generation27−29, orbital-angular  momentum  multiplex-
ing/demultiplexing30,31, and dispersion engineering32−35. It
is  noteworthy that  besides the intriguing functionalities,
the natural instinct to miniaturize traditional devices and
systems is the ultimate motive force to the development
of metasurfaces and metadevices in terms of engineering
and  industrial  applications36.  In  pace  with  increasingly 
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powerful  micro/nano-fabrication  technologies37−41, vari-
ous functionalized metasurfaces have been integrated on
fiber  facets42,  and  into  semiconductor43,  solid-state44 as
well as fiber lasers45, infusing new life and capabilities in-
to  the  traditional  nanodevices.  Currently,  multi-func-
tional  and  multi-dimensional  metasurfaces  are  arousing
a  period  of  revolution  in  both  traditional  and  emerging
application  fields46−48,  such  as  integrated  photonics49,50,
nonlinear optics51,52, next-generation communications53,54,
artificial intelligences55,56, and quantum technologies57,58.

Due to the passive nature of building blocks in gener-
al made of metals and/or dielectrics, however, aforemen-
tioned  metasurfaces  and  metadevices  mainly  work  at
static, which  means  their  functionalities  cannot  be  act-
ively  tuned in  situ after  fabrication.  There  is  no  doubt,
such  static  feature  leads  to  a  fall-off  in  the  functionality
of dynamical manipulations and seriously impedes their
application scenarios, where dynamic EM wave manipu-
lations  are  highly  desired59−63,  for  example,  varifocal
lens64,  dynamic holography65, and beam steering in LiD-
AR  system66. Motivated  by  those  significant  require-
ments, scientists have struggled for years to improve the
dynamical  tunability  of  metasurfaces,  and  introducing
active materials or components into the passive metasur-
faces has been proposed as the first thought strategy. Up
to now, various active materials and components such as
transparent conducting oxides67−69, phase-change materi-
als70−73,  2D materials  (particularly  graphene)74−79, varact-
or  diodes80−83,  elastic  materials84−86,  and  micro-electro-
mechanical system87−89, have been demonstrated theoret-
ically and experimentally to empower the active tunabil-
ity to metasurfaces and metadevices by applying external
thermal, electrical, optical, and mechanical stimulus, giv-
ing rise to a new direction, i.e., dynamic (e.g. tunable, re-
configurable, programable,  intelligent,  and  digital  cod-
ing)  metasurfaces  and  metadevices90−96.  It  should  be
noted that although previous researches provide a major
source of inspiration for dynamic metasurfaces and met-
adevices,  each  type  of  active  materials  and  components
holds a  set  of  unique  characteristics,  provides  encour-
aging opportunities, and also suffers from different limit-
ations as well as challenges. Several excellent review art-
icles published in recent years have focused on this area
to  discuss  the  aforementioned  issues97−101.  However,  a
comprehensive  review  on  graphene-based  dynamic
metasurfaces and metadevices is still absent, which are of
equal and even more significance due to the extraordin-
ary properties of graphene.

Recent years  have  witnessed  the  explosive  develop-
ments  of  2D  materials-based  electronics  and  photonics
with  increasing  maturity  of  preparation  and  fabrication
techniques102−115.  Although  the  family  of  2D  materials
goes  from  strength  to  strength,  graphene  is  recognized
all the time as one of the most powerful 2D materials due
to its intrinsic advantages of active tunability by external
stimulus  (especially  by  electrical  basis)116,  enhanced
wave-matter  interactions117,  ultrabroadband  response118,
and CMOS-compatibility113.  Currently,  the  combination
of the two exciting research fields, i.e.,  2D materials and
metasurfaces, is  propelling  the  metasurfaces  and  met-
adevices to new heights: multifunctionality together with
tunability. Thereinto, graphene has been so far the most
attractive candidate to exploit dynamic metasurfaces and
metadevices  with  different  mechanisms,  configurations,
and functionalities in the mid-infrared (MIR), THz, and
microwave  regimes,  which  can  be  categorized  into  two
classes:  metasurfaces  with  building  blocks  of  structured
graphene  and  hybrid  metasurfaces  integrated  with
graphene74−79,119−127. The  former  is  called  graphene  plas-
monic  metasurfaces  and  the  latter  graphene-hybrid
metasurfaces (as shown in Fig. 1). Considering the rapid
advances  of  this  overlapped field,  this  review is  devoted
to the dynamic metasurfaces and metadevices enabled by
graphene with an emphasis primarily on electrically-con-
trolled  EM  wave  manipulations  in  the  MIR,  THz,  and
microwave  regimes.  In  Section Fundamentals  of
graphene,  the  basic  material  properties  of  graphene  and
plasmons  in  graphene  are  introduced,  and  further  the
theoretical and numerical models of graphene plasmons
are discussed  in  detail.  Then,  the  state-of-the-art  ad-
vancements  in  graphene  plasmonic  metasurfaces  and
graphene-hybrid  metasurfaces  for  dynamic  spectrum
manipulation,  wavefront  shaping,  polarization  control,
and  frequency  conversion  in  near/far  fields  and
global/local  ways  are  highlighted  in  Sections Metasur-
faces with building blocks of structured graphene and Hy-
brid  metasurfaces  integrated  with  graphene.  In  the  end,
Section Conclusion  and  outlook summarizes the  pro-
gresses, concludes  the  remaining  challenges,  and  out-
looks the potential future developments. 

Fundamentals of graphene
In  2004,  Novoselov  and  Geim  et  al. successfully pre-
pared  the  single-layer  graphene  from  highly  oriented
pyrolytic graphite by mechanical exfoliation and demon-
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strated  a  field-effect  transistor  using  high-quality  few-
layer  graphene,  which  lifted  the  curtain  of  research  on
2D  materials128−131.  The  Nobel  Prize  for  Physics  in  2010
publicized widely this powerful one-atomic-thick materi-
al and also the simple preparation method of mechanical
exfoliation,  providing  the  easy  access  to  prepare  high-
quality graphene,  which is  now the most  popular  meth-
od,  particularly  in  the  photonics  and  optoelectronics.
Since then,  2D materials  with the  structure  and proper-
ties  similar  to  graphene,  such  as  black  phosphorus
(BP)132−134 and  transition  metal  dichalcogenides  (TM-
DCs)135−137, began  to  gather  increasing  attention  of  sci-
entists  in  the  multidisciplinary  field,  especially  in  the
photonic and optoelectronic community due to their ex-
ceptional electrical and optical properties108,138. Although
the family of  2D materials  is  rather plentiful,  due to the
easy  preparation  of  remarkably  high-quality  graphene,
flexibly electrical tunability, and CMOS-compatible with

silicon  photonics,  graphene  is  still  one  of  the  most
powerful  2D materials  for developing high-performance
nanodevices  including  metadevices,  where  the  qualities
of 2D materials are critically important, for instance, the
mobility,  conductivity,  defect,  size,  and  layer  num-
ber114,139,140.  In  this  Section,  we  centre  upon  graphene  to
discuss  its  basic  material  properties  and plasmon mode,
and  provide  the  theoretical  and  numerical  models  of
graphene plasmons. It should be noted that graphene in
general  represents  the  single-layer  graphene  throughout
this review if there is no special description. 

Basic material properties of graphene
It is  well-known that  due  to  its  unique  electronic  struc-
ture,  graphene  has  been  hailed  as  a  wonderful  material
with distinctive properties,  which provide new solutions
to  integrated  electronics  and  photonics  with  the
compact  footprint,  remarkably  electrical  tunability,
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Fig. 1 | Overview  of  state-of-the-art  selected  functionalities  of  dynamic  metasurfaces  and  metadevices  empowered  by  graphene. Ac-

cording to the different operation mechanisms, graphene-empowered dynamic metasurfaces are here divided into two classes: graphene plas-

monic metasurfaces and graphene-hybrid metasurfaces, each of which holds half the sky. The abbreviations of G and Meta represent graphene

and metasurface, and the symbols of A, φ, P, and f stand for the amplitude, phase, polarization, and frequency of EM waves respectively.
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broadband and high-speed operation.
(i)  One-atomic-scale  thickness.  Graphene  is  a  single-

layer atomic crystal  of  hexagonally-arranged sp2-hybrid-
ized  carbon  atoms  with  the  lattice  constant  of  ~0.142
nm128.  As shown in Fig. 2(a), the thickness of single-lay-
er graphene is one-atomic-scale with the value of ~0.334
nm  theoretically  and  ~0.4  nm  experimentally,  and  the
continuous size of high-quality graphene sheet can be up
to a  macroscopic  scale  (~100 μm) by using micromech-
anical exfoliation, which is sufficient for most researches
in photonics and optoelectronics130,141. For the purpose of
integration  with  electronic  and  photonic  platforms,  the
one-atomic-scale  thickness  as  well  as  macroscopic-scale
size  of  graphene  make  it  more  compatible  with  CMOS
processing at the wafer scale.

(ii) Ultra-high intrinsic carrier mobility. The linear en-
ergy-momentum dispersion near the Dirac point renders
electrons in graphene travelling at a constant velocity of
3×106 m/s  (only  100  times  smaller  than  the  light  speed,
defined  as  the  Fermi  velocity),  which  means  the  carrier
mobility can be ultra-high and thus graphene is an excel-
lent  conductor  of  electricity.  It  should  be  pointed  out
that  the  mobility  can  also  remain  high  even  when  the

carrier density is zero at the Dirac point, which is quietly
different  from  semiconductors  where  carriers  become
immobile  at  low  density.  Although  the  environment
(particular the  substrate)  significantly  affects  the  mobil-
ity of graphene in practice, the experimentally measured
mobility  is  still  high  enough,  for  example,  ~4×104

cm2V−1s−1 on  SiO2 substrate  (Fig. 2(b))142,  ~1.4×105

cm2V−1s−1 encapsulated  within  hexagonal  boron  nitride
(hBN)  layers143,  and  ~2×105 cm2V−1s−1 in  suspended
graphene (Fig. 2(c))144.  This implies that graphene-based
electronics and optoelectronics have the potential to op-
erate  at  speed  of  a  few  hundred  GHz  and  even  to  THz,
for  example,  graphene-based  modulators145−147 and pho-
todetectors148−150.

(iii)  Tunable  and  broadband  responses.  Due  to  the
unique electronic band structure that conic-shaped con-
duction band and valence band meet at the Dirac point,
the optical  conductance  of  pristine  graphene  is  fre-
quency-independent  and  only  determined  by  its  fine-
structure  constant α=e2/ћc≈1/137 (here  e  is  the  electron
charge, ћ the  reduced  Planck’s  constant,  and c the  light
speed  in  the  vacuum),  which  directly  results  in  a
frequency-independent  optical  absorption A=πα~2.3%
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for  single-layer  graphene  and A=Nπα for N-layer
graphene,  as  shown  in Fig. 2(d)151.  In  terms  of  an  one-
atomic-thick  material,  this  universal  optical  absorption
of  2.3%  is  strong  enough  in  fact,  which  for  example  is
~50  times  higher  than  the  same-thickness  GaAs116.  For
device applications, however, it is rather small when con-
sidering the  insertion  loss  of  2.3%.  Therefore,  the  en-
hancement of light absorption of graphene is a hot topic
all  the time152−157.  Significantly,  the optical  absorption of
graphene  can  be  interpreted  from  the  optical  transition
process  using  energy  band  structure  shown  in Fig.
2(e−i)118,130.  Owing to the zero-band gap, there exist two
competitive transition processes, i.e. intraband and inter-
band transitions,  and  their  relative  contributions  dir-
ectly result  in the selected absorption of  waves with dif-
ferent energies. The interband transition only occurs for
n/p-doped  graphene  when photon  energy  is  larger  than
two  times  of  Fermi  energy  (ћω>2EF),  while  intraband
transition always  happens  except  for  pristine  or  un-
doped graphene (EF locates at the Dirac point). For high-
energy photons (from visible to near-infrared (NIR)), the
interband transition  dominates  the  broadband  absorp-
tion of  ~2.3%; For low-energy photons at  THz frequen-
cies  usually  below  2EF (ћω<2EF), the  interband  trans-
itions are forbidden and the absorption is mainly attrib-
uted  to  the  intraband  transition,  which  shows  typical
Drude feature corresponding to the plasmon absorption;
For moderate-energy photons in the MIR regime, interb-
and transition  is  forbidden  and  the  possibility  of  intra-
band  transition  reaches  the  minimum due  to  the  Pauli-
blocking,  indicating  the  minimal  absorption  loss  (smal-
ler  than  2.3%)158−160.  Those  transition  processes  closely
depend on  the  Fermi  energy  of  graphene  and  the  fre-
quency of the incident wave, which therefore can be con-
trolled  through  chemical  doping  or  electrical  gating  to
shift EF and induce Pauli-blocking. In general, the condi-
tion that  photon  energy  is  less  than  optical  phonon en-
ergy  (0.20  eV)  should  be  taken  into  account,  otherwise
the additional losses from electron-phonon coupling are
nonnegligible161. Therefore, the minimal loss condition is
concluded  with ћω<0.20  eV  (λ>6.2  μm)  and ћω<2EF.
Figure 2(i) shows the  gate  dependence  of  graphene  res-
istivity induced  by  the  electric-field  effect  when  a  vari-
able gate-voltage is applied. This dynamic tunability with
simple electrical  gating has been widely exploited to en-
able electrically-tunable  nanophotonic  devices,  includ-
ing  dynamic  metasurfaces  and  metadevices  working  at
MIR and THz frequencies.

