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Iterative freeform lens design for prescribed 
irradiance on curved target 
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Current freeform illumination optical designs are mostly focused on producing prescribed irradiance distributions on pla-
nar targets. Here, we aim to design freeform optics that could generate a desired illumination on a curved target from a
point source, which is still a challenge. We reduce the difficulties that arise from the curved target by involving its varying 
z-coordinates in the iterative wavefront tailoring (IWT) procedure. The new IWT-based method is developed under the 
stereographic coordinate system with a special mesh transformation of the source domain, which is suitable for light
sources with light emissions in semi space such as LED sources. The first example demonstrates that a rectangular
flat-top illumination can be generated on an undulating surface by a spherical-freeform lens for a Lambertian source. The 
second example shows that our method is also applicable for producing a non-uniform irradiance distribution in a circular 
region of the undulating surface. 
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Introduction 

Manipulating the irradiance distributions of artificial 
light sources are very crucial for lighting and laser appli-
cations. For example, a Gaussian laser beam needs to be 
converted into a flattop one for improving laser material 
processing abilities. Compared with traditional spherical 
and aspherical optics, freeform optics has much more 
freedom, which can produce very complex irradiance 
distributions that are previously unimaginable. In fact, 
diffractive optical elements (DOEs), metasurfaces or 
graphene oxide lenses, could also realize the same goal 
while remaining flat1–3. However, freeform optics is still 
an energy efficient and cost-effective choice especially for 
macro dimensions. Freeform optics design for irradiance 
tailoring on a given target is a very difficult inverse prob-
lem. Komissarov, Boldyrev and later, Schruben showed 
that the design of a freeform reflector for a point source 
could be formulated as a second order nonlinear partial 

differential equation (PDE) of Monge-Ampère (MA) 
type4,5. In Schruben’s formulation, the MA equation is 
derived by mainly merging two types of equations. The 
first type is the energy conservation between the source 
intensity and the target irradiance. The second type is the 
ray tracing equations that describe the coordinate rela-
tionships from source to target. In addition, the reflector 
surface is constrained to have continuous second deriva-
tives. Unfortunately, Schruben did not present the final 
expression of the MA equation and gave no hint on the 
numerical calculation. This is probably because that the 
derivation process is too complicated and the final MA 
equation is very difficult to solve. Wu et al. made a great 
effort to formulate a freeform refractive surface using the 
direct determination and employed Newton’s method to 
solve the final MA equation6. Ries and Muschaweck cre-
ated a different formulation process and solved a set of 
equivalent nonlinear PDEs, but they kept silent on the 
numerical techniques7.  
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Many other numerical methods have been developed 
for designing freeform reflectors and lenses. A common 
way is to approximate the freeform surface with sufficient 
quadric surfaces and to optimize their geometry8–12, but 
the computations may become slow for high-resolution 
irradiance tailoring. Ray mapping methods are also 
commonly used, and they simplify the design with two 
separate steps: i) ray map computation and ii) surface 
construction following the ray map13–20. The traditional 
ray mapping methods are only accurate for paraxial or 
small angle approximations. Larger surface errors could 
occur for off-axis and non-paraxial cases because the 
surface integration from the approximate ray maps are no 
longer integrable21,22. Fournier et al. pioneered the work 
on computing an integrable ray map in freeform reflector 
design with the help of the method of supporting ellip-
soids10. Bruneton et al. presented an efficient ray map 
optimization procedure, which allows the design of mul-
tiple freeform surfaces23. Bösel et al. directly solved the 
first order nonlinear PDE system related with the energy 
conservation and ray tracing equations24. Desnijder et al. 
acquired an integrable ray map by modifying an initial 
ray map using a symplectic transformation25. Doskolovich 
and Bykov et al. reduced the calculation of an integrable 
ray map to finding a solution to a linear assignment 
problem26,27. Besides, least-squares ray mapping methods 
created by Prins et al. and modified by Wei et al. could 
also be employed to acquire an integrable ray map28–30. In 
our previous work, we introduced the iterative wavefront 
tailoring (IWT) method to obtain an integrable ray map 
through immediate construction of a series of outgoing 
wavefronts31.  

