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Abstract. Metasurface-based imaging has attracted considerable attention owing to its compactness,
multifunctionality, and subwavelength coding capability. With the integration of computational imaging
techniques, researchers have actively explored the extended capabilities of metasurfaces, enabling a wide
range of imaging methods. We present an overview of the recent progress in metasurface-based imaging
techniques, focusing on the perspective of computational imaging. Specifically, we categorize and review
existing metasurface-based imaging into three main groups, including (i) conventional metasurface design
employing canonical methods, (ii) computation introduced independently in either the imaging process or
postprocessing, and (iii) an end-to-end computation-optimized imaging system based upon metasurfaces.
We highlight the advantages and challenges associated with each computational metasurface-based
imaging technique and discuss the potential and future prospects of the computational boosted metaimager.
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1 Introduction
Metasurfaces are a type of artificial, two-dimensional (2D)
material composed of subwavelength nanostructures arranged
in a specific pattern. The unique arrangement and design of
these nanostructures allow metasurfaces to interact with light
and other electromagnetic waves in a highly controlled and
tailored manner. The modulating capability of metasurfaces
has enabled diverse imaging techniques, such as microscopic
imaging,1 hyperspectral imaging,2,3 full-Stokes polarization
imaging,4,5 and full-space 3D imaging.6 This showcases its im-
mense potential in various application fields, including micros-
copy, spectroscopy, depth sensing, machine vision, and other
imaging scenarios. However, the development of metasur-
face-based imaging techniques faces two main challenges that
warrant in-depth research. First, nonidealities are introduced by
metasurfaces, such as strong dispersion effects over different
wavelengths and fabrication quality. Second, although metasur-
faces offer flexible multidimensional design capabilities, how

to construct a general and scalable imaging framework that
harnesses and fully exploits the multidimensional modulation
capability of metasurfaces—to enhance or revolutionize existing
imaging systems—remains an open question.

Computational imaging, situated at the intersection of optics,
electronics, signal processing, and machine learning, aims to
incorporate computational techniques into the imaging and
reconstruction processes. By embracing computation, not only
does it significantly relax the constraints of optical system design,
but it also opens up new possibilities for expanding imaging capa-
bilities. The introduction of computation into illumination, optics,
sensing, and processing greatly extends observation capabilities,
enabling the capture of various dimensions of the plenoptic light
field. Examples of these capabilities include superresolution mi-
croscopic imaging,7,8 wide field-of-view (FoV) imaging,9 lensless
imaging,10,11 and non-line-of-sight imaging.12,13 Traditionally, dif-
ferent light modulators, such as film masks, digital micromirror
devices (DMDs), spatial light modulators (SLMs), and diffractive
optical elements (DOEs) have been employed to introduce com-
putation in imaging systems. However, these approaches often
come with significant system complexity or volume, and their
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modulation flexibility is limited. As a result, there is a strong de-
mand for flexible and highly integrated modulation techniques in
computational imaging to fully exploit the power of computation
for designing imaging systems.

In light of recent advancements in metasurface and computa-
tional imaging techniques, computational strategies have been in-
tegrated into metasurface-based imaging, significantly enhancing
the capabilities of current imaging systems. In this paper, we
present a comprehensive review of metasurface-based imaging
methodologies from the perspective of computational imaging.
Specifically, we first review the existing metasurface-based com-
putational imaging from the perspective of plenoptic dimension
modulation, i.e., spectrum, polarization, phase, and compound
modulation. We then proceed to categorize the existing metasur-
face-based computational imaging frameworks based on where
computation is introduced. This involves computational illumina-
tion, computational sensing, computational reconstruction, and a
detailed discussion of how computation contributes to improved
imaging performance. To conclude the review, we address the
primary challenges encountered in building metasurface-based
computational imaging systems, along with a forward-looking
discussion. Our intention is to provide valuable insights and
identify the primary obstacles faced by researchers in these
two domains, with the hope of fostering further advancements
in computational imaging and nanophotonics.

A brief overview of the proposed paper is included in Fig. 1.
As shown in Sec. 2, we first provide a brief overview of the
development of computational imaging, discussing the potential
advantages of metasurfaces over traditional computational im-
aging techniques. In Sec. 3, we review works on computational
imaging based on metasurfaces, starting from the modulation
of spectrum, polarization, angle, depth, and compound dimen-
sions. In Sec. 4, we outline the computational photography
framework of existing works in Sec. 3, from the hardware im-
aging system to computational algorithms. Finally, we discuss
the current challenges of metasurface-based imaging from four
different perspectives, pointing out possible future research
directions and perspectives.

2 Brief Overview of Computational Imaging
The evolution of imaging technology, stretching from the rudi-
mentary principles of the ancient camera obscura to the sophis-
ticated domains of digital photography, represents a remarkable
journey in visual documentation. This progression began with
the discovery of pinhole imaging, an ancient technique in which
a small aperture in a darkened space projected an inverted image

onto a surface. This fundamental imaging principle laid the
groundwork for understanding how light could be manipulated
to capture images. A significant milestone was achieved in
the 1830s with the invention of the daguerreotype by Louis
Daguerre and the concurrent development of the calotype pro-
cess by William Henry Fox Talbot, heralding the inception of
photography. These methods, employing varied techniques to
capture and fix an image onto a surface, revolutionized the
methods of image recording and representation. The most trans-
formative development in recent photographic history began in
the 1970s and 1980s with the advent of the charge-coupled de-
vice. Digital cameras, using electronic sensors to capture images
and convert them into digital data, started replacing traditional
film cameras. This innovation facilitated easier storage, manipu-
lation, and sharing of images, significantly broadening the ap-
plications and accessibility of photography.

Computational imaging has seen significant development since
the early 1990s. Unlike the traditional one-to-one direct mapping
and capturing of target scene information, computational imaging
proposes to introduce computation to both the physical process of
capturing images and their subsequent reconstruction. This ap-
proach fundamentally revolutionizes the concept of imaging,
moving beyond the need for a one-to-one recording of scene
points. By integrating computational techniques, more complex
and versatile image processing and reconstruction can be enabled,
significantly expanding the capabilities and applications of
imaging technology. Over decades, computational imaging tech-
niques have significantly evolved, finding applications across vari-
ous domains. These techniques preliminarily aim to enhance
imaging performance, focusing on methods that achieve higher
spatial resolution,14 imaging speed,15 dynamic range,16 and multi-
dimensional imaging capabilities (such as depth17 and hyperspec-
tral imaging18). Beyond improving certain aspects of imaging
performance, computational imaging has also been designed to
realize previously unattainable imaging capabilities. Examples in-
clude capturing black hole images,19 which were once considered
impossible, achieving superresolution that surpasses the diffrac-
tion limit,8 light-in-flight imaging that visualizes the movement
of light,20 gigapixel imaging,21 etc. These advancements illustrate
the remarkable progress and versatility of computational imaging
technologies.22

To achieve the above goals, computational imaging systems
commonly require various light modulation elements that
manipulate the properties of light, e.g., intensity, spectrum,
polarization, and phases, with delicately designed coding
schemes so that the required information of light can be effi-
ciently captured. After that, the computational algorithms with

Fig. 1 Brief overview of the structure of the review.