The  EM  response  of  graphene  can  be  described  and
determined by  its  complex  conductivity.  From this  per-
spective, here the origin of above-discussed dynamic re-
sponse of  graphene  is  enquired.  The  surface  conductiv-
ity  of  graphene σ can  be  strictly  expressed  using  the
Kubo formula  with  intraband  and  interband  contribu-
tions (σ=σintra+σinter)162−164. Under the random-phase ap-
proximation, it can be simplified as, 

σ intra =
i2e2kBT

πℏ2(ω+ iτ−1)
ln
[
2cosh

(
EF

2kBT

)]
, (1a)

 

σinter =
e2

4ℏ

[
1
2
+

1
π
arctan

(
ℏω− 2EF

2kBT

)
− i

2π
ln
(

(ℏω+ 2EF)
2

(ℏω− 2EF)
2
+ 4(kBT)2

)]
, (1b)

where e is the electron charge, kB is the Boltzmann con-
stant, T is the temperature, ћ is the reduced Planck’s con-
stant, τ=μEF/(eνF2) is the carrier relaxation lifetime asso-
ciated with intraband transitions, μ is the carrier mobil-
ity, νF=108 cm/s  is  the  Fermi  velocity.  It  is  obvious  that
both  intraband  and  interband  conductivities  are  closely
related to the Fermi energy EF determined by the carrier
density n=(EF/ћω)2/π, which can be controlled by chem-
ical,  magnetical,  or  electrical  doping,  indicating that  the
ultimate tunability of graphene results from its dynamic
conductivity. By analyzing the above equations, it is con-
cluded that in the MIR~THz regime, interband conduct-
ivity  can  be  ignored  and  only  intraband  conductivity
need  to  be  considered  when ћω<2EF, while  in  the  vis-
ible~NIR regime, the interband conductivity dominates.
This coincides well with the optical transition process in
Fig. 2(e−h).  At  room  temperature  (T=300  K),  if
EF>>2kBT (~25.8  meV),  2cosh(EF/2kBT)≈exp(EF/2kBT),
then  the  dynamic  conductivity  of  graphene  in  the
MIR~THz regime (only intraband) is re-written with the
Drude form (like metals), 

σg =
ie2EF

πℏ2(ω+ iτ−1)
. (2)

It  can be  seen that Eq.  (2) equals  to Eq.  (1a) plus Eq.
(1b) under conditions of ћω<0.20 eV and ћω<2EF (visu-
ally, λ>6.2  μm  and EF>0.1  eV).  Therefore,  the  Drude
model  of Eq.  (2) is  credible  for  characterizing  the
graphene  conductivity  at  MIR~THz  frequencies,  which
is  widely employed as  the determined material  property
of graphene for theoretical and numerical models164−170. 
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Plasmons in graphene
Different from photonic modes in dielectrics, there exist
special  EM modes at  the interface of  two materials  with
opposite signs of permittivity (for example, dielectric and
conductor), called  polaritons,  which  provide  an  ex-
traordinary  route  to  manipulate  and  harness  light  field
below the diffraction limit171−173. In 2D materials, the po-
laritons  can  be  clarified  as  plasmon polaritons174, phon-
on  polaritons175,  and  exciton  polaritons176.  It  is  essential
that to support and confine these polaritons at an inter-
face, the real part of the permittivity of materials should
be  negative.  As  illustrated  in Fig. 3, the  dielectric  func-
tion clearly shows the origination of  negative permittiv-
ity for different polaritons171. For the plasmon polaritons,
the negative  permittivity  covers  the  broadband  fre-
quency  described  by  the  Drude  model  (for  example
metals and graphene); While for phonon polaritons and
exciton polaritons  the  bandwidth  of  negative  permittiv-
ity  is  rather  narrow  due  to  the  resonant  absorption-in-
duced  highly  dispersive  permittivity.  In  the  case  of
graphene, BP, and topological insulators (TIs), the oscil-
lations of conduction electrons coupled with photons de-
scribe exactly the plasmon polaritons177−179; For hBN and
TMDCs,  polarized  atom  and  exciton  come  into  being
phonon  polaritons180 and  exciton  polaritons176, respect-
ively.  These  polariton  modes  are  highly  confined  at  the
interface  of  2D  materials  and  dielectric  environment,
and exhibit  strong  field  enhancement,  which  provides  a
fascinating platform for manipulating wave-matter inter-
actions.  In  the  later  part  of  the  review,  we  focus  on  the
plasmon polaritons in graphene,  which have been taken

full  advantages  to  manipulate  light  fields  with  arbitrary
amplitude,  phase,  polarization,  and/or  frequency  when
combined with the metasurface concept.

In fact,  the  plasmon polaritons  bounded  at  the  inter-
face of  a  metal  and a  dielectric  is  as  well-known as  sur-
face plasmon polaritons when coupled with photons, by
which the important field of plasmonics was established
in the last century and has derived straightforwardly the
emerging field of  nanophotonics181−184.  Over the last  few
decades, a lot of interesting effects, phenomena, and ad-
vanced  nanophotonic  devices  based  on  plasmons  have
been discovered  including  metasurfaces  and  met-
adevices using noble metals (e.g. gold and silver)185−193. In
the  ongoing  search  for  alternative  plasmonic  materials,
graphene  emerged  as  a  promising  one  for  the  MIR  and
THz  applications.  Currently,  the  development  of
graphene plasmonics  is  pushing  forward  the  nano-
photonics to the longwave infrared and be more power-
ful194−198.  Compared  with  metallic  plasmons,  graphene
plasmons  (GPs)  show  several  advantages.  The  first  and
most  important  is  that  the  carrier  density  tunability  of
graphene by  various  external  stimulus  enables  the  flex-
ibly  tunable  plasmon  properties  and  active  devices.
Second,  GPs  can  be  excited  and  sustained  from  THz  to
MIR  frequencies,  where  metallic  plasmons  suffer  from
larger losses, due to the small carrier density of graphene
typically  less  than  one  percent  of  gold199,200.  Third,  GPs
possess extremely strong field confinement together with
relatively  long  propagation  distance  because  of  its  2D
nature  and high carrier  mobility.  The  trade-off  between
the field confinement and propagation length is universal.
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To achieve a large propagation length of GPs, increasing
the doping  density  is  a  direct  route,  which  in  turns  de-
creases the confinement. Even for very high-level doping,
however, the penetration depth is still a few orders smal-
ler  than that  of  silver,  indicating an appropriate balance
of  the  trade-off  and  the  advantage  of  field  confinement
under sufficient propagation length201−204.

Similarly,  GPs  can  be  divided  into  propagating  and
localized modes  according  to  their  propagation  condi-
tions.  Although  it  has  been  predicted  theoretically  that
graphene supports  plasmons,  their  exciting  and  detect-
ing have remained a long-term challenge due to the large
momentum  mismatch  between  GPs  and  free-space
photons163,164,205. In 2011, Ju et al. successfully excited GPs

by coupling incident photons with dipolar plasmon res-
onances in  artificially  structured  graphene  and  demon-
strated  the  first  graphene  metamaterial  for  tunable  THz
filters177. As shown in Fig. 4(a), the proposed metamater-
ials consisted  of  a  graphene ribbon array,  fabricated  us-
ing standard optical lithography and plasma etching of a
large-area graphene on a Si/SiO2 substrate, and the carri-
er  concentration  in  the  graphene  ribbon  was  controlled
by the ion-gel  top gate.  The experimental  results  in Fig.
4(b) demonstrated the  active  control  of  plasmon reson-
ance through in situ electrostatic doping.  In single-layer
structured graphene,  however,  the  magnitude  of  plas-
mon resonance is relatively weak. To overcome this lim-
itation,  in  2012,  Yan  et  al. proposed  a  metamaterial
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device using structured graphene/insulator stacks206. Fig-
ure 4(c) and 4(d) illustrated  the  schematic  diagram  and
SEM  image  of  the  proposed  stacked  graphene/insulator
microdisk  array,  respectively.  The  extinction spectra  for
different  layer  numbers  of  graphene  disks,  as  plotted  in
Fig. 4(e),  showed that  with the layer number increasing,
the  peak  intensity  of  resonance  increased  significantly,
and at the same time, the resonance frequency blue-shif-
ted, which was attributed to the carrier redistribution in
multilayer graphene because of strong Coulomb interac-
tion  of  the  adjacent  layers.  Based  on  the  stacked
graphene/insulator  microdisk  array,  a  tunable  far-in-
frared notch filter was achieved. By etching the stacks in-
to  microribbon  arrays,  as  shown  in Fig. 4(f),  a  tunable
THz linear polarizer was demonstrated with assistance of
the  polarization-dependent  plasmon  resonances  in  the
ribbon. This  work  provides  a  simple  method  to  effect-
ively enhance  and  tune  the  frequency  as  well  as  mag-
nitude  of  plasmon  resonances  in  structured  graphene.
When a magnetic field is applied to the above structured
graphene, the  dipolar  plasmon  resonance  shows  a  re-
markable  difference.  In  2012,  Crassee  et  al.  found  that
the resonance peak of the intrinsic plasmons in graphene
epitaxially  grown  on  a  SiC  substrate  with  defects  was
modified  dramatically  by  the  high  magnetic  field,  as
shown  in Fig. 4(g),  the  transmission  dip  split  into  two
modes, which was so-called bulk and edge magnetoplas-
mon  modes207.  At  the  same  time,  such  mode  splitting
phenomenon was experimentally  observed by Yan et  al.
in  graphene  disk  arrays  under  the  magnetic  field208.  It
was concluded that the high-frequency peak and low-fre-
quency peak split from the intrinsic plasmon resonance,
as shown in Fig. 4(h) and 4(i), corresponded to the bulk
mode and  edge  mode,  respectively,  and  the  former  un-
derwent  the  collective  cyclotron  motion  inside  the  disk,
the latter  featured a  current  along the edge and hence a
rotating dipole.  Due  to  the  excitation  of  magnetoplas-
mons in structured graphene, Faraday rotation has been
exploited to devise the metasurfaces for dynamic polariz-
ation control (to be discussed in Section Dynamic spatial
EM  wave  manipulations).  In  the  same  year,  Chen  et  al.
and Fei et al., from two independent research groups, re-
ported the  real-space  imaging  of  propagating  and local-
ized GPs in structure-engineered graphene using scatter-
ing-type  scanning  near-field  optical  microscopy  (s-
SNOM), as shown in Fig. 4(j−m)209,210. The near-field in-
terference  patterns  in Fig. 4(j) and 4(m) clearly  showed
the propagation and localization of GPs,  simultaneously

revealing  the  relationships  between  the  excitation
wavelength, plasmon wavelength, and field confinement.
The  gate-voltage  tunable  fringe  field  amplitude  (Fig.
4(k))  as  well  as  plasmon  wavelength  (Fig. 4(l)) demon-
strated  the  electrostatic  tunability  of  GPs.  This  work
provides the first  direct-evidence of  the tightly-confined
field  of  GP mode,  ultra-small  plasmon wavelength  (~50
times  smaller  than  the  wavelength  of  excitation  light),
and  dynamically  electrically-tunable  functionalities
based on GPs.  It  can be seen that,  the excitation of  GPs
can be released from the large momentum mismatch re-
quirement  by  patterning  graphene  into  micro/nano-
structures  due  to  the  plasmon  resonances,  while  for  a
continuous  graphene  sheet  the  excitation  is  not  easy,
which is usually implemented by the metallized tip in s-
SNOM that  can  overcome  the  large  momentum  mis-
match by light scattering on the tip. These pioneering ex-
perimental works, assembled in Fig. 4, have provided the
method to  excite  and detect  GPs,  classified  the  intrinsic
plasmons and  magnetoplasmons,  and  unveiled  the  fun-
damental properties of GPs, including dynamical electro-
static-tunability,  ultra-short  wavelength,  and  extremely
strong field confinement. 

Theoretical and numerical models of GPs
At the same time, a number of theoretical and numerical
researchers have predicted that graphene can serve as the
outstanding platform  for  guiding  and  manipulating  en-
ergy flow in the 2D and 3D spaces with the assistance of
GPs211−222. Here, in order to provide the fundamentals for
Sections Metasurfaces  with  building  blocks  of  structured
graphene and Hybrid  metasurfaces  integrated  with
graphene,  the  theoretical  and  numerical  models  for
propagating GPs in continuous graphene sheets and loc-
alized GPs  in  structured  graphene  are  discussed  in  de-
tails. This Section not only provides a powerful method-
ology  to  build  the  graphene  metasurfaces  but  also  can
promote  a  deep  understanding  of  the  physics  in  GPs,
which  is  essential  to  developing  accurate  models  of
metasurfaces  and  metadevices  before  experiments.  As
shown in Fig. 5, we firstly discuss the transverse magnet-
ic  (TM)  and  transverse  electric  (TE)  modes  of  GPs
propagating  along  the x direction  with  exp(iβx)  in  a
dielectric-graphene-dielectric waveguide.  Actually,  ow-
ing  to  the  geometrical  symmetry  of  the  model,  the
guided TM and TE modes include odd and even modes
with  different  transverse  mode-field  distributions  along
the z axis. For the sake of simplicity, only the odd mode
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case is presented in the following discussions, and for the
case of even modes the results can be easily obtained by
the similar method.

To  implement  the  theoretical  analyses  based  on  the
Maxwell equations, graphene sheet is regarded as a con-
ducting  interface  without  thickness,  and  therefore  the
surface current J=σgE exists at the sheet. For TM modes,
the boundary condition is (z=0),  {

E(1)
x (0) = E(2)

x (0)
H(1)

y (0)−H(2)
y (0) = σg · E(1)

x (0) . (3)

According to the wave equations of EM field, the dis-
persion relation of TM GPs is then derived, 

ε1
β1

+
ε2
β2

= −
iσg

ωε0
, (4)

β2
1,2 = β2 − ε1,2β2

0here,  wavevectors  in  dielectrics  satisfy ,
and the dispersion is re-written as, 

ε1√
β2 − ε1β2

0

+
ε2√

β2 − ε2β2
0

= −
iσg

ωε0
. (5)

For  TE  modes,  similarly,  the  boundary  condition  is
(z=0),  {

E(1)
y (0) = E(2)

y (0)
H(1)

x (0)−H(2)
x (0) = σg · E(1)

y (0) . (6)

The dispersion relation of TE GPs is obtained,  √
β2 − ε1β2

0 +
√
β2 − ε2β2

0 = −iωμ0σg . (7)

In simulations, graphene sheet is generally regarded as
an  ultrasmall-thickness  (Δ)  material  with  equivalent
complex  permittivity  to  represent  its  material
property223−225. The volume conductivity σg,V and volume
current density JV are, 

σg,V = σg/Δ , (8a)
 

⇀

J V = σg,V
⇀

E . (8b)

Assuming  the  average  permittivity  of  surrounding
dielectrics as εd, the Maxwell equations are, 

∇×
⇀

H =
⇀

J V − iωε0εd
⇀

E , (9a)
 

∇×
⇀

H = −iωε0εg
⇀

E . (9b)

Therefore,  the  equivalent  permittivity  of Δ-thickness
graphene sheet is expressed as, 

εg = εd + i
σg

ε0ωΔ
. (10)

It  is  found  that  Re(εg)  = εd −  Im(σg)/(ε0ωΔ)  ≈
− Im(σg)/(ε0ωΔ)  and Im(εg)  =  Re(σg)/(ε0ωΔ), which im-
plies  that  the  sign of  real  (imaginary)  part  of  equivalent
permittivity is determined by the sign of imaginary (real)
part  of  surface  conductivity.  Noteworthy,  the  sign  of
Im(σg) plays a crucial role in whether graphene supports
TE or  TM  GP  mode,  which  depends  on  the  Fermi  en-
ergy of graphene.