Most of the above methods focus on producing pre-
scribed irradiance distributions on planar targets. Very 
limited work has been done for curved targets. Aram and 
Wang analyzed the freeform reflector design for 
non-planar targets and suggested a weak solution based 
on approximating the required surface using piecewise 
ellipsoidal surfaces32. Bykov et al. showed that their linear 
assignment method is applicable for curved targets, alt-
hough no supporting examples are provided and the 
method is intended for collimated incoming beams27. Wu 
et al. extended the direct determination of freeform lens 
design for irradiance tailoring on highly tilted target 
planes, which is still not applicable for curved targets33. 
Sun et al. employed a ray mapping method for producing 
a uniform irradiance distribution on a non-planar sur-
face34. As mentioned before, such a ray mapping method 

may suffer from large surface errors when the design 
geometry deviated much from small angle approxima-
tions22.  

To address the problems above, we develop a new 
IWT-based method applicable for a curved target. The 
new method can artfully dissolve the difficulties that arise 
from the fact that a curved target has varying z-values. In 
addition, the new method is developed under the stereo-
graphic coordinate system with an additional mesh 
transformation, which is applicable for light sources that 
emit light in semi space. The proposed method is de-
scribed in details in the Theoretical model Section. To 
verify this method, two freeform-lens designs are demon-
strated in Results and discussion Section for producing a 
rectangular flat-top and a circular non-uniform illumina-
tion patterns on a very undulating surface. A short con-
clusion is then provided in the final Section.  

Theoretical model 

Figure 1 shows a sketch of our design geometry. A 
point-like light source is located at the origin point, which 
emits light in the right half space. The curved target sur-
face is described by (x, y, z) and the desired irradiance 
distribution on it is denoted as L(x, y), where (x, y) are 
confined in domain Σ. Here, the inner surface of the lens 
is assumed as spherical. Therefore, our goal is to deter-
mine the outer surface (xf, yf, zf), which is generally 
freeform, to convert the light distribution of the source 
into the desired irradiance distribution L(x, y). We con-
sider the light source has some arbitrary intensity distrib-
uted in the whole semi-sphere. Therefore, Cartesian co-
ordinates are not appropriate here. We prefer using the 
Stereographic coordinates (u, v) which project the unit 
sphere X2+Y2+Z2=1 from the south pole (0, 0, -1) onto the 
z = 0 plane. Generally, (u, v) belong to a unit circular do-
main which corresponds to the whole semi-sphere where 

Fig. 1 | Sketch of the design geometry. 
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the intensity is defined. However, it is better to implement 
the calculation with an equi-space rectangular grid. 
Therefore, we define the coordinates (u, v) on a square 
domain Ω={(u, v)|-1≤u≤1, -1≤v≤1}, which are used as 
independent variables for calculation, and transform Ω 
into a unit circular domain Ωʹ={(uʹ, vʹ)| uʹ2+vʹ2≤1 } using 
the follow relationships (see Fig. 2): 

2

2

1 0.5

1 0.5

u u v

v v u

   

  

 .              (1) 

(uʹ, vʹ) then become the stereographic coordinates and 
their relationships with (X, Y, Z) can be expressed as:  
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We will describe the establishment of the outgoing 
wavefront equation in the following. Assume that the 
intensity of the light source is denoted as I(uʹ,vʹ), and its 
stereographically projected irradiance (SPI) on the (uʹ, vʹ) 
plane can be acquired as19: 

2

2 2

2( , ) ( , )
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E u v I u v
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 .       (3) 

The SPI on the (u, v) plane can be calculated according 
to energy conservation between the (u, v) and (uʹ, vʹ) 
planes: 