Hu et al.: Metasurface-based computational imaging: a review

Advanced Photonics 014002-2 Jan∕Feb 2024 • Vol. 6(1)



either the conventional iterative optimization algorithms or the
neural network-based algorithms are applied to reconstruct the
latent images from the measurements. Traditionally, the modu-
lation function of computational imaging systems is accom-
plished by optical path modulation modules composed of
various traditional optical elements, such as light SLMs,
DMDs, prisms, beam splitters, lenses, and polarizers. These sys-
tems, however, usually face challenges like complex optical
paths, bulky system volume, aberrations difficult to control,
and restricted modulation capabilities, which have severely hin-
dered the development and application of computational imag-
ing techniques. As an advanced solution, metasurfaces, which
are composed of nanostructures on a subwavelength scale, have
been introduced, providing multidimensional optical control in
an exceptionally compact format. These advanced materials
facilitate precise light-wave manipulation, enabling changes
in phase, amplitude, spectrum, and polarization while maintain-
ing system compactness and simplicity. The adoption of meta-
surfaces also leads to a reduction in the number and complexity
of components in the optical path, enabling compact, adaptable,
and superior-quality computational imaging systems.

Additionally, from a whole system standpoint, the evolution
of computational imaging techniques has been remarkable,23–25

transitioning from the individual design of acquisition systems
and the reconstruction algorithm to the end-to-end designing
framework, which jointly optimizes hardware systems and
reconstruction algorithms simultaneously for achieving consid-
erably better performance. However, the limited parameter
space of traditional modulation elements limits the performance
of the end-to-end system optimization framework. Metasurface
elements are expected to bring new developments to the field of
computational imaging in combination with the end-to-end
system optimization framework, thanks to their wide range of
micronano-structure designing parameter space and flexible
multidimensional light-field modulation capabilities.

3 Metasurface-Based Computational
Imaging

The exceptional capability and flexibility of metasurface in
modulating multidimensional light fields make them suitable
for a wide range of novel imaging applications, which further
facilitates the observation of abundant light–matter interaction
characteristics. In this section, we examine existing computa-
tional-enhanced metasurface imagers, categorizing them in
terms of different light-field dimensions.

3.1 Spectrum

In this section, we delve into computational imaging systems
that leverage the spectral modulation capabilities of metasurfa-
ces. Specifically, we discuss the existing work in two manifolds,
i.e., achromatic imaging and spectral imaging.

3.1.1 Achromatic imaging

Achromatic imaging aims to focus light of various wavelengths
onto a single focal plane, employing two primary methodolo-
gies: canonical-designed phase mask methods and the inversely
designed phase mask approach. Within the scope of the canoni-
cal phase mask methods, heuristic phase patterns, such as the
cubic phase plate,26 logarithmic-sphere phase,27 shifted-axicon
phase,28 and the squared cubic phase,29 are utilized. As shown
in Fig. 2(a), Colburn et al.30 proposed metasurface-based cubic

phase mask implementation to realize achromatic visible imag-
ing. Since asymmetric artifacts are commonly introduced in cu-
bic phase masks, axially symmetric masks, such as logarithmic-
aspherical,27 shifted axicon masks,28 and square cubic phase
masks,29 are introduced to mitigate the artifacts. Figure 2(b)
illustrates the imaging performance comparison of different
metasurface phase masks for achromatic imaging.31 These phase
designs play a pivotal role in expanding the depth of field (DoF)
across different colors and wavelength channels, creating an
overlapping zone that achieves achromatism. Specifically, the
logarithm sphere phase27 extends the DoF by introducing a log-
arithmic phase distribution in optical systems, which divides the
phase mask into annular zones with continuously varying focal
lengths and allows light to maintain focus over a wider range.
In addition, the shifted axicon phase28,31 enables the creation of
Bessel beams with long, nondiffracting focal lines, increasing the
DoF by maintaining focus over extended distances. Furthermore,
the squared cubic phase29 is developed to effectively reduce
asymmetric distortions, ensuring higher image quality, and
allow extended depth of field (EDoF) imaging over longer dis-
tances. Through these phase patterns for point spread function
(PSF) engineering, images exhibit approximately uniform blur-
ring across the EDoF over different wavelengths, allowing
extraction of an achromatic image using Wiener filtering36 or
total-variation regularized optimization algorithms.37,38

Beyond the conventional canonical phase patterns, inverse
design-based methods32–35,39 have emerged. As shown in Fig. 2(c),
a multizone dispersion engineering metasurface has been
proposed32 by maximizing the minimum value of the focusing
intensity at different designed frequencies in the visible wave-
length range (i.e., 470 to 670 nm). This optimization employs
gradient-based local methods40 to determine zone transition lo-
cations and phase discontinuities in the multizone metasurface.
To address the high computational cost in designing large-scale
aperiodic metaoptics, a general computational framework for
efficient optimization-based inverse design of metasurface has
been proposed,39 enabling a few minutes of computation for 2D
inverse problems. To extend inverse design methods to three-
dimensional (3D) Maxwell’s equation, an efficient inverse de-
sign framework for aperiodic, large-scale, and 3D metasurface
with fabrication constraint has been proposed.33 As shown in
Fig. 2(d), leveraging the inverse design method, both polariza-
tion-insensitive RGB-achromatic metalenses and polychromatic
metalenses have been achieved, featuring aperture diameters of
1 and 2 mm, and numerical apertures (NAs) of 0.3 and 0.7.
Moreover, based on the achromatic metasurface design, a virtual
reality platform has been constructed, demonstrating the elegant
performance of the RGB-achromatic meta-eyepiece. Based upon
the 3D inverse design framework,33 Bayati et al.34 proposed real-
izing achromatic imaging with the objective function designed
for extending the DoF of different wavelengths. Similarly,
Wiener filtering or TV-regularized optimization-based deconvo-
lution has been introduced to retrieve the achromatic image, as
shown in Fig. 2(e). In addition, Wang et al.35 built a library of
pairwise data that maps the spectral phase response to the cor-
responding parameters of meta-atoms and proposed a multilay-
ered perception (MLP) network to efficiently learn the forward
simulator from metasurface structure parameters to the target
phase profile. Based upon a heuristic method, i.e., the particle
swarm optimization method,41 the structure parameters of meta-
surface can be retrieved, and visible achromatic imaging can be
realized, as shown in Fig. 2(f).
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3.1.2 Hyperspectral imaging