For  the Δ-thickness  graphene  model,  when  Im(σg)<0
(the interband  contribution  for  conductivity  is  domin-
ant at low Fermi energy), the TE mode is supported and
its dispersion relation is226, √

μ0ε0εgω2 − β2tan(
√
μ0ε0εgω2 − β2Δ

2
) =

√
β2 − μ0ε0ω2 .

(11)
Substituting Eq. (10) into Eq. (11) and letting Δ→0, the

dispersion of TE GPs is simplified to 

β = β0

√
1−

(
Z0σg

2

)2

, (12)

here Z0=1/(ε0c)=μ0c=377 Ω is the vacuum impedance.
When Im(σg)>0 (the  intraband contribution becomes

dominant  at  relatively  high  Fermi  energy, ћω<2EF),  the
TM mode is supported and its dispersion relation is227, 
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coth(
√
β2 − μ0ε0εgω2Δ

2
) = −εg

√
β2 − μ0ε0ω2√
β2 − μ0ε0εgω2

. (13)

By the same processing method, the dispersion of TM
GPs is reduced to, 

β = β0

√
1−

(
2

Z0σg

)2

. (14)

It  is  obvious  that, Eq.  (12) and (14) can also  be  ob-
tained  by  setting ε1=ε2=1  in Eq.  (5) and (7),  indicating
the  validity  of  this  simulation  model  where  graphene
sheet is regarded as an equivalent material with Δ-thick-
ness  and permittivity  governed by Eq.  (10). By compar-
ing Eq. (12) and (14),  it  is  found that in contrast to TM
GP  mode,  TE  GP  mode  is  a  weakly-guided  leaky  mode
and shows poor  field  confinement,  defined by  Re(β)/β0.
As  depicted  in Fig. 6(a),  the  dispersion  curve  of  TE  GP
mode almost coincides with that of air, which means that
the TE GP mode cannot be sustained in an air-graphene-
air  waveguide,  and  the  inset  of Fig. 6(a) clearly  shows
such leaky property.  On the contrary, TM GP mode ex-
hibits  good  propagation  and  field  confinement.  At  the
same time,  such properties  can  be  controlled  with  great
ease by tuning Fermi energy of graphene. From the view-
point of surface conductivity (σ=σintra+σinter), the sign of
Im(σintra)  is  always  positive  so  as  to  support  TM  GP
mode,  while  the  interband  transition  gives  rise  to  the
negative  sign  of  Im(σinter)  and  thereby  TE  GP  mode  is
supported at high frequencies or low Fermi energy. As a
consequence, graphene can selectively support either the
TM or TE GP mode depending on its Fermi energy and
the  incident  photon  energy.  Furthermore, Figure 6(b)

show that  the effective  mode-field area (Aeff)  of  TM GP
mode is almost one percent of that of gold with the same
geometry, indicating  the  extremely  high  field  confine-
ment of TM GP mode. A number of works have well ad-
dressed  the  above  issue  on  the  propagating  GPs  along
with graphene  sheet  from different  perspectives,  for  ex-
ample  launching228−232,  guiding233−235,  coupling236−238, de-
tecting150,239, confining240,241, and tuning242−245.

Therefore,  to  manipulate  the  energy  flow  of  GPs
propagating  along  with  graphene  sheet,  it  is  critical  to
control  the  propagation conditions  as  described by Eqs.
(5) and (14). It  can  be  seen  that  the  propagation  per-
formance of GPs is determined by the surface conductiv-
ity  of  graphene:  the  sign  of  Im(σg)  determines  whether
the  TM  GP  mode  is  supported  (Im(σg)>0)  or  not
(Im(σg)<0); the value of Im(σg) determines the propaga-
tion characteristics  of  the TM GPs.  Accordingly,  modu-
lating the surface conductivity of graphene is an efficient
way  to  manipulate  the  energy  flow  of  propagating  GPs
on 2D plane. In 2011, Vakil and Engheta reported a the-
oretical  study  to  demonstrate  graphene  as  a  one-atom-
thick  platform  for  2D  transformation  optics  based  on
GPs through spatially modulating the surface conductiv-
ity of graphene211. The model was on the basis of the par-
allel  capacitor  with  graphene  sheet  as  the  upper  plate,
highly doped silicon as the ground plate, and dielectric as
the spacer,  as schematically shown in Fig. 7(a) and 7(b).
According to the basic principle of the parallel capacitor,
the  relationship  between  the  charge Q on  plates  and
voltage V between plates is governed by Q=ε·A·V/h. Un-
der  conditions  that  the  plate  area A is  fixed,  the  change
of the voltage V, the separation h between two plates, or
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the dielectric permittivity ε of the spacer would result in
the charge Q change on plates, corresponding to the car-
rier  density  (or  Fermi  energy)  of  the  graphene  plate.
Therefore, by controlling the parameters of the capacitor,
the  tuning  of  density  and  distribution  of  carrier  in
graphene due to the static electric-field effect can be real-
ized and hence spatially modulating the surface conduct-
ivity of graphene sheet can be achieved. As shown in Fig.
7(a),  if  the  ground plate  is  uneven (h1≠h2), the  nonuni-
form  electric  field  on  graphene  results  in  nonuniform
conductivity  patterns  of  graphene.  On  the  other  hand,
the nonuniform conductivity patterns can be achieved by
a nonuniform spacer for example unequally doped silica
(ε1≠ε2),  as  shown  in Fig. 7(b).  The  simulated  results  in
Fig. 7(c) well demonstrated the above theoretical model,
showing the electrical control of propagating GPs by spa-
tially  modulating  the  conductivity  of  graphene211.  And
further,  as  shown  in Fig. 7(d),  a  2D  GP  waveguide  was
designed  with  suitable  conductivity  patterns.  In  2014,
Alonso-González et al.  experimentally demonstrated the
control  of  propagating  GPs  using  spatial  conductivity
patterning  method205.  In  their  experiments,  a  graphene
bilayer prism was implemented to investigate the refrac-
tion  behavior  of  GPs  propagating  along  with  graphene

sheet,  and  the  plasmon  wavelength  of  GPs  in  bilayer
graphene  was  1.4-times  larger  than  that  in  single-layer
graphene observed by the near-field imaging, which was
attributed to the locally increased conductivity of bilayer
graphene  (theoretically  1.41-times  larger  than  that  of
single-layer graphene).  The spatial  conductivity pattern-
ing model provides a theoretical method to dynamically
modulate the  conductivity  of  graphene  and  more  im-
portantly,  to  manipulate  the  energy flow of  propagating
GPs  on  2D  plane  without  directly  patterning  graphene,
which has triggered the graphene-based 2D optics and a
large number  of  electrically-tunable  planar  devices  in-
cluding metasurfaces (to be discussed in Section Dynam-
ic surface EM wave manipulations).

Compared with  the  launching  difficulty  of  propagat-
ing GPs, structured graphene provides an efficient route
to  avoid  the  large  momentum  mismatch  between  GPs
and  excitation  light  by  plasmon  resonances,  usually
termed the localized GP mode177,206. As discussed in Sec-
tion Basic  material  properties  of  graphene,  the  surface
conductivity of a continuous graphene sheet is described
by Eq. (2). For the structured graphene array such as rib-
bon  and  disk,  its  conductivity  should  be  averaged  with
respect  to  the  unoccupied  area.  Under  the  condition  of
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the quasi-static approximation and without lateral coup-
ling of the neighboring unit,  the average conductivity of
a structured graphene array is given as206,213, 

σg = i
fD
π

ω
(ω2 − ω2

p) + iΓpω
, (15)

Γp

where f is the filling factor (the ratio of graphene area to
total area), D=e2EF/ћ2 is the Drude weight, and  is the
plasmon resonance width of structured graphene, which
is  usually  10%  larger  than  the  Drude  scattering  width
Γ=evF2/(μEF) of  continuous  graphene  sheet.  The  fre-
quency ωp of graphene plasmon resonance (GPR) is  ex-
pressed as206,246, 

ωp =

√
3D

8εmε0d
, (16)

here εm is  the  average  permittivity  of  dielectrics  below
and above graphene, d is the size (width or diameter) of
structured graphene. It can be seen that the average con-
ductivity  of  structured graphene is  closely  related to the
frequency  of  GPR,  which  is  mainly  determined  by  its
geometric size,  Fermi  energy,  and  surrounding  dielec-
trics, indicating  the  flexible  tunability  of  GPRs in  struc-
tured graphene.

To perform the light transmission, reflection, and ab-
sorption at  the  interface  of  metasurface  based  on  struc-
tured graphene, the Fresnel coefficients should be found
out  first. Figure 8 illustrates the  schematic  model  of  re-
flection  and  refraction  of  p-polarized  light  passing

through a dielectric-graphene-dielectric  interface.  Simil-
ar  to  the  propagation  model  in Fig. 5,  here  graphene
sheet  is  also treated as  a  conductive interface with zero-
thickness. The boundary condition of electric fields is,  {

⇀n × (
⇀

E2 −
⇀

E 1) = 0
⇀n · (

⇀

D2 −
⇀

D1) = ρg
, (17)

here the surface charge density of graphene ρg can be ex-
pressed using conductivity247, 

ρg = σgEtβzcosθ2/ω . (18)

Then, Eq. (17) is re-written by the Fresnel coefficients,
i.e.  reflection  coefficient  (r12=Er/Ei)  and  transmission
coefficient (t12=Et/Ei), {

(1− r12)cosθ1 − t12cosθ2 = 0
ε0ε1(1+ r12)sinθ1 − t12(ε0ε2sinθ2 + σgβzcosθ2/ω) = 0 .

(19)
Solving Eq.  (19) results  in  the  Fresnel  coefficients  of

graphene  interface.  In  the  case  of  normal  incident
(θ1=θ2=0), the Fresnel coefficients can be obtained as, 

r12 =
n1 − n2 − Z0σg

n1 + n2 + Z0σg
, t12 =

2n1

n1 + n2 + Z0σg
,

r21 =
n2 − n1 − Z0σg

n1 + n2 + Z0σg
, t21 =

2n2

n1 + n2 + Z0σg
. (20)

From Eq.  (20), it  can  be  seen  that  the  Fresnel  coeffi-
cients of  graphene  interface  are  determined  by  its  con-
ductivity.  As discussed above,  for  a  structured graphene
array,  its  conductivity  is  governed  by Eq.  (15),  which  is
closely related to the GPRs. Therefore, the Fresnel coeffi-
cients of a structured graphene array can be dynamically
tuned  by  controlling  the  geometric  size,  Fermi  energy,
and surrounding dielectrics. Here, graphene nanoribbon
array on SiO2 substrate is taken as an example to discuss
the transmissivity  and  reflectivity  of  light  (the  calcula-
tion  settings  can  be  found in  ref.248).  Different  from the
97.7% transmittance of a continuous graphene sheet over
a broad band, the reflection and transmission spectra of
graphene  nanoribbon  array  in Fig. 9 show strong  filter-
ing  features  and  also  the  tunable  property  with  varying
the Fermi energy, which is in accordance with the previ-
ous  experiments177,206. Besides  the  amplitude  manipula-
tion based on GPR filtering (usually called frequency-se-
lective  metasurface)  using  various  structured  graphene
such as ribbon170,249, disk250,251, ring252,253, and other reson-
ators254−257,  metasurfaces  made  of  structured  graphene
based on localized GPs have been extensively researched
to  dynamically  control  the  phase  and  polarization  of
light  (to  be  discussed  in  Section Dynamic  spatial  EM
wave manipulations). 
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Metasurfaces with building blocks of
structured graphene
Due  to  supporting  the  plasmon  modes,  naturally,
graphene  has  been  developed  as  the  host  materials  for
building plasmonic metasurfaces as that of noble metals,
which not  only extend the working frequency of  metas-
urfaces  from  visible  and  NIR  to  MIR  and  THz  but  also
empower the active tunability to them. To construct the
GP  metasurfaces,  how  to  pattern  graphene  into  diverse
metaatoms  (micro/nanostructures)  is  a  matter  of  great
concern.  Different  from  bulk  metals,  it  is  difficult  to
structure one-atomic-thick  graphene  with  enough  de-
grees  of  freedom,  leading  to  the  poor  family  of
metaatoms  made  of  graphene.  As  discussed  in  Section
Fundamentals of graphene, in general, there are two tech-
nology roadmaps to accomplish this task: one is directly
patterning graphene into various geometric structures by
advanced  fabrication  process39,177,206,258−260,  the  other  is
spatially  modulating  the  surface  conductivity  of
graphene  to  implement  equivalently  patterning211,261−264.
The former usually exploits metasurfaces with function-
alities of spatial EM wave manipulations in the 3D space
(far-field), while the latter mainly provides the ideal plat-
form  to  manipulate  the  surface  EM  wave  (propagating

GPs) on the 2D plane (near-field). In this Section, recent
advances on  dynamic  spatial  and  surface  EM  wave  ma-
nipulations using plasmonic metasurfaces made of struc-
tured graphene  are  discussed  with  respect  to  their  dy-
namic functionalities of the spectrum modulation, wave-
front shaping,  polarization  control,  and  frequency  con-
version in  the  MIR and THz regimes,  which  are  associ-
ated with single- or multi-dimensional manipulations of
the EM waves. 