( , )d d ( , )d dE u v u v E u v u v
      

 .     (4) 

From the differential form of Eq. (4), we can obtain the 
SPI on the (u, v) plane as:  

( , ) ( , ) u v u vE u v E u v
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 .       (5) 

Energy conservation between source and target can 
then be expressed as: 

( , )d d ( , )dΩ ΣE u v u v L x y σ   

2 2( , ) 1 ( ) ( ) d dΣ
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where dσ denotes the differential area element of the tar-
get surface. Generally, Eq. (6) can be written in the dif-
ferential form as: 

2 2( , ) 1 ( ) ( ) ( , )y yz z x xL x y E u v
x y u v v u

    
   

     
 . (7) 

Next, we will link Eq. (7) to the properties of the out-
going wavefront W=(s, t, w). According to Fermat’s prin-
ciple, the gradients of w can be expressed as: 

w x s
s z w

y tw
t z w

        
  

 .             (8) 

Since s and t are both functions of (u, v), according to 
the chain rule, we have: 

w w s w t
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 .          (9) 

Combining Eqs. (8) and (9), we can describe (x, y) as: 
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According to the previous IWT method31 for a planar 
target where z is constant, Eq. (10) could explicitly de-
termine x and y as functions of u, v, s, t, w and the first 
derivatives of s, t and w. We can eliminate the two varia-
bles x and y by inserting Eq. (10) into Eq. (7) and thus 
obtain the final MA equation of w(u, v). However, since 
we concern a curved target here, z is no longer a constant 
and becomes a function of x and y: z=z(x, y). Even for a 
simple case, e.g., z=x2+y2, it is very difficult to express x 
and y explicitly, not to mention the derivation of the final 
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Fig. 2 | The rectangular (u, v) grid (a) is transformed into a circular (u',v') grid (b) which is used as the stereographic coordinates (c).



                    Opto-Electronic Advances    https://doi.org/10.29026/oea.2020.200010 

 

200010‐4 

© 2020 Institute of Optics and Electronics, Chinese Academy of Sciences. All rights reserved. 

MA equation. Such a fact could also explain why a direct 
determination of the freeform surface for a curved target 
is no easy work. However, we can avoid this difficulty 
artfully by involving z in the following iterative procedure. 
We consider z as a function of (u, v) and retain it in the 
right side of Eq. (10). We then insert Eq. (10) into Eq. (7) 
to obtain a MA equation of w(u ,v): 

22 2 2 2

12 2 2

w w w wA
u vu v u

    
      

 

2 2

2 3 42 0w wA A A
u v v
 

   
  

 ,  (11) 

where the coefficients Ai(i=1, 2, 3 and 4) are functions 
depending on u, v, s, t, w, z, ∂w/∂u, ∂w/∂v, ∂z/∂u, ∂z/∂v 
and the first and second derivatives of s and t. A nonlinear 
boundary condition can be specified by applying Eq. (10) 
for the boundary points.  

It is noted that we cannot solve Eq. (11) with the non-
linear boundary condition unless we know s, t and z in 
advance. That is why we must employ an iterative proce-
dure as shown in Fig. 3. A detailed description of the iter-
ative procedure is provided as follows: 

Step 0. We first give initial estimates of z(u, v) and the 
outgoing wavefront (s(u, v), t(u, v), ŵ(u, v)), where the 
notation ŵ is used to differentiate from w in the wave-
front equation. This could be realized by providing an 
initial guess of the ray map (x, y) =(x0(u, v), y0(u, v)) 
based on a similar procedure as Step 2 and Step 3. 

Step 1. After we have obtained estimates of s(u, v), t(u, 
v) and z(u, v), we then insert them into Eq. (11) and its 
boundary condition. Now Eq. (11) has only one unknown 
w(u, v), which could be solved using a numerical proce-
dure outlined in Ref.31. ŵ could be used as an initial esti-
mate of w to start the numerical calculation. A ray map (x, 
y)=(x(u, v), y(u, v)) can be computed from the solved w 
through Eq. (10).  