Snapshot hyperspectral imaging holds significant promise
across various applications, including security, remote sensing,
and astronomy. A primary challenge that it faces is the substan-
tial loss of spectral information during acquisition. Therefore, in
the design of hyperspectral encoding methods, maximum spec-
tral retention is crucial. Metasurfaces, with their versatile modu-
lation capabilities, are emerging as powerful tools for spectral
encoding in hyperspectral imaging. They offer flexibility in cus-
tomizing spectral encoding patterns, making them particularly
well suited for this purpose.

Among encoding schemes for snapshot hyperspectral imag-
ing, random spectral encoding, as the simplest method, has
showcased its potential to deliver high-quality and compact
hyperspectral imaging.42,43 Beyond its coding efficiency, its

resilience to manufacturing and systematic errors makes it
suitable for real-world applications. Specifically, a proposal
has been made for regular-shaped metasurface units to achieve
random spectral encoding at the visible wavelength,2 as shown
in Fig. 3(a). By utilizing these units with randomized parame-
ters, spectral data can be compressively encoded. To enhance
encoding efficiency, the mutual coherence metric,47 commonly
used in compressive sensing theory to measure encoding effi-
ciency, has been applied to identify improved metasurface geom-
etries. Conventional compressive sensing (CS) reconstruction
algorithms based on sparse optimization and dictionary learning
are utilized to reconstruct the hyperspectral images.48 This
hyperspectral imager is employed in the detection of brain
hemodynamics, specifically the spectral absorption of deoxyhe-
moglobin and oxyhemoglobin in rats. Furthermore, freeform-

Fig. 2 Achromatic computational imaging based on metasurface modulation techniques. EDoF-
based achromatic imaging: (a) cubic phase mask, reproduced with permission from Ref. 30 (CC-
BY), (b) symmetric EDoF-based canonical phase mask, reproduced with permission from Ref. 31
© 2020 Chinese Laser Press. Optimization-based inverse design methods: (c) multizone
dispersion-engineered metalens-based achromatic RGB focusing, reproduced with permission
from Ref. 32 (CC-BY), (d) achromatic RGB imaging with efficient 3D inverse design methods,
reproduced with permission from Ref. 33 (CC-BY), (e) achromatic visible imaging with EDoF-
based inverse design, reproduced with permission from Ref. 31 © 2021 American Chemical
Society, and (f) achromatic inverse design based upon artificial neural network, reproduced with
permission from Ref. 35 © 2021 Wiley-VCH.
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shaped units are introduced to realize random hyperspectral en-
coding with higher spatial and spectral resolution, in the visible
wavelength range from 450 to 850 nm44 [Fig. 3(b)]. Various
processing techniques, from blurring to binarization, are de-
ployed to generate these distinctive metasurface structures. The
introduction of freeform units results in finer spectral domain
features, ultimately preserving more spectral information. To
decode the encoded image, an MLP network is utilized, offering
enhanced fidelity and spectral resolution. In contrast to the
aforementioned metasurface units, an all-dielectric grating-
based metasurface is introduced, enabling hyperspectral encod-
ing in the range of 400 to 800 nm,45 as shown in Fig. 3(c). Paired
with a sparse Toeplitz-basis-based spectral reconstruction algo-
rithm, this approach achieves a spectral resolution of 4.8 nm, as
confirmed by experiments.

In addition to these coding-based hyperspectral imaging
methods, multiaperture spectral array-based methods have been
proposed,46 as shown in Fig. 3(d). Each channel is composed
of a metasurface-based spectral filter and achromatic doublet,
enabling the capturing of each spectral channel. To correct
different color channels to the same viewpoint, computational
parallax correction methods are implemented based on affine

transform. To further enhance encoding efficiency, learning-
based spectral encoding methods are proposed. Specifically,
the principal component analysis (PCA)-based hyperspectral
metasurface imager, known as HyplexTM,3 is presented, as
shown in Fig. 3(e). Target transmission functions of the meta-
surface encoder are obtained using unsupervised learning via
PCA.49 The artificial intelligence-driven autonomous learning
framework for rule-based evolutionary design (ALFRED)50 is
used for inversely designing the nanostructures of the metasur-
face encoder. In addition to the PCA encoding scheme, the
end-to-end optimization method based on a differential exten-
sion of ALFRED (d-ALFRED)3 is also applied to optimize
the metasurface geometry and hyperspectral reconstruction
simultaneously. A deep-neural-network-based forward model is
used,50 allowing for end-to-end optimization of both the encoder
function of the metasurface and the subsequent reconstruction
algorithm for hyperspectral segmentation. Moreover, joint
optimization of the metasurface phase array and reconstruction
algorithms has been explored to further enhance hyperspectral
imaging.51 A deep-unfolding neural network based upon the
alternating gradient descent convex optimization framework52,53

is implemented for image reconstruction. In addition to these

Fig. 3 Spectral modulation-based hyperspectral imaging. Hyperspectral imaging with random en-
coding with (a) regular-shaped metasurface design, reproduced with permission from Ref. 2 ©
2022 Optical Society of America, (b) freeform-shaped metasurface, reproduced with permission
from Ref. 44 © 2022 Wiley-VCH, (c) metasurface-based gratings, reproduced with permission
from Ref. 45 © 2022 Optica Publishing Group, (d) multi-aperture spectral filter array-based hyper-
spectral imaging, reproduced with permission from Ref. 46 (CC-BY), (e) end-to-end learned opti-
mal metasurface design, reproduced with permission from Ref. 3 © 2022 IEEE.
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transmissive hyperspectral information encodings, a specifi-
cally designed multiwavelength off-axis focusing metamirror
is proposed to capture four images reflectively in a snapshot.
Through combining convex optimization and deep learning,
18 channels of hyperspectral image are retrieved from the
captured image with a small amount of data for training the
neural network.54

In summary, by fully harnessing the inherent redundancy in
hyperspectral images and integrating advanced computational
imaging techniques, there is optimistic anticipation that high-
quality hyperspectral imaging retains essential spectral nuances
that can be promisingly realized.