Dynamic spatial EM wave manipulations 

Spectrum modulation
The localized  plasmon  resonances  in  graphene  nano-
structures enable  the  dramatic  filtering  of  the  transmis-
sion, reflection,  and absorption spectra,  offering an effi-
cient way to manipulate the amplitude and frequency of
light  waves.  External  stimuli  induced  tunability  of  the
resonance, such as intensity modulation and wavelength
shift  of  the  resonance,  makes  the  spectrum  modulation
become  active  control  and  thereby  enable  dynamically
tunable devices such as tunable filters, sensors, and mod-
ulators. Due  to  such  spectral  filtering  in  frequency  do-
main,  metasurfaces  consisting  of  periodically  patterned
graphene  (metaatoms)  arrays  are  generally  called
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frequency-selective metasurfaces, as shown in Fig. 10, in-
cluding graphene ribbon, disk, ring, split-ring, and other
structures. Inspired by the pioneering works177,206, metas-
urfaces  based on graphene ribbons  or  disks  are  the  first
and extensively researched. Chu and Gan reported a the-
oretical  and  numerical  study  on  an  active  plasmonic
switch based on graphene ribbon array operating in the
MIR spectrum170.  As  shown in Fig. 10(a),  the  resonance
wavelength of the metasurface can be controlled through
passive and/or active tunings: the former is related to the
ribbon width and the layer number of graphene, the lat-
ter  is in  situ variations  of  the  Fermi  energy of  graphene
ribbon.  When  slightly  changing  the  Fermi  energy,  the
dynamical  resonance  wavelength  shifts  and  intensity
modulations  on  the  transmission  spectra  were  achieved
with great ease. Liu et al. investigated the plasmon modes

in  graphene  rings  with  symmetric  and  anti-symmetric
structures,  as  shown  in Fig. 10(b),  and  demonstrated
their  potentials  for  optical  antennas  with highly  tunable
extinction  spectra  in  THz  range265.  Fang  et  al. experi-
mentally demonstrated electrical tunability and hybridiz-
ation of localized GPRs in graphene nanodisks and nan-
orings167. The  ion-gel  top-gate  configuration  was  pro-
posed to  accomplish  the  electrical  doping  of  the  pat-
terned graphene array, as shown in Fig. 10(c). The reflec-
tion spectra of the metasurface exhibited flexibly tunable
extinction peaks  (both  amplitude  and  frequency)  pro-
duced  by  the  GPRs  in  nanodisks.  Additionally,  such
spectrum  modulation  can  be  brought  closer  to  the  NIR
in graphene nanoring arrays due to the plasmon hybrid-
ization.  Papasimakis et  al. revealed  the  strong  magnetic
response in graphene split rings at THz frequencies253. By
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comparing with  gold,  graphene  exhibited  unpreceden-
ted  advantages  in  the  degree  of  confinement,  quality
factor  of  GPRs,  magnetic  polarizability  density,  and  in
particular  the  electrically-tunable  optical  response,  as
presented  in Fig. 10(d),  which  can  be  beneficial  for  the
fabrication of active metasurfaces in the THz regime. On
the basis of the Babinet structure of two split rings in or-
thogonal  orientation,  Li  et  al.  constructed  a  graphene
planar chiral metasurface and reported the tunable dual-
band  asymmetric  transmission  for  circularly  polarized
(CP)  waves266.  In  2018,  Gopalan et  al. proposed a  scal-
able nanoimprint technique to fabricate graphene nano-
structures over  wafer-scale  areas  instead  of  the  expens-
ive  and  low-throughout  lithography  techniques267.  As
shown  in Fig. 10(e),  the  large-area  graphene  nanohole
arrays were  demonstrated  with  gate-tunable  spectral  re-
sponse.  In  addition  to  the  directly  patterned  graphene
nanostructures, equivalent patterning of graphene by ex-
ploiting spatial modulation of the graphene’s conductiv-
ity  is  also  demonstrated  to  construct  GP  metasurfaces
with tunable  spectral  responses.  Researchers  from  Pen-
dry’s  group  proposed  a  transformation  optics  approach
to  design  GP  metasurfaces  with  tunable,  broadband
spectral  features264,268.  As shown in Fig. 10(f), by period-
ically doping a graphene sheet  along one spatial  dimen-
sion, a subwavelength graphene grating metasurface was
achieved  with  singularities,  whose  spectrum  presented
strong and broadband absorption of the THz waves. This
work provides  an  alternative  route  to  implement  fea-
tured spectrum  generation  and  modulation,  in  particu-
lar  enhancing  the  absorbance  and  bandwidth  of  the
metasurfaces.  It  can  be  seen  that  in  the  single-layer
graphene nanostructures,  the  strengths  of  GPRs are  rel-
atively  low at  low carrier  density,  and  the  strengths  can
be  elevated  by  heightening  the  doping  level,  which
however  is  challenging  to  achieve  without  reducing  the
carrier mobility and stability. In the pursuit of strong res-
onances together  with  tunability,  two  efficient  ap-
proaches are widely adopted: one is by the aid of total in-
ternal  reflection  or  a  dielectric-coated  metal  substr-
ate213,269,  the  other  is  using  graphene  multilayer
stacks206,256,270.

The active  control  of  the  plasmon  resonance  spec-
trum is of great importance to enhance the performance
of  GP  metasurfaces  and  metadevices,  especially  tuning
and  extending  their  working  wavelength  dynamically,
which  is  very  attractive  for  practical  applications271−275.
As an example, here tunable MIR plasmonic sensors us-

ing graphene metasurfaces are taken. In 2015, Rodrigo et
al. reported  a  high-sensitivity  and  electrically-tunable
plasmonic biosensor for detecting the protein in a label-
free fashion using graphene metasurfaces272. As shown in
Fig. 11(a), the proposed metasurface is  graphene nanor-
ibbon array  with  electrostatic  gating,  and  protein  sens-
ing is  enhanced  by  plasmons  and  accomplished  by  de-
tecting the  spectral  shifts  of  plasmon  resonances.  Note-
worthy, the vibrational fingerprints of proteins located at
1660 and 1550 cm−1 were almost undetectable when they
were  far  away  from  the  plasmon  resonance  wavelength
(e.g.  for Vg=  −20  V);  While  for Vg= −130  V  the  vibra-
tional  modes  induced  decrease  in  extinction  was  clearly
visible  as  two  dips,  which  resulted  from  the  resonant
coupling of  plasmon  resonance  and  molecular  vibra-
tions.  It  is  an  impossible  mission if  the  active  tunability
of  the  protein  sensor  was  absent.  Hu  et  al. went  a  step
further to demonstrate the simultaneous detection of in-
plane and out-of-plane molecular vibrational modes with
ultrahigh sensitivity  by  using  graphene  nanoribbon  ar-
rays, which pushed the near-field detection of molecular
fingerprints to the far field271. The in situ electrical tunab-
ility  of  GPRs  ensured  an  extremely  wideband  detection
covering  the  entire  region  of  molecular  fingerprints.
More  recently,  graphene  metasurfaces  with  nanoribbon
arrays have been developed to detect gas molecules (such
as SO2 and CO2)274,275.  Besides the molecular fingerprint
detections,  Zundel  and  Manjavacas  proposed  a  MIR
sensor  to  detect  the  position  of  molecules  on  sensors
with the  subwavelength  spatial  resolution  by  taking  ad-
vantage  of  the  electrical  tunability  of  GPRs273. Figure
11(b) shows the  concept  of  the  sensor,  composed  of  fi-
nite  graphene  nanodisk  arrays  with  identical  subarrays
(or pixels). The doping levels of nanodisks in each subar-
ray were  the  same  and  adjustable.  Thus,  by  independ-
ently  adjusting  the  doping  levels  of  different  subarrays,
simultaneous  identification  of  the  target  molecule  and
detection of its spatial position could be enabled. The ab-
sorption cross-section of each nanodisk indicated differ-
ent wavelengths of  GPRs for different doping levels  and
also their high-sensitivity shifts. The variation of the ab-
sorption  cross-section  clearly  revealed  the  presence  or
absence  of  molecules  in  the  active  pixel,  and  finally  the
position of molecules could be detected with spatial res-
olution  of  the  pixel  size,  as  shown  in Fig. 11(b). Al-
though  it  is  difficult  to  individually  control  the  doping
level of each pixel, this work brings new opportunities to
design  GP metasurfaces  with  position  sensing  functions
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at  low  frequencies  (usually  with  much  large  size  of
metaatom).

The unit  cell  in  the  above-discussed GP metasurfaces
is  independent  of  each other,  and hence  the  response  is
solely determined by the individual metaatom. However,
it  will  be  significantly  different  when  the  neighboring
metaatoms  are  coupled.  The  occurrences  of  interesting
phenomena and  effects  have  been  reported  such  as  un-
precedented levels  of  field  enhancement  by  strong  plas-
mon  interaction  of  coupled  graphene  nanostruc-
tures276,277.  As  its  great  potential  in  optical  spectrum
modulation,  electromagnetically  induced  transparency
(EIT)  with  the  sharp  and  pronounced  spectral  response
has  attracted  enormous  attention,  which  has  been  well-
studied in metallic plasmonic metasurfaces and metama-
terials186.  In  2013,  Cheng  et  al. proposed  a  dynamically
wavelength-tunable  EIT metasurface  in  the  MIR regime
based  on  graphene  nanostrips278. The  metaatom  con-
sisted  of  the  laterally  coupled  graphene  nanostrips,  i.e.
one  central  nanostrip  and  two  parallel  nanostrips,  as
shown  in Fig. 12(a).  When  the  symmetry  of  the

metaatom was  broken  (there  existed  a  lateral  displace-
ment),  as  shown  in Fig. 12(b),  a  transmission  peak
emerged  and  increased  with  the  increase  of  asymmetry.
The electric field distributions at different displacements
unveiled  the  physical  origin  of  the  EIT,  resulting  from
the near-field  coupling  of  the  bright  modes  in  the  cent-
ral nanostrip and dark modes in two parallel nanostrips.
Due to  the  tunable  GPRs in  nanostrips,  the  EIT spectra
were  inherently  tunable  in  a  broad  range  of  MIR,  as
shown in Fig. 12(c). Inspired by this work, we proposed a
phase-coupling  scheme  to  generate  and  modulate  EIT
using  GP  metasurfaces248.  As  shown  in Fig. 12(d),  the
metasurface  consisted  of  two  graphene  ribbon  arrays
(GRAs) spatially separated by a dielectric spacer, and the
ion-gel  gates  were  used  to  control  the  Fermi  energy  of
GRAs  independently,  which  formed  a  Fabry-Perot  (FP)
cavity  with  controllable  Fresnel  coefficients.  The  GRAs
were modeled as the interfaces with tunable Fresnel coef-
ficient  and  plasmon  resonance  spectra,  as  discussed  in
Section Theoretical  and numerical  models  of  GPs.  When
the  plasmon  resonance  wavelengths  of  two  GRAs  were
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slightly  detuned  (through  gate-voltage  detuning),  a
transparency  peak  was  observed  around  the  original
transmission dip. This was attributed to the constructive
interference  between  the  light  waves  reflected  by  two
GRAs, which was validated by both transfer matrix ana-
lyses and numerical simulations. The separation-depend-
ent  periodic  EIT  evolutions  are  shown  in Fig. 12(e)
clearly demonstrated that phase coupling contributed to
the generation of EIT. By controlling the gate voltage ap-
plied on two GRAs, a frequency-selective electro-optical
switch  was  demonstrated  with  intensity  modulation
depth larger than 86% over a wide band frequency in the
MIR regime, as shown in Fig. 12(f). By cascading such FP
cavity,  furthermore,  a  tunable  multiple  EIT  metadevice
was  conceived279.  Recently,  we  achieved  the  dynamic
Fano  spectral  response  using  graphene  metasurface

based  on  near-field  coupling  by  controlling  the  Fermi
energy of graphene and the polarization of incident MIR
light280.  On the basis  of  the near-field coupling or phase
coupling scheme, currently, graphene-based EIT or Fano
metasurfaces with diverse metaatoms have been demon-
strated  to  implement  active  metadevices  with  dynamic
spectrum modulations281−284. 