Step 2. Based on the ray map obtained in Step 1, we 
update the z values as: z=z(u, v)=z(x(u, v), y(u, v)). 

Step 3. Once we have specified a set of values (x(u, v), 
y(u, v), z(u, v)) of the target points, we can construct a 
freeform surface (xf(u, v), yf(u, v), zf(u, v)) using a least 
squares method19. An outgoing ray sequence can be ob-
tained by linking (xf(u, v), yf(u, v), zf(u, v)) and (x(u, v), 
y(u, v), z(u, v)), from which an updated outgoing wave-
front (s(u, v), t(u, v), ŵ(u, v)) can be constructed based on 
least squares. 

Step 4. Determine whether the stop criterion is met. A 
certain iteration number or the ray map deviations from 
two adjacent iterations could be used as a stop criterion. 
If the stop criterion is not satisfied, the current values of 
(s(u, v), t(u, v), ŵ(u, v)) and z(u, v) are inserted into Step 
1 again to start a new iteration.  

Based on the above iterative procedure, the design 
complexities could be greatly reduced. Although a se-
quence of MA equations of the wavefront need to be 
solved, a multi-scale strategy, which is successfully used 
in the previous IWT algorithm for planar targets31, could 
be employed to speed up the computation. It is noted that 
the proposed method is also applicable for more compli-
cated lens geometries, such as plano-freeform, 
aspherical-freeform or even double freeform lenses. 

Results and discussion 

To verify the proposed method, we first design a freeform 
lens for producing a flat-top illumination on an undulat-
ing surface shown in Fig. 4. This target surface can be 
expressed as an analytical formula that is modified from 
Matlab’s peaks function:  

2 2 2

3 5 2 2

100 12 1 ( ) exp ( ) ( 1)
40 40 40
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where (x, y) is confined within the domain Σ={(x, y)| 
-120≤x≤120, -120≤y≤120} (mm). The target irradiance 

Fig. 3 | The flow diagram of the new IWT procedure for a

curved target. 
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distribution has the form of a super Gaussian function: 

80 80( , ) exp 2 ( ) +( )
120 120

yxL x y
     

  
 .   (13) 

 
Suppose that the light source located at the origin has a 

Lambertian intensity distribution, and E(u, v) can be de-
termined using Eqs. (3) and (5). The inner surface of the 
lens is set as a 12 mm-radius semi-sphere. The refractive 
index of the lens is set as 1.4932. 

The desired computation size is set as 256×256. We 
implement the computations using the multi-scale strat-
egy run in MATLAB 2019b. The initial computation size 
is set as 32×32, and a uniform rectangular grid of the tar-
get is adopted as the initial ray map. After implementing 

the procedure shown in Fig. 3 with three iterations, we 
acquire a 32×32 grid ray map. This ray map is then in-
terpolated into the size of 64×64, which is used to com-
pute the initial estimates of z(u, v) and the outgoing 
wavefront (x(u, v), y(u, v), ŵ(u, v)) for starting the algo-
rithm on the 64×64 grid. Such a process is repeated until 
finishing the iteration on the 256×256 grid. In each itera-
tion, we solve the MA equation of the wavefront following 
the numerical procedure provided in Ref. 31 where a 
Newton–Krylov solver nsoli.m35 is used. For this example, 
the source domain involved in computation is set as 
Ω={(u, v)|-0.94≤u≤0.94, -0.94≤v≤0.94}, and the boundary 
of (uʹ, vʹ) computed according Eq. (1) is no longer a circle 
(see Fig. 5(a)). The reason that we employ a smaller 
source domain is to omit the light rays that are almost 
parallel to the z=0 plane. These rays may experience total 
internal reflection, which could result in unreasonable 
results. Since the light source has Lambertian intensity, 
only very small amount of energy (~0.21%) is not in-
cluded in the calculation. Figure 5(b) shows the final ray 
map. Although the target irradiance distribution is de-
sired as flat-top, we can see from Fig. 5(b) that the ray 
map is more strongly deformed around the regions of the 
target which have stronger variations. The z values corre-
sponding to this ray map are specified based on Eq. (12). 
Following the ray map and its corresponding z values, the 