3.2 Polarization

In the realm of computational imaging, metasurfaces have risen
as highly versatile tools, primarily owing to their distinctive
capability to modulate the polarization of light. This section pro-
vides a brief overview of computational imaging techniques that
harness metasurfaces’ polarization modulation capabilities. We
will delve into three key paradigms: polarization multiplexing,
polarization routing, and polarization filtering.

3.2.1 Polarization multiplexing

Metasurfaces, with the exceptional ability to enable polarization
multiplexing, provide an unprecedented degree of independent
modulation freedom that greatly enhances various innovative
computational imaging tasks. These tasks include the introduc-
tion of an additional encryption key,55 underwater descattering
for depth and intensity imaging,56 on-chip wide FoV micro-
scopic imaging,57,58 full-Stokes imaging,4,5 extreme DoF imag-
ing,59 and monocular 4D imaging.60

For instance, polarization multiplexing of left and right
circular polarization states using metasurfaces can introduce
additional layers of security keys in ghost-imaging-based infor-
mation encryption applications,55 as shown in Fig. 4(a). In ad-
dition, this meticulous tailoring of the metasurface responses
to distinct light chirality enables the realization of an extreme
DoF, spanning from just 3 cm to a staggering 1.7 km,59 as shown
in Fig. 4(b). A lightweight multiscale convolutional neural
network (CNN) is proposed to efficiently eliminate various
aberrations in the metalens array, achieving diffraction-limited
resolution over nearly the entire DoF range. No color informa-
tion is sacrificed for extending the DoF, and full-color extreme
DoF light-field imaging could be achieved simultaneously.

Moreover, polarization multiplexing with metasurface facil-
itates wide FoV microscopy imaging. Typically, wide FoV
microscopy relies on a microlens array with an ultracompact
size, but the blind area between the adjacent microlenses can
significantly hinder its practicability. By utilizing polarization
multiplex with metalens array, blind areas under different inci-
dent light conditions with varying light chirality,57,58 as shown in
Figs. 4(c) and 4(d), such as left circular polarized light and right
circular polarized light, can complement each other. This ena-
bles the elimination of blind areas through computational image
stitching. Additionally, by multiplexing linearly orthogonal
polarization states (0 deg and 90 deg) of light, depth information
and high-contrast images can be recovered with reduced under-
water scattering effects,56 as shown in Fig. 4(e). Furthermore,
by polarization multiplexing each sidelobe of the double-helix
PSF (DH-PSF) with linearly orthogonal polarization states,
4D information, including the space, polarization, and depth

information, can be encoded and reconstructed using a physi-
cally interpretable image retrieval algorithm,60 as shown in
Fig. 4(f).

3.2.2 Polarization routing

In the realm of optical polarization imaging, the concept of
polarization routing has emerged as a compelling approach,
alongside polarization multiplexing. This paradigm seeks to
model the polarization-dependent light-modulation capabilities
of metasurfaces for the realization of full-Stokes polarization
imaging. To this end, the framework of matrix Fourier optics
has been introduced, representing an advancement beyond
the conventional scalar Fourier transform in Fourier optics,4

as shown in Fig. 4(g). The incorporation of the matrix Fourier
transform is pivotal, as it enables the comprehensive modeling
of metasurface-based polarization dimension modulation.
Building upon the matrix Fourier optics theory, an inverse-
design strategy of the metasurface is presented to realize the
full-Stokes polarization imaging. To optimize the specifications
of metasurface for effective polarization routing, the gradient
descent algorithm with Lagrange multipliers methods62 is em-
ployed. The four vertices of a tetrahedron within the Poincaré
sphere are employed as the target analyzer states for polariza-
tion routing. Subsequently, the ultimate image, containing
full-Stokes polarization channels, is reconstructed on a pixel-
by-pixel basis via straightforward matrix inversion techniques.
Notably, it is imperative to acknowledge that the utility of
matrix Fourier optics modeling transcends its application in
full-Stokes imaging, offering a versatile solution for the design
of metasurfaces catering to an array of polarization-dependent
applications. In addition to this method, an array of micropola-
rization routing metalenses is introduced as a solution to achieve
high-sensitivity polarization imaging,61 as shown in Fig. 4(h).
Compared with the traditional filtering-based polarization imag-
ing methods, the polarization routing schemes could achieve
much higher light throughput, thus facilitating polarization im-
aging with high sensitivity.

3.2.3 Polarization filtering

In light of the enhanced light throughput inherent to the polari-
zation routing-based method, it is important to acknowledge the
potential limitation posed by the persistent presence of zero-
order diffraction components, which can significantly impede the
spatial resolution of resulting images. In response to this chal-
lenge, filtering-based polarization imaging systems use polariz-
ing filters, such as linear polarizers or wave plates,5,63 to directly
select the desired polarization state of light for imaging. Since
filtering-based polarization imaging systems operate by ab-
sorption and transmission without altering the path of light via
diffraction, there are no zero-order (or any order) diffraction
components involved. Specifically, high polarization extinc-
tion ratios of linear and circular polarization filters based on
double-layer metallic gratings and hybrid chiral metasurfaces
are proposed and realized on-chip full-Stokes imaging with
ultracompactness.63 Due to the inherent spatial-division working
principle, the spatial resolution is directly compromised for the
four linear and two circular polarization channels. In addition,
the design principle of utilizing high extinction ratios of polari-
zation filters requires high alignment accuracy. In addition to
these polarization filter-based methods with high extinction
ratios, Fan et al.5 introduced an approach, specifically a random
polarization encoding-based method, for full-Stokes imaging.
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Fig. 4 Polarization modulation-based computational metasurface imager. (a) Polarization multi-
plexing-based single-pixel imaging, reproduced with permission from Ref. 55 (CC-BY), (b) ex-
treme-DoF imaging with polarization multiplexing, reproduced with permission from Ref. 59
(CC-BY), (c), (d) wide FoV microscopic imaging methods with polarization multiplexing, repro-
duced with permission from Ref. 58 (CC-BY) and Ref. 57 (CC-BY), (e) polarization multiplexing
for underwater descattering, reproduced with permission from Ref. 56 © 2021 Wiley-VCH,
(f) polarization multiplexing-based 4D imaging, reproduced with permission from Ref. 60 (CC-
BY), (g) full-Stokes imaging, reproduced with permission from Ref. 4 © 2019 AAAS, (h) efficient
polarization imaging with polarization splitting, reproduced with permission from Ref. 61 © 2020
Optical Society of America, (i) compressive polarization imaging with random weak dichroism
metasurface, reproduced with permission from Ref. 5 (CC-BY).
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This method holds promise for achieving compressive sensing
of full-Stokes imaging, particularly in scenarios characterized
by weak dichroism, as shown in Fig. 4(i). A disordered meta-
surface array is proposed to serve as an efficient compressive
sampling matrix in both spatial and polarization dimensions.
Specifically, the transmissions for different polarization states
and pixels are designed to be randomly distributed, serving
as the compressive encoding for high-dimensional full-Stokes
polarization images. Through calibrating the compressive
sampling matrix of the metasurface, compressive sensing-based
techniques can be utilized for recovering full-Stokes polariza-
tion images from the compressed measurements. Furthermore,
akin to the advantages offered by random hyperspectral coding
methods, the inherent robustness against manufacturing and sys-
tematic errors endows random polarization encoding schemes
with practical applicability. Leveraging the attributes of weak
dichroism, such schemes can surpass the light throughput of
traditional polarization filtering methods. Notably, with a prop-
erly calibrated polarization response, a mask-aware full-Stokes
reconstruction neural network is proposed to elegantly recon-
struct the complete full-Stokes polarization image. Contrary
to conventional expectations, the introduction of compressive
sensing proves instrumental in alleviating design constraints as-
sociated with metasurfaces, thereby demonstrating effectiveness
in realizing compact implementations of full-Stokes polarization
imaging techniques.