Wavefront shaping
Besides the  amplitude  manipulation,  plasmon  reson-
ances  in  graphene  nanostructures  can  also  effectively
produce  the  scattering  phase  retardation,  which  is
strongly  associated  with  the  geometry  and  wavelength.
Recently, GP  metasurfaces  have  been  widely  demon-
strated  to  control  the  wavefront  of  light  based  on  the
amplitude  and  phase  manipulations.  Here,  we  will
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discuss the research progress on graphene-based dynam-
ic  metasurfaces  for  active  wavefront  shaping.  To  start
with, the phase and amplitude manipulation by graphene
nanoribbon metasurfaces  are  shown in Fig. 13.  In  2014,
Lu  et  al. investigated  the  scattering  properties  of
graphene nanoribbon and found that unit cell with a pair
of graphene nanoribbons could provide 0~π phase mod-
ulation  with  large  amplitude,  as  shown  in Fig. 13(a)285.
To realize the full 2π phase coverage, which is crucial for
complete wavefront  shaping,  and  also  enhance  the  in-
trinsically weak light-graphene interaction, Li  et  al. pro-
posed and demonstrated  a  GP metasurface  to  dynamic-
ally  control  the  phase  and  amplitude  of  light  using
graphene  ribbons  on  a  dielectric/metal  substrate286. Fig-
ure 13(b) shows the schematic configuration of the pro-

posed  metasurface,  which  was  the  combination  of  a
graphene  nanoribbon  array  and  a  subwavelength-thick
FP  cavity.  Simulation  results  in Fig. 13(c) revealed  that
the  phase  of  the  reflected  light  could  almost  cover  the
range from –π to π through varying the ribbon width at a
suitable dielectric thickness and, at the same time, the re-
flectivity  was  larger  than 48.6%.  By managing the  phase
shift  distribution  along  with  the  interface  through
graphene ribbons  with  different  widths,  a  reflective  fo-
cusing lens was achieved. As shown in Fig. 13(d), the fo-
cal length, size and intensity of the spot could be dynam-
ically tuned by adjusting the Fermi energy. By managing
the graphene  ribbon  with  different  Fermi  energy,  Ya-
tooshi et al. demonstrated the wavefront control of THz
wave using the similar graphene metasurface287. In 2017,
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Ma et  al. stacked  two  independent  GP  metasurfaces  to
achieve  dual-band  light  focusing288.  As  shown  in Fig.
13(e),  the  metadevice  was  composed  of  two  graphene
nanoribbon metasurfaces  with  large  differences  in  rib-
bon  width  as  well  as  period,  which  ensured  that  the
phase of the reflected light from two metasurfaces could
be controlled independently from –π to π at two distinct
frequencies, as shown in Fig. 13(f). The independence of
the two metasurfaces could also be demonstrated by the
electric field distributions at two resonant frequencies, as
shown in Fig. 13(g). As a  proof-of-principle  demonstra-
tion,  the  dual-band  focusing  reflectors  with  hyperbolic
phase  profile  were  simulated.  From Fig. 13(h),  it  can  be
seen that the metadevice could simultaneously operate at
16 and 25 THz with good on-axis and off-axis focusing.
This  work provides  a  general  approach to design multi-
band and  multi-functional  metasurfaces  by  stacking  in-
dependent metasurfaces together. In 2018, a series of act-
ive wavefront  control  including  anomalous  beam  steer-
ing and focusing,  cloaking,  and illusion optics  were  nu-
merically  presented  by  GP  metasurfaces  with  graphene
ribbons on a dielectric FP resonator, where the 2π phase
requirement was achieved by interplay between GPRs in
ribbons  and  FP  resonances  in  the  cavity  resonator289.
More recently, a meta-coupler for dynamical conversion
of  surface  plasmons  to  propagating  waves  was  reported
by  constructing  a  phase-gradient  metasurface  using
graphene ribbons290.

As above discussions, by tailoring the structural para-
meters of  a single graphene antenna such as ribbon, the
abrupt phase modulation of π arising from the plasmon
resonance can be introduced. To extend the phase mod-
ulation to cover the entire 2π range, multiple independ-
ent  resonances  and  coupled  antenna  resonances  have
been  developed.  In  addition,  the  Pancharatnam-Berry
(PB) phase  based on the  orientations  of  antennas  is  an-
other efficient method, in fact a completely different one,
to  implement  2π  phase  modulation.  The  PB  phase,  or
geometric  phase,  is  associated  with  the  space-variant
conversion  of  polarization  states  following  the  path  on
the Poincaré sphere, which can be created by anisotropic
subwavelength antennas  with  identical  geometric  para-
meters  but  spatially  varying  orientations291.  The  phase
difference between the transmitted/reflected waves from
any two points on the metasurface equals to one-half  of
the solid angle enclosed by their corresponding traces on
the  Poincaré  sphere292.  For  the  CP  incident  wave,  the
handedness of transmitted/reflected CP wave is opposite

with an additional PB phase of twice the rotation angle of
antenna, which means that the entire 2π phase range can
be  covered  by  only  rotating  antenna  from  0  to  180º  in
metasurfaces.  Currently,  the  PB  phase  has  been  widely
developed  to  completely  shape  the  wavefront  of  CP
waves using plasmonic and dielectric metasurfaces4,13,31,46.
Based on  such  PB  phase  principle,  graphene  metasur-
faces have  also  been  demonstrated  to  dynamically  con-
trol the wavefront of CP light. In 2015, Cheng et al. pro-
posed a  graphene  metasurface  with  periodically  pat-
terned graphene nanocrosses (as illustrated in Fig. 14(a))
to  control  the  wavefront  of  CP  light77.  They  found  that
graphene  nanocrosses  with  different  orientations  could
refract light  into  opposite  helicity  with  uniform  amp-
litude  and 0~2π phase  range,  as  shown in Fig. 14(b),  by
which  dynamically  tunable  anomalous  refraction  was
demonstrated. In 2018, researchers from the same group
demonstrated the  high-order  anomalous  reflection  us-
ing reflection-type graphene nanocrosses metasurface122.
By properly  changing  the  arrangement  of  the  nano-
crosses  in  the  metasurface,  as  shown  in Fig. 14(c),  the
phase shift up to 6π (4π) could be obtained, correspond-
ing  to  the  3-order  (2-order)  anomalous  reflection  with
angle of 70.9° (18.6°). To validate the high-order anomal-
ous  reflection  of  the  metasurface,  1-order,  3-order,  and
15-order  vortex  beams  were  generated  by  arranging  the
nanocrosses with azimuthal phase shift  as shown in Fig.
14(d). Furthermore,  the  dynamically-controllable  effi-
ciency  of  the  metasurfaces  was  achieved  by  tuning  the
Fermi energy of graphene. In 2019, Bai et  al.  designed a
graphene metasurface with H-shape metaatom to enable
spin-dependent wavefront control based on PB phase293.
A  spin-dependent  flat  lens,  as  shown  in Fig. 14(e),  was
realized by arranging the metaatom with different orient-
ations.  Simulation results  proved that  the  lens  exhibited
interesting circular dichroism: right-handed circular po-
larized  (RCP)  light  was  scattered  (Fig. 14(f))  while  left-
handed  circular  polarized  (LCP)  light  was  focused  (Fig.
14(g)). The  active  control  the  circular  polarization  con-
version efficiency and bandwidth was also demonstrated
by tuning the  Fermi energy.  It  should be  noted that  the
PB phase is always related to the CP light,  which is cur-
rently  one  of  the  most  popular  routes  for  spin-depend-
ent wavefront control using metasurfaces. 

Polarization control
To control the polarization state of light, the Faraday ef-
fect is a universal train of thought. In the magnetic field,
Faraday  rotation  of  several  degrees  in  the  continuous
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graphene  has  been  demonstrated  experimentally  by
Crassee  et  al.  in  2011294. Unfortunately,  such giant  rota-
tion of the polarization state is typically at lower THz fre-
quency due to the intrinsic cyclotron resonance of mass-
less  carriers  and  meanwhile  requires  giant  magnetic
fields, which hinder their applications. To extend the op-
eration range and enhance the maximum rotation angle
in  smaller  magnetic  fields,  creating  metasurfaces  with
structured graphene  to  break  the  uniformity  of  a  con-
tinuous graphene sheet has been demonstrated as an effi-
cient  way295.  By  patterning  graphene  into  microribbon
array, as shown in Fig. 15(a), Tymchenko et al. theoretic-

ally  demonstrated  a  large  Faraday  rotation  (more  than
1°)  at  higher  THz  frequency  in  much  smaller  magnetic
fields through  exciting  the  magnetoplasmons  in  indi-
vidual ribbons296. The simulated results in Fig. 15(b) and
15(c) showed the  blueshifts  of  both  peaks  on  transmis-
sion and Faraday rotation spectra of graphene microrib-
bon  array  compared  with  that  of  the  continuous
graphene  sheet.  In  2014,  Hadad  et  al. proposed  a
paradigm  of  graphene  metasurface  to  enhance  the
Faraday rotation at magnetic field smaller than 1 T297. As
shown in Fig. 15(d), the proposed graphene metasurface
was  an  equivalent  graphene  nanodisk  array  by  spatially
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modulating  conductivity  distribution  of  a  continuous
graphene  sheet.  As  shown  in Fig. 15(e),  the  rotation
angle of ~18° in the far-field was achieved with only ~0.3
T magnetic  bias  at  the  frequency of  45 THz.  And inter-
estingly,  a  strong  quantization of  the  rotation as  well  as
circular dichroism  with  magnetization  was  clearly  ob-
served, which  is  attributed  to  the  Landau-level  oscilla-
tions in  the  graphene  metaatom,  showing  great  poten-
tials  to  enable  the  dynamical  polarization  rotator  with
very  low  magnetic  bias.  More  recently,  experiments  on
Faraday  rotation  using  graphene  metasurfaces  made  a
breakthrough in the THz regime. In 2018, Tamagnone et
al.  designed  and  fabricated  three  different  graphene
metasurfaces, that is, a periodic array of graphene square
dots, a graphene square antidot lattice (shown in the in-
set of Fig. 15(f)), and a hybrid metal-graphene patterned
structure, where  the  magnetoplasmons  induced  blue-
shift of the Faraday rotation was confirmed experiment-
ally298.  The strong tunability of the Faraday rotation was
also  demonstrated  using  both  electric  and  magnetic
fields, and the Faraday rotation spectra at different Fermi

energies  were  plotted  in Fig. 15(f) for  graphene  square
antidot  lattice.  In  2020,  Padmanabhan  et  al.  reported  a
graphene  microribbon  metasurface  (Fig. 15(g)) to  dy-
namically control  the  transmission  and  polarization  ro-
tation  of  linearly  polarized  THz  pulses299.  The  tunable
Faraday  rotation  with  the  external  magnetic  field  and
ribbon pattern could be observed in Fig. 15(h). The pos-
sibility to control the Faraday rotation and frequency by
geometry-engineering,  external  magnetic  and/or electric
fields  using  graphene  metasurfaces  demonstrated  by
these  important  progress  holds  an  exciting  promise  for
dynamical rotating the polarization states of light.

Apart  from  the  Faraday  effect,  polarization-depend-
ence  of  the  plasmon  resonances  in  structured  graphene
has already been exploited to implement dynamic polar-
ization control.  Due  to  the  geometric  symmetry,  plas-
mon resonances in graphene disk and ring are polariza-
tion-independent. While for asymmetric graphene struc-
tures  such  as  ribbon,  rectangle,  ellipse,  and  cross  the
plasmon resonances are highly sensitive to the polariza-
tion  state  of  incident  light.  In  2013,  Cheng  et  al.
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proposed a MIR tunable polarization converter by using
asymmetric  graphene  nanocrosses300.  As  shown  in Fig.
16(a), the  transmission  coefficients  and  phase  retarda-
tion  of  the x-  and y-polarized  transmitted  waves  were
highly related to the polarization states of excited waves.
When  the  phase  retardation  difference  between  them  is
exactly 90°, as shown in Fig. 16(b), the linearly polarized
light  can  be  converted  into  the  circularly  or  elliptically
polarized  light,  and  also  can  be  rotated  with  an  angle
when  the  phase  difference  is  zero.  Meanwhile,  the
wavelength  and  polarization  states  of  the  transmitted
light can be dynamically tuned by controlling the Fermi
energy of graphene. On the basis of such principle, vari-
ous  dynamically  tunable  polarization  converters  were
demonstrated  using  graphene  metasurfaces  based  on  L-
shaped graphene nanostructures (Fig. 16(c))301, rectangu-
lar graphene patches (Fig. 16(d))302, and graphene nanor-
ibbons303.  In  2018,  Panoiu  et  al.  realized  a  tunable  THz
polarization converter by two crossed graphene nanorib-
bon gratings304.  As shown in Fig. 16(e), the x- and y-po-
larized  incident  wave  was  reflected  by  the  bottom  and

top graphene  grating  respectively,  and  the  phase  differ-
ence of them can be controlled by the thickness of the in-
sulator spacer.  Thus,  the  proposed  metasurface  can  ef-
fectively generate  linearly,  circularly,  and elliptically  po-
larized THz waves. 

Frequency conversion
On  the  way  to  seek  nonlinear  materials  with  low
threshold and  ultrafast  response  time,  plasmonic  nano-
structures  have  been  particularly  attractive  because  of
their  ability  to  enhance  the  electric  field  intensity  near
nanostructures,  such  as  noble  metal  nanoparticles  and
metasurfaces. Although the third-order nonlinear effects
including  four-wave  mixing  (FWM),  Kerr  effect,  and
third-harmonic  generation  have  been  experimentally
confirmed in the undoped graphene, even-order nonlin-
ear processes are always forbidden because graphene is a
centrosymmetric  atomic crystal.  To exploit  the even-or-
der nonlinearity,  Cox  and  García  de  Abajo  demon-
strated theoretically  that  graphene nanoislands could be
an  ideal  platform for  developing  the  electrically-tunable
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nonlinear  nanodevices305.  As  shown  in Fig. 17(a) and
17(b), the centrosymmetry of graphene was broken when
patterned  into  nanoisland  due  to  the  finite-size  effect,
and graphene  dipole  was  induced  by  the  incident  elec-
tric  field.  When  the  incident  light  is  polarized  along x
direction, only odd harmonics are generated, which res-
ults  from  the  mirror  symmetry  of  the  nanoisland  along
that direction. Interestingly,  for the incident light polar-
ized  along  asymmetric y direction,  both  odd  and  even
harmonics can be observed, as shown in Fig. 17(c). Such
kind  of  nonlinear  optical  polarizabilities  of  graphene
nanoislands  are  several  orders  of  magnitude  larger  than
those  of  metal  nanoparticles  with  similar  thickness.  By
exploiting  the  localized  plasmons  in  doped  graphene
nanostructures  such  as  nanoislands  and  nanoribbons,
plasmon-assisted  nonlinear  wave  mixing306,307,  including

high-harmonic  generation308, sum  and  difference  fre-
quency generation as well as FWM309, have been success-
ively  revealed  in  graphene  metasurfaces.  More  recently,
Panoiu et al. designed a specific graphene metasurface to
construct  a  wide  topological  bandgap  at  THz  frequency
in a static magnetic field and demonstrated a topologic-
ally  protected FWM process of  plasmonic edge states  in
the  bandgap127.  As  shown  in Fig. 17(d),  the  proposed
metasurface  consisted  of  a  periodic  nanohole  array  in  a
graphene  sheet,  which  results  in  a  topological  bandgap
and hence  topologically  protected  one-way  edge  plas-
mons.  It  can  be  seen  from  the  near-field  profiles  at  the
frequencies  of  signal  and idler,  plotted  in Fig. 17(e) and
17(f),  that  the  signal  is  amplified  during  propagation,
whereas an  edge  mode  is  generated  at  the  idler  fre-
quency.  Notably,  both  signal  and  idler  modes  exhibit
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unidirectional and defect-immune propagation along the
edge of metasurface, indicating that the FWM process is
topologically  protected.  They  proved  that  the  effective
nonlinear coefficient of the proposed graphene metasur-
face  is  about  10 orders  of  magnitude larger  than that  of
highly nonlinear silicon photonic nanowires. 