Fig. 4 | The desired curved target. The side length of the target is

240 mm and the z values range from 73.80 mm to 132.42 mm. 
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Fig. 5 | (a) The (u′, v′) grid corresponding to a uniform (u,v) grid on Ω={(u, v)|-0.94≤u≤0.94, -0.94≤v≤0.94} and (b) the final target grid for the first

design (only showing 64×64 grid points for better visualization); (c) The final 3D freeform lens model and (d) its simulation results for a point like

source (size: 10-3 mm×10-3 mm). (The unit of the irradiance: W/mm2) 
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final freeform surface (xf, yf, zf) can then be generated 
based on least squares. The computation ran like ~5 
minutes on a Windows 10 desktop PC (Intel Core i7 @ 
4.0 GHz with 64 GB RAM). The computed surface data 
(xf , yf , zf) are given on scattered grid points, which are 
converted into a ‘real’ surface using a 3D modeling soft-
ware, Rhinoceros. The outer freeform surface is then 
combined with the inner semi-spherical surface to form 
the final lens model (see Fig. 5(c)). We can see from Fig. 
5(c) that the freeform lens is very smooth which could 
facilitate fabrication. We implement Monte-Carlo simula-
tions using LightTools 8.6 to demonstrate the perfor-
mance of the designed freeform lens, where 2×106 rays 
are traced. Figure 6(a) shows the ray tracing results for a 
point-like light source (size: 10-3 mm×10-3 mm). We can 
see that the simulated irradiance distribution performs 
very close as the prescribed one.  

The second design is more challenging, which aims for 
generating a letter ‘π’ and its approximate value 
‘3.14159∙∙∙’ in a circular region with the radius of 120 mm 
on the undulating surface shown in Fig. 4. The irradiance 
ratio from the uniformly illuminating letter and numbers 
to the background is set as 4. For this case, we found that 
the source domain involved in calculation has to be re-
duced further to obtain reasonable results. Here, we 
choose the source domain as Ω={(u, v)|-0.8≤u≤0.8, 

-0.8≤v≤0.8}. The corresponding (uʹ, vʹ) grid is shown in 
Fig. 6(a). The omitted light source energy still accounts 
for a very small proportion (~3.1%). After implementing 
the same numerical procedure as the first design, we ac-
quire the final circular target grid as shown in Fig. 6(b). 
The computation took like ~4 minutes. From Fig. 6(b), 
we can clearly see a letter ‘π’ with very dense grid points, 
and the regions corresponding to the ‘numbers’ are also 
strongly deformed. The final lens model is shown in Fig. 
6(c). Compared with the first designed lens shown in Fig. 
5(c), the second designed lens is more asymmetric due to 
its corresponding non-uniform and non-symmetric tar-
get irradiance distribution. The simulation results after 
tracing 1×107 rays are shown in Fig. 6(d). We can observe 
from Fig. 6(d) a not very sharp irradiance curve along the 
red dashed line that is across the ‘numbers’. Sampling may 
be a major reason since the ‘numbers’ are very thin along 
the red dashed line and there are not enough grid points 
to render the details at this level. Increasing the computa-
tion size may improve the performance. Another reason 
is that we applied a noise reduction by smoothing with an 
integral kernel size of three in LightTools.  