3.3 Depth/Angle

Owing to the advantages of compactness and the subwavelength
modulation capabilities, it is feasible to enable PSF engineering
for depth imaging and wide-angle modulation through meticu-
lous engineering of the phase distribution in metasurfaces. The
ability to manipulate light at subwavelength scales allows meta-
surfaces to control light with high precision, which is critical for
both depth and wide-angle imaging applications. For depth
imaging, metasurfaces enable a compact, snapshot approach by
ingeniously engineering the PSF. This engineered PSF is a key
to creating distinct depth cues: it introduces a spatially varying
blurring effect in the captured image, where the degree of blur
varies with the depth of different objects. Such variations are
then decoded using depth-retrieval algorithms, enabling the ex-
traction of precise depth information from a single image. In the
context of wide-angle imaging, metasurfaces offer substantial
benefits due to their ability to manipulate light over a large range
of angles. This is made possible by their unique property of
modulating light at a scale smaller than its wavelength and pro-
vides a flexible and compact platform for capturing or projec-
ting light across wide angles. Such capabilities are of utmost
importance in the context of depth and 3D imaging. In this sec-
tion, we undertake a comprehensive review of the current state
of metasurface-based depth and wide-angle imaging, focusing
on the incorporation of PSF engineering and wide-angle modu-
lation techniques.

3.3.1 PSF engineering

Due to their inherent compactness, metasurfaces have emerged
as crucial components for modulating PSFs in response to
depth variations, thereby facilitating the encoding of depth
and 3D information. This innovation holds the potential to revo-
lutionize compact depth imaging techniques based on PSF en-
gineering. In the scene, the depth of different points varies, and

consequently, the wavefront of light emanating from these points
and reaching the aperture plane differs, directly correlating with
depth and represented as Uðx; y; zÞ. Thus even though the phase
distribution of the metasurface on the aperture plane ϕðx; yÞ is
fixed, the PSF corresponding to points at different depths
captured on the sensor can be expressed as PSFðx; y; zÞ ¼
jFfUðx; y; zÞϕðx; yÞgj2, where Ff·g denotes Fourier transform
and j · j2 denotes the complex modulus operation. Therefore, by
designing the phase distribution on the aperture plane to ensure
that the PSFs of different depths are as distinct as possible, depth
information can be inferred by analyzing the different PSFs.
One commonly employed technique for passive 3D sensing
is the DH-PSF, characterized by two focal points that revolve
around the center axis, with their rotation angles varying accord-
ing to depth.64 The double-helix phase profile is generated as the
strategic selection of Gauss–Laguerre (GL) modes from a line in
the GL modal plane. The linear relationship facilitates the cre-
ation of a clear and structured interference pattern, achieving
significant DoF extension. The PSF’s rotation angle exhibits
a direct relationship with the depth, which allows us to deduce
the depth of individual point sources based on the PSF pattern
observed. Traditionally, the DH-PSF is achieved using DOE or
SLM. As shown in Fig. 5(a), Jin et al.65 introduced an all-dielec-
tric metasurface-based DH-PSF design tailored for single-shot
depth imaging, particularly in the 1500 nm wavelength range.
This design exhibits significant potential for compact 3D imag-
ing. Depth retrieval is accomplished by raster scanning a local
field image using a small (128 pixels × 128 pixels) image patch,
and subsequently analyzing the image spectrum to derive the
local orientation of the DH-PSF. A precalibrated correlation be-
tween depth and rotation angle enables the extraction of depth
information based on the inferred orientation angle. Empirical
demonstrations underscore the potential of this all-dielectric
DH-PSF design in imaging objects with depths ranging between
540 and 730 mm, highlighting its capacity to drive the next
generation of ultracompact 3D imaging systems.

Beyond DH-PSF, the cubic phase metasurface is introduced,26

either as a static configuration66 [Fig. 5(b)] or reconfigurable
through electrical modulation,69 to facilitate the extraction of
depth information and in-focus images with EDoF. The clean
image can be recovered from the image of the cubic phase plate,
using regularized filter-based deconvolution algorithms,38 and
the DH-PSF distribution can be retrieved by deconvolving the
image of the DH-PSF aperture with the restored clean image
through Wiener filtering. Depth information can then be re-
trieved from the rotation angle of the DH-PSF distribution.

As shown in Fig. 5(c), inspired by the visual mechanics of
jumping spiders, which utilize defocus for depth perception,
Guo et al.58 proposed spatially multiplexing two metalenses,
each with distinct defocus properties. This configuration
produces two divergent defocused images in the sensor plane,
allowing for depth data extraction through a lightweight depth
extraction algorithm. In addition to singular-aperture-based
depth-encoding techniques, there is a growing interest in meta-
surface array methodologies, such as the use of three closely
packed hexagonal metalenses for precise 3D positioning,68 as
shown in Fig. 5(d). Incorporating a cross-correlation-based
gradient descent algorithm, image plane aberrations can be
corrected, enhancing the accuracy of 3D positioning.