Dynamic surface EM wave manipulations
As discussed in Section Theoretical and numerical  mod-
els of GPs, graphene shows good energy confinement and
guidance of  propagating  GPs,  and  has  been  demon-
strated as  a  one-atom-thick  platform  for  2D  nano-
photonic  waveguides  in  the  MIR  and  THz  frequencies.
Furthermore, the  spatial  conductivity  patterning  meth-
od proposed by Vakil  and Engheta provides an efficient
way to actively guide and manipulate the GPs propagat-
ing along  with  graphene  sheet,  which  has  attracted  in-
creasing  attention  of  researchers  in  the  nanophotonics
community310.  In fact,  this  method was initially adopted
to create  functional  GP-waveguide  devices  by  imple-
menting special gate-voltage scheme or directly pattern-
ing  the  Fermi  energy  of  graphene.  For  example,  GP-
waveguide  switches  at  NIR  frequency  were  achieved  by
selectively enabling or forbidding propagation of GPs311;
THz  GP-waveguide  array  was  proposed  with  negligible
crosstalk  by  patterning  the  ferroelectrics  into  parallel-
and antiparallel-poling  configurations,  which  can  in-
duce drastically different carrier densities at the different
domain of graphene sheet221; Nanofocusing of propagat-
ing GPs on graphene sheet in the MIR band was realized
by using spatially gradient chemical potential220.

For  more  complex  manipulation  of  propagating  GPs
on graphene,  the  metasurface  concept  has  been  intro-
duced  into  the  2D  GP-waveguide  system.  According  to
the spatial  conductivity  patterning  method,  the  capacit-
or  model  is  the  fact  of  the  matter.  By  using  a  silicon-
based  grating  structure  as  the  ground  plate  of  the
graphene-silica-silicon  capacitor,  as  shown  in Fig. 18(a)
and 18(b), we  demonstrated  a  1D graphene  Bragg  grat-
ing metasurface to selectively  reflect  and slow-down the
propagating  GPs312. Figure 18(a) shows  the  schematic
model  of  the  proposed  graphene  metasurface,  in  which
the groove grating silicon plate  plays  a  vital  role  in  spa-
tially  modulating  the  conductivity  of  graphene  sheet.
When  a  gate  voltage  is  applied  between  graphene  sheet
and silicon  plate,  the  conductivity  distribution  immedi-
ately changes from uniform to nonuniform with the pat-
tern similar to the groove grating silicon plate,  which in
turn  manipulates  the  propagating  GPs  along  with

graphene sheet according to the Eq. (12). By this means,
a suitable setting of grating silicon plate with Bragg scat-
tering condition  can  finally  induce  a  periodic  modula-
tion of the effective refractive index for propagating GPs
as  that  of  conventional  fiber  Bragg  grating,  and  thus
gate-voltage tunable reflection of propagating GPs is im-
plemented. To broaden the operation bandwidth of  fre-
quency, a graded grating silicon plate is introduced as il-
lustrated  in Fig. 18(a).  The  propagating  GP  waves  at
wavelengths of 8.0, 8.5, and 9.0 μm are trapped at differ-
ent positions, namely “rainbow trapping”, and finally re-
flected back to the incident port, as shown in Fig. 18(b).
Interestingly,  the  group velocity  of  the  propagating  GPs
could  be  slow-downed  greatly  at  the  trapping  position,
corresponding  to  the  cutoff  frequency  of  GP  grating.  It
should be noted that, the trapped propagating GP waves
can  also  be  released  by  tuning  the  gate-voltage,  and
hence their group velocity can be controlled dynamically.
Shi et  al.  has well  analyzed the above performance from
the  viewpoint  of  energy  band  in  graphene  plasmonic
crystals  with  periodically  modulated  chemical  potential
in graphene313.  According to the Eq. (5),  it  is  found that
besides the conductivity of graphene, the dielectrics sur-
rounded graphene  sheet  drastically  affect  the  propaga-
tion  constant  (or  mode  index)  of  the  propagating  GPs,
which provides an alternative method to manipulate the
energy  flow  of  the  propagating  GPs.  To  implement  this
idea, we proposed a versatile scheme to design GP metas-
urface  based  on  the  effective  medium  theory  (EMT)263.
As  illustrated  in Fig. 18(c), the  fundamental  configura-
tion  of  the  metasurface  is  composed  of  a  single-layer
graphene and a specific photonic crystal (PC)-like dielec-
tric  layer,  where  periodically  arranged  two  dielectrics
with unequal permittivity lead to the mode index modu-
lation of the propagating GPs. On the basis of the EMT,
this metasurface can be equivalent to a new material with
a global  index profile  determined by the filling factor of
two dielectrics. To demonstrate the feasibility and versat-
ility  of  the  proposal,  2D  radial  and  axial  gradient-index
(GRIN) lenses  in  the  THz regime were  numerically  im-
plemented  as  diverse  as  Maxwell’s Fisheye  lens,  Luneb-
urg lens, and self-focusing lens, as shown in Fig. 18(d−f)
respectively,  which  can  work  perfectly  well  for  focusing
the  GP  waves.  It  can  be  seen  from Fig. 18(g) and 18(h)
that the focusing spot was as small as one-sixtieth of the
wavelength of excitation light in vacuum and meanwhile
could  be  dynamically  tuned  by  gate  voltage,  indicating
the  excellent  performances  of  deep-subwavelength  scale
and  broadband  electrical  tunability.  More  importantly,
arbitrary  metasurfaces  with  GRIN  index  profiles  could
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be projected through the proposed method, which shows
great potentials in developing more active 2D transform-
ational plasmonic devices.

Based on the similar method, in 2019, Basov et al. ex-
perimentally  demonstrated  a  broadly  tunable  2D  PC
platform  for  on-chip  plasmonic  manipulation  using
graphene metasurface, which consisted of a hBN encap-
sulated single-layer  graphene  on top  of  a  hexagonal  lat-
tice  array  of  SiO2 pillars,  as  shown  in Fig. 19(a) and
19(b)314.  Due  to  the  presence  of  the  patterned  substrate
underneath,  the  conductivity  of  graphene  was  unequal
between regions above the pillars and voids in SiO2 and

underwent the periodic spatial modulation, which there-
fore prompted the formation of a 2D Brillouin zone and
a plasmonic band structure with an evident bandgap, as
shown in Fig. 19(c). By introducing a shift dislocation of
the  hexagonal  lattice,  a  domain  wall  was  engineered  as
shown in Fig. 19(b). The near-field imaging of GP waves
in Fig. 19(d) visualized  both  propagating  and  localized
GP waves as a function of gate voltage: at Vg=−40 V, only
faint plasmonic fringes were observed; at Vg=−60 V, the
hexagonally-patterned dark spots emerged; at Vg=−70 V,
an 1D plasmonic mode was confined to the domain wall;
at Vg=−90  V,  launched  GP  waves  propagated  along  the
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PC. This  work  provides  not  only  an  experimental  evid-
ence to  construct  graphene  metasurfaces  using  the  spa-
tial  conductivity  patterning  method,  but  also  a  viable
platform for  electrostatically-tunable  manipulating  plas-
monic waves in the 2D plane. Based on the energy band
theory,  in  2020,  Panoiu  et  al.  proposed  a  specific
graphene  plasmonic  crystal  metasurface  to  implement
the unidirectional  and  backscattering-immune  wave-
guiding of GP waves in the 2D plane315. As illustrated in

Fig. 19(e), the  proposed  metasurface  comprised  of  peri-
odically patterned air  nanoholes in a graphene sheet,  by
which  the  gapless  Dirac  cone  of  graphene  was  opened
and  consequently  a  topological  bandgap  occurred.  And
further, a  domain-wall  interface  in  the  proposed metas-
urface  waveguide  was  constructed  by  putting  two
optimized  graphene  metasurfaces  together  in  a  mirror-
symmetric  manner,  resulting in a  plasmonic  edge mode
inside  the  bandgap.  Numerical  results,  as  shown  in Fig.
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19(f−h),  revealed  their  typical  topological  propagation
features:  unidirectional  propagation  of  GP  waves  for
RCP  and  LCP  excitation  light  and  backscattering-im-
mune  propagation  in  U-,  C-,  and  L-bend  domain-wall
interfaces. 

Hybrid metasurfaces integrated with
graphene
Although  the  manipulations  of  amplitude,  phase,  and
polarization  of  EM  waves  have  been  well  studied  using
metallic and dielectric metasurfaces, such manipulations
are  usually  passive  with  the  before-fabrication  variation
of  the  size,  shape,  and  material  properties  of  the
metaatoms  and  metasurfaces.  Beyond  patterning
graphene into  plasmonic  nanostructures  as  aforemen-
tioned  discussions,  integrating  graphene  with  passive
metasurfaces is  another  mainstream route  to  enable  dy-
namically tunable  functionalities  due  to  the  fairly  ma-
ture fabrication processes and larger degrees of freedom
for  3D  bulky  materials  (such  as  metals  and  dielectrics)
when  compared  with  2D  materials  (such  as  graphene).
As  discussed  in  Section Basic  material  properties  of
graphene, the surface conductivity (or dielectric function,
or  surface  resistance)  of  graphene  is  electrically  tunable
with  great  ease  via  an  external  electric  field,  which  is
rather  attractive  for  empowering  activity  to  passive
metasurfaces  and  metadevices.  In  general,  the  dynamic
tunability  of  a  conventional  passive  metasurface  can  be
actualized by putting an electrically-controlled graphene
layer  in  its  proximity,  which  significantly  influences  the
EM response of the metasurface usually ultra-sensitive to
the surrounding environment where graphene locates. In
2012, Min et al. experimentally demonstrated a gate-con-
trolled  graphene-integrated  metasurface  to  dynamically
modulate  both  the  amplitude  and  phase  of  THz  wave,
and  due  to  the  strong  coupling  of  graphene  with
metaatoms the measured maximum values of amplitude
and  phase  changes  exceeded  47%  and  32.2°
respectively74. At the same time, Boltasseva et al.  experi-
mentally demonstrated the electrical control of the plas-
monic  resonances  in  an  infrared  regime  by  fabricating
metal  nanostructures  on  a  voltage-controlled  graphene
layer, which largely enhanced the light-graphene interac-
tion and in turn strongly impacted the damping of plas-
monic  resonances316. In  2013,  Capasso  et  al.  demon-
strated the electrical tuning of plasmonic resonances us-
ing  graphene-loaded  antennas  over  a  broad  wavelength
range of 650 nm at the MIR frequencies317. In 2015, Kh-
anikaev et  al.  introduced a theoretical  model  for enhan-
cing  the  nonlinear  response  of  graphene  through

graphene-integrated plasmonic  metasurfaces,  which  nu-
merically proved  the  tunable  nonlinear  frequency  con-
version318.  Inspired  by  those  works,  the  combination  of
graphene and metallic structures including metasurfaces
emerges as  a  wonderful  platform for  exploiting electric-
ally-controlled  nanodevices319−327.  Tremendous  attention
have been paid to the graphene-hybrid metasurfaces for
dynamically  EM  wave  manipulating328−330. For  such  hy-
brid  metasurfaces,  their  manipulations  of  amplitude,
phase,  and/or  polarization  of  EM  waves  mainly  depend
on  metasurfaces  and  graphene  in  general  propels  such
manipulations  from  static  to  dynamic.  In  this  Section,
graphene-hybrid metasurfaces are distinguished with re-
spect  to  their  control  manners  with  graphene  including
the  global  and  local  ways.  Several  typical  examples  on
homogeneous metasurfaces  and  digital  coding  metasur-
faces are  discussed  in  detail  based  on  globally-  and  loc-
ally-controlled graphene, respectively. 