In the following, we will illustrate the influence of the 
source size and the distance from the source-lens system 
to the target surface on the performances of the two de-
signed freeform lenses. Figure 7(a) provides the simula-

Fig. 6 | (a) The (u′, v′) grid corresponding to a uniform (u, v) grid on Ω={(u, v)|-0.8≤u≤0.8, -0.8≤v≤0.8} and (b) the final target grid for the second

design (only showing 64×64 grid points for better visualization); (c) The final 3D freeform lens model and (d) its simulation results for a point like

source (size: 10-3 mm×10-3 mm). (The unit of the irradiance: W/mm2) 
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tion results for an 1 mm × 1 mm Lambertian source 
which is commonly used to model an LED source. We 
can see from Fig. 7(a) that the simulated irradiance dis-
tribution still performs well, but there appear to be undu-
lations especially around the biggest bump of the target 
surface. The irradiance deviation becomes larger when 
the source size is changed into 2 mm×2 mm, as shown in 
Fig. 7(b). Overcompensation methods could be used to 
reduce these irradiance deformations36–39. Figures 7(c) 
and 7(d) show the simulation results of the second lens 
when the source size is changed into 1 mm × 1 mm and 2 
mm× 2 mm respectively. We can also observe an irradi-
ance undulation near the biggest bump of the target sur-

face. However, blur effects are more obvious especially in 
Fig. 7(d). The blur kernels caused by the extended light 
source is spatially variant partially due to the undulating 
target surface. Thus, spatially variant deconvolution tech-
niques may make the illumination pattern shaper40.  

Since we concern irradiance tailoring on a non-planar 
target, it is necessary to show the effects of the distance 
from the source-lens system to the target on the simulat-
ed irradiance distributions. Figure 8(a) presents the sim-
ulated results for the first lens design when the 
source-lens system is 5 mm closer to the target surface. A 
hot spot can be clearly observed around the top of the 
target surface. The hot spot becomes more obvious when 

Fig. 8 | Simulated irradiance distributions for the first lens design when the source-lens system is (a) 5 mm and (b) 10 mm closer to 

the target. Simulated irradiance distributions for the second lens design when the source-lens system is (c) 5 mm and (d) 10 mm 

closer to the target. (The unit of the irradiance: W/mm2; the unit of the length: mm) 

Fig. 7 | Simulated irradiance distributions for the first lens design when the source size is changed into (a) 1 mm× 1mm and (b) 2 mm× 

2 mm respectively; simulated irradiance distributions for the second lens design when the source size is changed into (c) 1 mm × 

1mm and (d) 2 mm × 2 mm respectively. (The unit of the irradiance: W/mm2; the unit of the length: mm) 
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the source-lens system is 10 mm closer to the target (see 
Fig. 8(b)). For the second lens, hot spots also appear 
when the source-lens system is 5 mm and 10 mm closer 
to the target surface, as shown in see Figs. 8(c) and 8(d). 
However, it seems that the distance has little effect on 
image blur.  

Conclusions 

A new IWT-based method is proposed for designing 
freeform lenses that can produce prescribed irradiance 
distributions on curved targets. The method gradually 
refines the ray map and its corresponding z-coordinates 
of the target based on solving a sequence of parameter-
ized wavefront equations. The ray map computed at the 
i-th iteration is obtained by solving the parameterized 
wavefront equation which imbeds the scattered 
z-coordinates of the target at the (i-1)-th iteration, and 
then the z-coordinates of the target is immediately up-
dated according to the i-th ray map. The high perfor-
mance of the proposed design method is confirmed by 
providing two examples of generating a rectangular uni-
form illumination pattern and an image with circular 
boundary on an undulating surface from a Lambertian 
light source. The method was developed under stereo-
graphic projection coordinates system, which adopted a 
special coordinate transformation of the source domain 
for obtaining reasonable results. In fact, this method may 
also be applicable for the spherical coordinate system.  

In many cases the target cannot be considered as a 
perfect plane e.g. road surfaces on mountain area, sand 
tables, surfaces of sculptures and cultural relics. Therefore, 
we believe that irradiance tailoring on curved targets, 
which can be generally regarded as 3D surface lighting, 
can extend the applications of freeform illumination op-
tics. 
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