In summary, these methodologies leverage phase encodings
through PSF engineering, particularly through PSF shape
variations, to extract depth data from captured images.66,67,69 By
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calibrating the relationship between depth and PSF, depth can be
extracted once the PSF of each image region is estimated using
computational algorithms.

3.3.2 Wide-angle modulation

The pursuit of miniature wide-angle imaging systems, akin to
compound eyes, has resulted in notable advances in recent
years. An innovative approach involves an angle-sensitive en-
semble of metallic plasmonic nanostructures coated onto a stan-
dard image sensor array, enabling the demonstration of 150 deg
wide-angle imaging,70 as shown in Fig. 6(a). This development
obviates the need for intricate optical lenses, such as fish-eye
lenses or extensive microlens arrays, as well as bulky system
architectures. For image reconstruction, the truncated singular
value decomposition technique is deployed to computationally
fuse angle-wise sampled information to the target image.76

Beyond pixel-level metasurface-based angle-sensitive de-
signs, a linear array of silicon nitride metalenses, among which
each metalens possesses different phase responses to different
incident angles, is integrated onto the front of a complementary
metal-oxide-semiconductor image sensor, thereby enabling
wide-angle imaging,71 as shown in Fig. 6(b). Leveraging the
versatility of metalens design, phase-shift configurations are
implemented to ensure optimal imaging quality across specific
angle distributions. Through computational stitching techniques,

images captured by different metalenses are filtered using differ-
ent masks indicating the best focusing angle range and then are
seamlessly combined. This approach results in the achievement
of more than a 120 deg horizontal extensive viewing angle in
a compact planar camera setup. To address challenges in fabri-
cating large-aperture metalenses, researchers are turning to syn-
thetic aperture methods (SAMs). The fundamental principle of
SAM for large-aperture imaging is based on the concept of com-
bining multiple observations taken from different viewpoints to
simulate the imaging capability of a much larger aperture than
what is physically possible with a single observation. This tech-
nique, widely used in radar and sonar imaging systems, allows
for high-resolution imaging despite having a physically smaller
sensor or aperture. As shown in Fig. 6(c), SAM-based metalens-
integrated near-infrared cameras are proposed.59,72 The proposed
SAM techniques allow for the preservation of high-frequency
data across four subaperture imaging setups, with high resolu-
tion comparable to that of a large aperture (which is four times
the area of a subaperture). This is achieved through commonly
adopted synthetic aperture reconstruction algorithms, such as
Wiener filtering36 and the Richardson–Lucy deconvolution
algorithm.77,78 In addition, polarization-insensitive, orthogonal
linearly polarized, and orthogonal circularly polarized SAMs are
proposed and demonstrated with simulation.79 To improve the
MTF response at high spatial frequencies without significantly

Fig. 5 Depth modulation and imaging techniques with metasurface imager. (a) DH-PSF engineer-
ing-based depth imaging, reproduced with permission from Ref. 65 (CC-BY), (b) EDoF and DH-
based PSF engineering, with side-by-side metalens, reproduced with permission from Ref. 66
© 2020 ACS, (c) depth from dual-defocus multiplexing, inspired by jumping spider vision, repro-
duced with permission from Ref. 67 (CC-BY), and (d) triple metalens based 3D positioning, re-
produced with permission from Ref. 68 © 2020 Optica Publishing Group.
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reducing the efficiency at low spatial frequencies, a hybrid ar-
rangement of high-transmission small unit cells in the high NA
region of the metalens and low-transmission large unit cells in
the low NA region is proposed and demonstrated to improve the
maximum cutoff frequency.80 In the domains of millimeter
waves and terahertz frequencies, SAMs have been proposed
to achieve high spatial resolution.81–83 These methods utilize
dynamically tunable metasurfaces to produce different radiation
patterns and realize equivalent synthetic aperture imaging.

Structured illumination, a widely used technology for acquir-
ing additional scene information through coded active illumina-
tions, has gained prominence in depth-sensing scenarios. Depth
information is obtained by illuminating scenes with structured
patterns and detecting pattern distortion in captured scene im-
ages. Traditionally, structured illumination employs DOE, but
limitations arise from relatively large pixel sizes, as well as
constraints on angle-of-view and diffractive efficiency. The
utilization of nanoscale modulation units in metasurface enables
wide-angle structured illumination in a compact manner.84 This
innovation has led to submillimeter (0.24 mm) depth accuracy
imaging over a depth range of 300 mm,73 as shown in Fig. 6(d).
To create unique local patterns in the entire projected illumina-
tion pattern, M-array85 is employed as pseudo-random coding,
with the Gerchberg–Saxton (GS) algorithm86 used to calculate
the required phase map of the metasurface. After capturing

images with structured illumination, a 3D reconstruction algo-
rithm is applied, relying on the triangulation principle.87

Similarly, metasurface-enhanced structured illumination is in-
troduced in stereo-camera depth-sensing systems,6 offering
dense illumination with around 104 dots (or around 100 par-
allel light lines) and 180 deg angle coverage of illumination.
This development has enabled depth imaging in the range of
1 m and 120 deg FoV, as shown in Fig. 6(e). The metasurface
geometry for structured illumination is retrieved using the
GS algorithm, and depth information is extracted through
the stereo-matching algorithm, i.e., the coherent point drift
algorithm.88

In an effort to mimic human vision, the multibeam address-
ing capability of metasurfaces is harnessed, and two detection
schemes are proposed to enable multizone 3D imaging, simul-
taneously achieving scanning resolutions in the center zone of
2 deg× 2 deg and the peripheral zone of 150 deg×150 deg,
operating at the speed of 3.4 kHz (with a pixel resolution of
70 × 70), for depth imaging,74 as shown in Fig. 6(f). A data
analysis approach, along with a learning-based image retrieving
algorithm, is employed to extract depth information from the
captured raw data, suggesting potential for adaptive and flexible
imaging. With a sophisticated design of light path, an achromatic
metalens array was proposed to work under two different types
of mode, depending on the illuminance intensity,75 as shown in

Fig. 6 Angle dimension modulation for computational imaging. Wide-angle-imaging-based upon:
(a) ommatidia-inspired pixel-wise angle-sensitive filtering, reproduced with permission from
Ref. 70 (CC-BY), (b) angle-selective metalens array, reproduced with permission from Ref. 71
© 2022 Optica Publishing Group, (c) synthetic aperture with four small apertures, reproduced with
permission from Ref. 72 © 2021 Chinese Laser Press. Wide-angle illumination for 3D depth im-
aging based upon: (d) pseudo-random coding, reproduced with permission from Ref. 73 (CC-BY),
(e) uniform dense light patterns, reproduced with permission from Ref. 6 (CC-BY), (f) double-zone
illumination, reproduced with permission from Ref. 74 (CC-BY), and (g) dual depth imaging mode
with structured light-field imaging under common light conditions and structured imaging under
low-light conditions, reproduced with permission from Ref. 75 © 2022 Wiley-VCH.
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Fig. 6(g). In low-light conditions, the light path is switched to
the active depth-imaging mode, while under normal lighting
conditions, it operates in the light-field imaging mode. A CNN
facilitates the extraction of depth information in both scenarios.