Homogeneous metasurfaces based on
globally-controlled graphene
Homogeneous  metasurface  refers  to  the  metasurface  in
which  its  metaatoms  are  simultaneously  controlled  by
one  graphene  layer,  which  results  in  the  global-con-
trolled  response  of  all  metaatoms  when  gate  voltage  is
applied. Here, dynamic spectrum modulations related to
amplitude change and frequency shift are presented first.
To  explore  a  high-speed  and  high-contrast  amplitude
modulator,  Yao  et  al.  proposed  an  electrically-tunable
MIR perfect absorber by incorporating a graphene-integ-
rated  metasurface  into  a  subwavelength-thick  optical
cavity, as shown in Fig. 20(a), which could be regarded as
an asymmetric FP resonator with a metallic fully reflect-
ing  mirror  in  the  back  and a  tunable  partially  reflecting
mirror  (i.e.  graphene-integrated  metasurface)75.  The
metasurface was composed of laterally coupled antennas
on a whole graphene sheet, which was employed to con-
trol the critical coupling condition of the metasurface ab-
sorber via the gate voltage. Figure 20(b) showed the blue
shifts of  reflection spectra  with the gate  voltage increas-
ing in the MIR regime. It can be seen that when the gate
voltage  was  40  V,  the  reflectance  dip  reached  its  lowest
value  around the  wavelength of 6.3  μm,  resulting  in  the
modulation  depth  of  more  than  95%  around  this
wavelength.  Furthermore,  the  speed  of  the  proposed
modulator  was  estimated  up  to  20  GHz  (limited  by
detector),  which was attributed to the high conductivity
and short optical response time of graphene. In the THz
regime,  the  electrically-tunable  perfect  absorption  has
more  recently  been  demonstrated  through  integrating  a
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metallic  grating  onto  graphene  Salisbury  screen  by
Zhang  et  al.331.  To  implement  ultrahigh-performance
amplitude  modulations,  successively,  Fano  resonance
and classical  analogue  of  EIT  using  metal  nanostruc-
tures exhibited  the  great  promise  due  to  their  remark-

able  features  of  large  sensitivity  to  the  local
environment332−336.  In  2014,  Emani  et  al. integrated  a
Fano metasurface on a gated-graphene, as shown in Fig.
20(c), and demonstrated the continuously dynamic con-
trol  of  Fano  resonances  at  NIR  frequencies  (Fig.
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20(d))332.  On  the  basis  of  the  EIT  metasurface  hybridly
integrated with  graphene,  in  2018,  Kim  et  al.  demon-
strated  the  dynamically-controlled  EIT  spectra  and
group  delay  of  THz  waves,  as  shown  in Fig. 20(e) and
20(f)335. More recently,  Zeng et  al.  presented the experi-
mental  demonstration  of  a  prototype  MIR  spatial  light
modulator (SLM) based on dynamic amplitude modula-
tion  using  graphene-hybrid  metasurface337. Figure
20(g−i) showed  the  structural  model  of  the  proposed
metasurface,  SEM  image  of  the  fabricated  sample,  and
measured electrically-tunable  resonant  absorption,  re-
spectively,  revealing  the  maximum  reflection  change  of
46.7% and modulation depth exceeding 90% around the
wavelength of  8.5  μm.  In  addition  to  the  high  modula-
tion depth,  the measured modulation speed was as  high
as 1  GHz,  and  the  intrinsic  modulation  speed  was  in-
ferred to be ~7.2 GHz, as illustrated in Fig. 20(j). Finally,
a  MIR  SLM  prototype  metadevice  with  6×6  functional
pixels,  shown  in Fig. 20(k) and 20(l),  was  fabricated  for
high  frame  rate  single-pixel  imaging  by  independently
switching “ON” and “OFF” the individual pixels through
the gate  voltages.  Clear  visualization  of  the  mask  pat-
terns  “CINT ”  validated  the  imaging  capability  of  the
SLM,  which  provides  a  new  scheme  to  overcome  the
modulation  speed  limitation  of  the  traditional  liquid
crystal and micromirror-based SLMs.

For the  phase  manipulations,  in  fact,  the  aforemen-
tioned amplitude manipulations are at the same time ac-
companied by the phase manipulation due to the electric
or magnetic resonances in metasurfaces. This resonance-
induced phase  retardation has  been widely  employed to
realize  dynamic  phase  modulation  of  EM  waves  by  a
variety of gate-controlled graphene metasurfaces. For in-
stance,  Zhou  et  al.  proposed  a  gate-graphene  magnetic
resonant  metasurface  to  achieve  widely  tunable  phase
modulation of reflected THz waves, where graphene was
utilized  as  a  tunable  loss  to  drive  the  coupling  behavior
in  metasurface338;  Shvets  et  al.  demonstrated  the  55°
phase control of the reflected MIR light while maintain-
ing the  amplitude  constant  using  a  plasmonic  metasur-
face integrated with a graphene sheet339; Atwater et al. re-
ported up  to  237°  phase  modulation  range  using  elec-
tronically  reconfigurable  graphene-gold  resonator
metasurfaces340.  Besides  the  above-discussed  resonance
phase, the PB phase has been extensively investigated to
conceive  metallic  and  dielectric  metasurfaces  for  phase
manipulation due to its advantages of broadband opera-
tion,  easy  access  and  large  tolerance  of  design29,46,341,342.
Recently,  integrating  graphene  with  those  metasurfaces
based on PB phase renders the phase manipulation more
active, enabling the dynamic wavefront control. In 2017,

Zhang  et  al.  demonstrated  the  graphene-integrated
metasurfaces and  metalens  based  on  PB  phase  for  act-
ively modulating  the  electric-field  amplitude  (or  intens-
ity) of anomalously refracted THz waves343. The demon-
strated active  metasurface  consisted of  a  graphene sheet
deposited on the array of  U-shaped apertures,  as  shown
in Fig. 21(a), which  acted  as  an  active  circular  polariza-
tion  converter:  a  normally  incident  LCP  wave  could  be
converted  into  the  RCP  wave. Figure 21(b) showed  the
full-wave simulation  result  of  gate-controlled  modula-
tion on anomalously  refracted  waves  from the  metasur-
face with a linear PB phase profile. It can be seen that, as
a result of the in-plane PB phase gradient, a titled wave-
front was clearly observed and also the amplitude of elec-
tric  field distribution in the refracted direction could be
actively  controlled  through  the  applied  voltage,  which
was further proved by experiments. They went a step fur-
ther  to  numerically  demonstrate  a  dynamically  tunable
metalens  by  the  spatially  parabolic  phase  profile  design,
as  shown  in Fig. 21(c),  with  which  the  incident  THz
waves  could  be  focused  and  electrically  controlled.  The
simulation  results  in Fig. 21(d) revealed  that  when  the
gate voltage was 2.2 V the wavefront of transmitted RCP
waves  could  be  converged  well  at  focal  point  while  the
electric-field  amplitude  and  energy  density  at  the  focal
point was  significantly  reduced  when  gate  voltage  de-
creases to zero.  In 2018, a focal  length-tunable metalens
was demonstrated experimentally with a graphene-integ-
rated  PB  phase-based  metasurface  by  Hu  et  al.344.  As
shown in Fig. 21(e) and 21(f), the proposed metalens was
mainly  composed  of  a  gated-graphene  and  a  gold  film
etched with rectangular aperture antennas, in which each
antenna had different rotation angles to actualize the de-
sired  phase  profile  of  metalens,  as  plotted  in Fig. 21(g).
The geometric parameters of the designed metalens were
presented  in Fig. 21(h) and 21(i), where  different  aper-
ture  lengths  were  introduced  to  compensate  for  the
phase change aroused from the influence of the chemic-
al  potential  variation  of  graphene  by  the  applied  gate
voltage. The experimental observations of the tunable in-
tensity  and  phase  distribution  with  gate  voltages  gave
evidence  for  the  capability  of  the  proposed  metalens  to
electrically  modulate  the  wavefront  of  CP  THz  waves.
The far-field  intensity  distribution in  the  axial  plane,  il-
lustrated  in Fig. 21(j) and 21(k),  calculated  from  the
measured  intensity  and  phase  in  the  imaging  plane
clearly  showed  the  dynamic  tuning  of  focal  length  as
large as ~2 mm by the gate voltage.

Similar to the aforementioned dynamic amplitude and
phase manipulations,  dynamic  manipulation  of  the  po-
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larization  state  using  graphene-hybrid  metasurfaces  has
attracted enormous interest. To manipulate the polariza-
tion state, the anisotropy of metasurfaces plays a domin-
ant role,  in  which  the  different  responses  along  ortho-
gonal  principal  axes  of  the  metaatoms  lead  to  different
amplitude attenuation  and  phase  retardation  of  the  in-
cident  EM  waves345−347.  Therefore,  the  polarization  state
can be  controlled  with  great  ease  through  carefully  en-
gineering the  geometries  of  metaatoms,  and  further  dy-

namic control of the polarization state can be realized by
integrating  gate-graphene  with  metasurfaces,  where
graphene is often deposed in hot spots created by metas-
urface  to  actively  adjust  the  anisotropic  responses  of
metasurfaces,  i.e.  tuning  the  amplitude  attenuation  and
phase retardation. On the basis of this principle, Tian et
al.  proposed  a  metadevice  by  integrating  graphene  with
an anisotropic metasurface, as shown in Fig. 22(a), which
can dynamically  modulate  the polarization state  of  MIR
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light and realize polarization encoding as well as polariz-
ation-division  multiplexing  (PDM)348.  The  proposed
metasurface contained a gold film with rectangular aper-
ture, which  had  strong  anisotropy:  largely  different  re-
sponses for the incident light polarized along two ortho-
gonal principal  axes  of  rectangular  aperture.  The  calcu-
lated reflection spectra  and normalized  Stokes  paramet-
er S3 in Fig. 22(b) and 22(c) showed  a  large  reflection
amplitude  and  widely  tunable  range  of  the  polarization
state.  As  illustrated  in Fig. 22(d) and 22(f),  the  linearly
polarized  (LP)  incident  light  could  be  converted  into
ideal LCP or RCP light when the gate voltage is 34 or 170
V respectively;  When the gate voltage is  89 V, as shown
in Fig. 22(e),  the  reflected  light  is  LP  with  polarization
direction  nearly  perpendicular  to  the  incident  LP  light.
Thus, the LP incident light can be transformed into LCP,
RCP, and  orthogonal  LP  light  by  the  proposed  met-
adevice  through  only  switching  the  gate  voltage  applied
on graphene. It can be seen from Fig. 22(g) that when the
gate voltage swept from 20 to 205 V, the Stokes paramet-
ers varied continuously in large ranges and in particular
S3 covered the  range  from  −1  to  1,  indicating  the  con-
tinuous  polarization  evolution  from  LCP  to  RCP.  The
continuous path in the Poincaré sphere, as shown in Fig.
22(h),  revealed  that  all  polarization  states  on  the  path
could be dynamically achieved by tuning gate voltage. By
using the proposed metadevice, two independent binary-
format  signals  could  be  directly  encoded  into  a  single
light  beam  with  superposition  of  LCP  and  RCP  light
beams in  the  time  domain,  describing  the  PDM  tech-
nique  as  shown  in Fig. 22(i). Similar  to  the  circular  or-
thogonal  polarization  basis,  polarization  encoding  and
PDM  based  on  the  linear  orthogonal  polarization  basis
were  also  demonstrated  using  the  proposed  metadevice
when the  incident  light  was  elliptically  polarized.  In  the
THz regime,  Kim  et  al.  demonstrated  the  directly  elec-
trical  tuning  of  the  polarization  state  in  gate-graphene
integrated  chiral  metadevice,  including  gate-controlled
circular dichroism (CD) and optical activity (OA)349. The
metadevice  consisted  of  a  layer  of  graphene  and  bilayer
of  the  chiral  metasurface,  as  shown  in Fig. 22(j),  with  a
conjugated  double  Z-shape  gold  layer.  The  simulated
electric  field  distributions  in Fig. 22(k) and 22(l) re-
vealed the different responses of the metadevice for LCP
and  RCP  waves  due  to  the  different  radiation  losses,
leading  to  electrically  selective  control  of  polarization
state. Figure 22(m–o) provided the CD performances of
the  metadevice.  The  measured  transmission  spectra  in

Fig. 22(n) evidenced the CD transmission: the transmis-
sion of RCP THz wave exhibited obvious resonance fea-
ture  and  could  be  strongly  modulated  by  gate  voltage,
while that  of  LCP  wave  was  very  insensitive  to  the  ap-
plied  voltage.  For  the  RCP  wave,  the  modulation  depth
was  measured  up  to  99%  at  the  resonance  frequency  of
1.1  THz,  as  shown  in Fig. 22(o). The  electrical  modula-
tion of CD, defined by the difference in transmission for
RCP  and  LCP  waves,  was  plotted  in  the  inset  of Fig.
22(o) and as a result, a very large CD value of ~45 dB was
achieved.  Additionally,  the  proposed  metadevice  could
work as an active polarization rotator for LP THz wave,
as illustrated in Fig. 22(p), which is usually called OA. It
can  be  seen  from  the  measured  ellipticity  in Fig. 22(q)
that at the off-resonance frequency of ~1.42 THz, the el-
lipticity almost equaled zero, implying the nearly identic-
al  transmission  of  RCP  and  LCP  waves.  Consequently,
the polarization  rotation  of  the  LP  wave  could  be  ob-
tained at this off-resonance frequency. Figure 22(r) gave
the  measured  relation  between  rotation  angle  and  gate
voltage, and showed the dynamically electrical tuning of
rotation angle from 30° to 40°. 

Digital coding metasurfaces based on locally-
controlled graphene
Compared  with  homogeneous  metasurfaces  based  on
globally-controlled graphene, it is highly desired to inde-
pendently  control  the  unit  cells  of  metasurfaces,  which
provides  more  degrees  of  freedom  and  possibilities  for
manipulating EM waves. In order to explore the distinct
abilities  for  manipulating  EM  waves  in  programmable
manners,  in  2014,  Cui  et  al.  proposed a  new concept  of
digital metamaterials,  which  has  advanced  metamateri-
als and metasurfaces more controllable, multi-functional,
and intelligent350−352. In general, the core feature of digit-
al  metamaterials  relies  on  the  independently-control-
lable  metaatom  or  array  of  several  metaatoms.  In  2018,
Balci  et  al.  demonstrated  an  electrically  reconfigurable
digital  metadevice  working  in  microwave  frequencies
with  the  assistance  of  locally-controlled  graphene79.
Firstly, the electrical control of both amplitude and phase
of microwave  was  theoretically  and  experimentally  in-
vestigated  in  graphene-integrated  split-ring  resonator
(SRR) metasurfaces. Then, based on the digital metasur-
face  concept,  they  proposed  a  digital  metadevice  with
spatially  varying  dielectric  constant  to  implement
voltage-controlled  adaptive  transformation  optics.  As
shown in Fig. 23(a–c), the local dielectric constant could
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be reconfigured by  controlling  the  gate  voltage  on indi-
vidual  metaatoms.  The  pixelated  metadevice  shown  in
Fig. 23(d) and 23(g) consisted  of  4×4  arrays  of  active
pixels  and  each  pixel  contained  3×3  SRRs  (i.e.
metaatom),  where  patterned  graphene  layers  were  used
as top and bottom electrodes to locally control the pixels
in a row or a column. By varying applied bias configura-
tion to the electrodes,  charge density  on pixels  could be
controlled actively and hence dielectric constant pattern
was  configured,  as  shown  in Fig. 23(e) and 23(f).  As  a
result,  various transmission patterns were obtained with
various  voltage  configurations,  as  shown  in Fig. 23(h)
and 23(i).