In conclusion, the fusion of computational imaging tech-
niques with the unique angle modulation capabilities of meta-
surfaces has paved the way for groundbreaking wide-angle
illumination and imaging scenarios. These innovations hold the
potential to simplify optical system designs and expand novel
imaging capabilities through metasurface integration.

3.4 Compound Modulation

Leveraging the versatile multidimensional modulation capabil-
ities of metasurfaces, complex tasks requiring cross-dimen-
sional modulation can be significantly facilitated through
metasurface-based computational imaging. Compound modula-
tion is defined as the coordinated manipulation of various prop-
erties or dimensions of a light field to achieve specific imaging
goals. This includes techniques, such as angle-spectrum modu-
lation, where both the direction and spectrum of light are con-
trolled, and angle-polarization modulation, which involves the
simultaneous adjustment of light’s angle and its polarization
state, etc. These methods represent a sophisticated approach
to light manipulation, allowing for more complex and refined
imaging outcomes. For instance, the metasurfaces’ flexible
focusing depth and strong spectral dispersion capabilities allow

for the concatenation of focusing ranges of different color
channels.89 Using the proposed deep U-Net-based CNN,90 in-
focus RGB images and depth information could be retrieved,
extending the DoF range, as shown in Fig. 7(a). With the
flexible angle modulation capabilities of metasurfaces, ultra-
compact light-field imaging is enabled with the metalens
array.96 In addition, further utilizing the strong dispersion of
metasurfaces, Hua et al.91 introduced a metalens-array with
robust spectral dispersion. Employing a convex optimization-
based reconstruction method, which utilizes total-variation
priors in both spatial and spectral dimensions,97 hyperspectral
and light-field information could be simultaneously retrieved,
as shown in Fig. 7(b).

Similarly, metasurfaces enabled the concept of color routing
for color imaging.92,93,98,99 In contrast to traditional color-filter
arrays (methods like the Bayer filter), color routing offers sig-
nificantly higher transmission efficiency. Heuristically designed
algorithms, such as genetic algorithms,100 are employed for
inverse design of color routing and splitting, achieving optical
efficiencies up to 58%, 59%, and 49% for red, green, and blue
light, with an average rate of 84% across the entire visible spec-
trum (400 to 700 nm), roughly double the efficiency of a com-
mercial Bayer color filter, as shown in Fig. 7(c). Ongoing efforts
to further enhance this efficiency, including a path information-
guided inverse design method, have pushed these numbers even
higher, reaching peak efficiencies of 58.3%, 52.6%, and 69.6%
for red, green, and blue light bands, as shown in Fig. 7(d).

Fig. 7 Spectrum-angle/depth modulation-based computational imaging: spectral-angle joint
modulation for (a) RGB and depth imaging with EDoF, reproduced with permission from
Ref. 89 © 2021 ACS, (b) spectral light-field imaging, reproduced with permission from Ref. 91
(CC-BY), (c), (d) high-efficiency color imaging based upon color routing, reproduced with permis-
sion from Ref. 93 (CC-BY) and Ref. 92 © 2021 ACS, (e) single-image multichannel imaging, re-
produced with permission from Ref. 94 © 2022 Optica Publishing Group, and (f) full-color wide-
FoV imaging, reproduced with permission from Ref. 95 (CC-BY).
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With the multidimensional modulation probability of meta-
surfaces, optimization-based end-to-end learning of the geometry
of meta-atoms is proposed to realize single-shot multichannel
imaging, including multispectral, polarization, and depth imag-
ing,94 as shown in Fig. 7(e). The Chebyshev interpolated surro-
gate model under a locally periodic approximation39 is utilized
to efficiently simulate the transmitted electric field through

a large-area metasurface. An iterative conjugate-gradient
method is adopted to reconstruct the target image, and the gra-
dient for optimizing metasurface is calculated with the adjoint
method.101 Note that this kind of optimization-based end-to-end
learning requires NO data set; however, the multichannel
imaging capability is demonstrated only on sparsely distributed
scenarios, which might be generalized to denser scenes with

Table 1 Overall summarization of existing computational metasurface imager.

Illumination Sensing Reconstruction

Spectrum • Canonical EDoF phase-based
achromatic design30,31

• Wiener filtering36

• Inversely-designed achromatic
encoding34

• TV-regularized convex optimization
algorithm97,102,103

• Random hyperspectral coding with
regularly-shaped,2 free-form shaped,44

grating-based metasurface45

• MLP-based spectral
reconstruction3

• Multiaperture hyperspectral filtering46 • Dictionary learning-based sparse
recovery48• PCA-based spectral encoding3

• End-to-end learned metasurface design and neural network based
hyperspectral retrieval and segmentation3,51

Polarization • Trilobite-inspired chiral multiplexing59 • Multiscale CNN59

• Linear polarization multiplexing60 • Matrix inversion4

• Inversely-designed polarization splitter
with tetrahedron polarization analyzer4

• Gradient descent optimization
algorithm23

• Metalens array-based polarization
splitting61

• Deep mask-aware compressive
full-Stokes reconstruction network5

• Random polarization filtering5

• Mosaic polarization filtering63

Depth/Wide
angle

• High-density 1D or 2D dots
(∼104) or parallel lines
(∼100), covering 180 deg FoV6

• Synthetic aperture sensing72 • Truncated SVD technique76

• M-array-based pseudo-random
coding for illumination73

• Ommatidia-inspired pixel-wise planar
wide-angle selective sensing70

• Wiener filtering36 and the
Richardson–Lucy deconvolution
algorithm77,78

• Double-zone illumination, i.e.,
peripheral zone (150 deg FoV)
and center zone (2 deg FoV)74