More recently,  a  programmable  graphene-metal  hy-

brid  metasurface  for  dynamic  wavefront  control  of  the
microwave  was  experimentally  reported  by  Chen  et  al.,
based on  which  dynamic  functions  including  beam  re-
directing  and  Radar  cross  section  (RCS)  reduction  was
achieved  with  binary  phase  coding353.  As  shown  in Fig.
24(a) and 24(b), the proposed phase coding metasurface
consisted of four layers including metal patch, substrate,
ground,  and patterned graphene  ribbon sandwich layer,
where the sheet resistance of different graphene ribbons
was independently tuned by DC voltages. Thanks to the
uniform  amplitude  and  opposite  phase  of  the  reflected
wave, as shown in Fig. 24(b), the binary phase coding in
unit cells described as “0” bit and “1” bit could be easily
achieved by setting voltages at 0 and 4 V respectively. On
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the  basis  of  this  property,  applications  of  the  designed
graphene-based  coding  metasurfaces  were  focused  on
beam  redirecting  and  RCS  reduction.  The  fabricated

metasurface consisted  of  48×48 elements  with  the  over-
all size of 226 mm×226 mm, as shown in Fig. 24(c). The
far-field  patterns  from  MATLAB  calculation  and  CST
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simulation  agreed  well  with  experimentally  measured
scattering field using the free-space wave method shown
in Fig. 24(d).  Specifically,  the  simplest  arrangement  of
coding  metasurface  is  the  all  “0 ”  or  all  “1 ”  scenario,
which  means  unit  cells  in  metasurface  with  identical
phase distribution. Under this scenario, the far-field scat-
tering beam would be reflected along the incident direc-
tion.  For  periodic  coding  sequences,  as  shown  in Fig.
24(e−j),  the  normally  incident  beams could be  scattered
into two  symmetrically  radiating  branches,  and  the  re-
flection angle was strongly associated with the coding se-
quence,  indicating programmable  beam redirecting.  For
more  complicated  coding  sequences  such  as  random
coding instead  of  periodic,  more  sophisticated  wave-
front control could be enabled, for example the RCS re-
duction, which  was  here  accomplished  by  both  absorb-
ing the  incident  wave  and  redirecting  the  residual  en-
ergy.  Compared  with  beam  redirecting  in  two  branches
using periodic  coding,  the  complex  random  coding  se-
quences  led  to  more  branches  in  the  far-field  radiating
pattern, as shown in Fig. 24(k−p). It is worth noting that
with the radiating branches increasing, the energy of in-
cident beam was scattered into more directions, and thus
the RCS  of  the  proposed  metasurface  was  reduced  ac-
cordingly.

Actually, complete  manipulation  of  EM  waves  re-
quires the arbitrary control of both phase and amplitude.
However,  most  of  the  digital  coding metasurfaces  solely
depend on the phase shift  while  the amplitude response
is usually  fixed.  To  address  this  issue,  Zhang  et  al.  dir-
ectly introduced the independent amplitude modulation
into phase coding metasurface by designing a graphene-
based digital coding metasurface for dynamical and con-
tinuous wavefront  control  of  reflected  wave  in  the  mi-
crowave  band354. This  metasurface  was  mainly  com-
posed  of  metallic  structures  and  a  graphene  sandwich
structure with fishnet patterns, as shown in Fig. 25(a), by
which continuous  amplitude  modulation  could  be  im-
plemented  through  controlling  the  sheet  resistance  of
graphene while the phase response was kept unchanged.
The binary phase coding of “0” and “1” was realized us-
ing two types of metaatoms with π phase difference. The
phase coding sequences of the metasurface were schem-
atically shown in Fig. 25(b), in which the “1” and “0” ele-
ments  comprised  4×4  equal-sized  metaatoms.  Based  on
the standard print circuit board technique, a prototype of
the  patterned  metal  layer  containing  32×32  metaatoms
with “0” and “1” coding was fabricated, as shown in Fig.

25(c), and the patterned graphene layer was fabricated by
standard laser cutting method shown in Fig. 25(d). Both
the  simulated  and  experimental  results  in Fig. 25(e−m)
revealed  that  the  far-field  scattering  pattern  would  be
continuously tuned from directional mirror reflection to
diffusive  scattering  when  increasing  the  sheet  resistance
from 220 to 1500 Ω. Obviously, only a dominant pencil-
like reflected beam was observed with low side lobes for
220 Ω.  When resistance  increased to  1500 Ω,  the  direc-
tional beam was destroyed with randomly distributed en-
ergy  in  various  directions,  implying  the  significant  RCS
reduction,  which  can  be  interpreted  by  interference  of
the scattering waves with random phase caused by amp-
litude modulation. 

Conclusion and outlook
To summarize,  we  have  provided  a  comprehensive  re-
view of  the  dynamic  metasurfaces  and  metadevices  en-
abled by graphene, including metasurfaces with building
blocks of  structured  graphene  and  metasurfaces  hy-
bridly-integrated with graphene, with our focus on elec-
trically-controlled  dynamical  manipulation  of  the  EM
waves  covering  the  MIR,  THz,  and  microwave  regimes.
Before  discussing  the  state-of-the-art  developments,  the
fundamentals of graphene as diverse as the basic materi-
al properties, plasmons in graphene, and in particular the
theoretical and numerical models of GPs are described in
details.  Above  all,  the  dynamic  functionalities  of  the
spectrum manipulation, wavefront shaping, polarization
control, and frequency conversion in both near/far fields
and global/local manners are elaborated using graphene-
empowered metasurfaces and metadevices. As a compar-
ative comment,  it  should  be  emphasized  that  the  ul-
trabroadband and  continuous  tunability  of  graphene  by
external  electrical  stimuli  empowers  the  metasurfaces
and metadevices  with  the  real-time,  dynamical  tunabil-
ity over almost the entire spectrum of EM waves,  which
can  never  be  accomplished  currently  by  other  solutions
such as  phase-change  materials  and  transparent  con-
ducting oxides.  Although  chip-integrated  MIR  met-
adevices and microwave programmable  metadevices  us-
ing  graphene  have  been  already  reported,  it  does  not
mean  that  graphene  metasurfaces  have  been  developed
sufficiently. Here, we would like to underline that the in-
vestigation  is  just  started  in  terms  of  the  emerging
concept  in  dynamic  metasurfaces  and  widely  potential
applications in the future. Currently, this field is experi-
encing the explosive developments,  where opportunities
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and challenges coexist.
For metasurfaces based structured graphene, their de-

velopments  highly  depend  on  the  design  method  and
nanofabrication techniques for graphene patterns in par-
ticular with more complicated geometry and larger foot-
print. For  the  design  methods,  as  the  demands  of  per-
formance  and  functionality  growing,  the  pattern  design
and optimization  of  metasurfaces  and  metadevices  be-

come computationally expensive and time-inefficient. To
overcome such challenge, the artificial intelligence-based
algorithms  for  smart  inverse  design  show  great
potentials,  which  can  search  the  parameter  space  in  a
more  efficient  way,  leading  to  the  on-demand design  of
novel  metasurfaces  and  metadevices  with  tremendous
complexity355,356.  For  the  nanofabrication  techniques,
currently,  the  simple  and  periodic  graphene  patterns
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such as ribbons, disks, and rings are widely fabricated by
using standard  electron-beam  lithography  (EBL)  fol-
lowed by plasma etching. To achieve polarization and/or
phase  manipulations,  however,  the  anisotropic  and
aperiodic graphene patterns are indispensable, which re-
quires  high-quality  nanofabrication  technique  because
the defect and edge effects of graphene patterns strongly
impact  the  polarization  and  phase  responses  of  EM
waves.  For  example,  to  efficiently  exploit  the  PB  phase
for dynamic wavefront shaping, it is essential to arrange
the  anisotropic  graphene  patterns  with  varying  rotation
angles, which have not yet been experimentally validated
due  to  the  fabrication  challenge  for  high-quality
graphene  patterns.  Besides  the  EBL,  recently-developed
direct  laser  writing  technique  may  provide  a  promising
alternative to  address  this  challenge  by  right  of  the  ad-
vantages  of  mask-free  and  resist-free,  which  can  avoid
degenerating the quality of graphene patterns induced by
the complex  procedures  in  EBL and  simultaneously  en-
hance  the  fabrication  efficiency  for  complex
patterns114,357,358. Before the pattern fabrication,  the chal-
lenges  to  achieve  consistent,  large-scale,  transfer-free,
and  layer-number-controlled  graphene  films  are  worth
mentioning, which to some extent determines the viabil-
ity of  the  fabrication technology.  To address  these  chal-
lenges,  the  graphene  oxide  routine  has  been  recently
demonstrated  as  a  new  solution  by  Jia  et  al.,  where  the
solution-phase preparation of the high-quality and large-
scale graphene oxide layer is firstly performed, and then
controllable  conversion  from  graphene  oxide  layer  into
graphene layer  is  accomplished  based  on  laser  photore-
duction359.  Moreover,  such  laser  patterning  technique
naturally  results  in  equivalent  fabrication  of  functional
photonic  devices  for  integrated  photonics  and  flat
optics360.  To  date,  they  have  experimentally  reported  an
ultrabroadband  graphene  oxide  flat  lens  for  wavefront
shaping and an ultrathin graphene metamaterial  for  ex-
tremely  broadband absorption of  unpolarized light260,361.
This low-cost and scalable method provides unpreceden-
ted control  over  the  layer  thickness,  number,  and  pat-
tern  in  particularly  designing  and fabricating  multilayer
graphene-based metamaterials,  which  exhibit  great  po-
tentials  in  the  future.  In  addition,  the  new  metasurface
concept,  such  as  on-chip  metasurfaces  and  time-variant
metasurfaces50,362−365, and functionalities as that of metal-
lic  and dielectric  counterparts  are  highly  expected  to  be
transplanted  into  graphene-based  metasurfaces  and
metadevices  such  as  multidimensional  EM  wave

manipulations.
For  graphene-hybrid  metasurfaces,  the  future  in  fact

goes along  with  the  development  of  conventional  pass-
ive  metasurfaces  including  concept  and  fabrication.  A
number of  experimental  works  have  proved  that  integ-
rating graphene layer to the metallic or dielectric metas-
urfaces and metadevices  can transform the passive met-
adevices  to  be  more  active  and  multifunctional,  which
are extremely  desired  for  integrated  photonic  applica-
tions.  Despite  the  rapidly  growing  demand,  dynamic
metasurfaces lag behind passive metasurfaces in terms of
the functionalities.  The  dynamic  versions  of  many  in-
triguing functionalities  have  not  been actualized  experi-
mentally using graphene-hybrid metasurfaces,  including
dynamic holography,  encryption,  orbital-angular  mo-
mentum multiplexing and demultiplexing, etc. The chal-
lenges  mainly  exist  in  integrating  high-quality  graphene
layer to metasurfaces and metadevices, and also fabricat-
ing  the  electrodes  without  influence  on  the  quality  of
graphene. Generally,  the  dynamic  tunability  of  a  metas-
urface  is  actualized  by  putting  a  graphene  layer  in  its
proximity, which  significantly  influences  the  EM  re-
sponse  of  the  metasurface.  Such  dynamic  tuning  is
widely  implemented by  electrical  method using metallic
electrode or graphene electrode, which challenge the fab-
rication process and also limit the tuning speed as well as
footprint of metadevices. To overcome the speed limita-
tion of  electric  switches,  all-optical  control  is  a  prom-
ising  direction  based  on  the  optical  nonlinearity  of
graphene enhanced by the extreme light confinement in
metasurface,  which  can  also  greatly  reduce  the  device
footprint  without  electrodes366. The  dynamic  manipula-
tions of amplitude, phase, and polarization have been re-
ported  in  the  NIR,  MIR,  and  THz  regimes  by  globally-
controlled graphene-hybrid metasurfaces and in the mi-
crowave  band  by  locally-controlled  graphene-hybrid
metasurfaces.  However,  due  to  the  difficulty  of  locally
controlling the  individual  metaatoms in  metasurfaces  at
the shortwave frequencies, where the sizes of metaatoms
and  metasurfaces  are  smaller  than  that  at  the  longwave
frequencies,  manipulating  the  EM  waves  in  the  NIR,
MIR, and THz regimes by programmable manners based
on the digital metasurface concept remains challenges.

At last,  dynamic  metasurfaces  and  metadevices  en-
abled  by  other  graphene-like  2D  materials,  such  as  BP,
TIs,  and  TMDCs,  are  also  an  attractive  direction367−373.
Besides  electrical  tunability,  2D  materials  beyond
graphene  can  empower  more  unique  advantages  to
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metasurfaces and  metadevices,  such  as  nonlinearity  to-
gether with  optical  controllability,  which  will  un-
doubtedly  expand  the  degrees  of  freedom  in  EM  wave
manipulation and improve the modulation speed by op-
tical-controllable  metasurfaces.  Several  research  groups
have recently  focused on the 2D materials-based metas-
urfaces  to  explore  the  new  value  of  2D  materials  and
metasurfaces. For example, Novotny et al. demonstrated
controllable steering of the second harmonic (SH) emis-
sion  by  coupling  a  monolayer  MoS2 onto  an  optical
phased  array  consisting  of  gold  antennas374; By  integ-
rated  WS2 with  Au  plasmonic  nanosieve  metasurfaces,
Lu  et  al.  reported  the  SH  metalens,  OAM  generation,
beam steering, polarization control, and holograms375−377;
Zentgraf  et  al.  proposed  a  WS2-integrated  plasmonic
metasurface based on PB phase to modulate the polariza-
tion  and  phase  of  SH  signal378.  Those  pioneering  works
offer  new  opportunities  for  dynamically  generating  and
manipulating  the  EM  waves  by  nonlinear  means.  With
the all  potential  future  directions  and  gradually  im-
proved  nanofabrication  technique,  we  believe  that  the
dynamic  metasurfaces  and  metadevices  using  graphene
and further graphene-like 2D materials will certainly re-
volutionize the EM wave manipulations and finally com-
mercialized applications in the future.
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