• Angle-selective metalens linear
array-based wide-angle sensing71

• Mask-based stitching algorithm71

• Depth extraction algorithm based
on triangulation,87 stereo-
matching,88 and time-of-flight74

PSF
engineering

• DH-PSF65,66,69 • Cepstrum analysis65

• Jumping spider-inspired dual-defocus
PSF67

• Depth from defocus algorithm104

• Three-subaperture based on three
close-packed hexagonal
metalenses68

• Depth from parallex of correlation-
aberration corrected subaperture
images68

Compound • Dispersion-based spectral encoding
and metalens array-based light-field
imaging91

• Convex optimization of 4D
hyperspectral light-field image
based on spectral–spatial sparsity
prior97

• Inversely-design-based color routing
or splitting92,93

• U-Net-based RGB and depth
retrieval neural network89

• Tri-focus PSF over RGB channels89

• End-to-end learned metasurface design and wide FoV imaging95 and snapshot
multichannel (spectrum, polarization, and depth) imaging94
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deep-neural-network-based end-to-end optimization. Beyond
multichannel imaging, as shown in Fig. 7(f), achromatic wide
FoV imaging is proposed by combining the advantages of meta-
surfaces in spectral and angle modulation.95 Using an end-to-end
optimization framework, an aperture of 0.5 mm with an F-
number of 2 is achieved. Notably, the response function of meta-
surfaces is initially fit using simpler structures like nanoposts,
offering a single designable parameter, the duty cycle. However,
by harnessing the more diverse modulation potentials of meta-
surfaces with intricate nanostructures, even higher-quality ach-
romatic wide FoV imaging can be anticipated.

In conclusion, metasurfaces, characterized by their compact-
ness, subwavelength, and multidimensional modulation, play
a pivotal role in advancing imaging techniques. The synergy
between computational methods and metasurface technology is
paramount in pushing the boundaries of optical science. To pro-
vide a clearer visualization and comprehensive understanding,
we have summarized this section in Table. 1.

4 Computational Imaging Framework
Different from traditional imaging, computational imaging usu-
ally introduces modulators in different locations of the imaging
system with complex coding schemes for modulating the light-
field information during acquisition and requires customized
reconstruction algorithms for matching, as shown in Fig. 8(a).
Therefore, the design framework of the computational imaging
system becomes significant. Here we briefly introduce three
primary design frameworks for metasurface-based computa-
tional imaging systems: the conventional imaging framework,
the independent optimization-based imaging framework, and
the end-to-end learned metasurface-based imaging framework.

Within the conventional imaging framework, many existing
metasurface-based imaging systems are empirically designed
using established patterns. Given the predictable functions
of these coding patterns and modulation schemes, each
module of the entire system, encompassing illumination, optical
components, sensors, and postprocessing algorithms, can be

independently designed with predefined input or output. Owing
to its reliability and straightforward applicability, this canonical
design has found extensive use in numerous computational
imaging systems. However, the relatively limited modulation
schemes constrain the system’s capacity to approach the global
optimum.

Beyond the conventional imaging framework, independently
designing a metasurface with a specifically designed objective
could further utilize the flexible modulation capability of meta-
surface. Among these methods, either the phase profile or the
structure parameters of metasurface are chosen as the variables
to be optimized. With the optimized metasurface for imaging,
various optimization-based methods are incorporated for final
target image reconstruction. As shown in Fig. 8(b), the optimal
metasurface design is independently optimized without consid-
ering the reconstruction process, which might not provide direct
guidance for the optimal design of metasurface toward the final
target.

Recently, end-to-end optimization-based metasurface de-
signing methods have been proposed for finding the optimal
structure of the metasurface and the workflow, as shown in
Fig. 8(c). Different from the independent design method, the
end-to-end optimization-based metasurface design takes the
reconstruction quality of the imaging target as the optimization
goal. The metasurface design and the reconstruction algorithm
are optimized by training the entire system in an end-to-end way
to achieve the optimal solution. End-to-end joint optimization is
a promising developing direction for fully exploiting the multi-
dimensional joint-modulation potential of metasurfaces with the
power of computation, potentially heralding the advent of next-
generation imaging technologies.

According to the above design schemes, metasurfaces have
been applied in various computational imaging systems to ex-
pand the boundaries of their capabilities. In the following, we
review the existing metasurface-based computational imaging
methods from two aspects, i.e., the hardware systems (including
illumination and sensing) and the computational algorithms.

(a)

(b) (c)

Fig. 8 Computational imaging framework of metasurface-based imaging. (a) The computational
imaging process, containing optimizable imaging component and reconstruction algorithms;
(b) independent optimization framework; and (c) end-to-end optimization framework.
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4.1 Hardware Systems

The hardware of the computational imaging systems usually in-
cludes computational illumination and sensing modules. As for
illumination, structured illumination is commonly introduced
in computational imaging for a wide range of applications, in-
cluding 3D imaging105,106 and microscopic superresolution.107

The intrinsic subwavelength modulation capabilities of metasur-
faces pave the way for wide-angle modulation. This is harnessed
to achieve expansive angle illumination, thereby surmounting
the inefficiencies and uniformity challenges posed by diffracted
beam arrays inherent to conventional optical modulators.6,73,74

Based on the metasurface-enabled structured illumination, 3D
imaging techniques could be implemented with high compact-
ness and large angle or even full-space ranging capability. Such
characteristics hold promise in a wide range of applications,
such as machine vision, security protections, consumer-level
3D cameras, and virtual reality. Beyond these applications,
further harnessing the unique attributes of metasurfaces to boost
the existing structured illumination-based computational imag-
ing technologies is worth exploring, providing more opportuni-
ties for the next generation of nanostructured illumination
technologies.

As for the sensing module, the metasurface-based modulator
could be introduced in the imaging system for implementing the
designed encoding of high-dimensional light-field information.
In the following, we will review the metasurface-based com-
putational imaging works according to the plane where the
modulation is introduced, i.e., the image plane modulation, the
aperture plane modulation, the interspace modulation, and the
lens-free modulation, as shown in Fig. 9.

Generally, image plane modulation imposes a pixel-wise
optical characteristic (e.g., spectral or polarization) operation
on the images, making it suitable for scenarios of color, spectral,
or polarization imaging. To capture multidimensional informa-
tion with a 2D sensor, various coding schemes have been pro-
posed to encode the information into the spatial domain.
Specifically, regularized periodic coding, random coding, and
learning-based coding schemes are commonly employed. In the
realm of conventional coding schemes, periodic coding, preva-
lent in many traditional imaging systems, uses a set of filters as
a unit and periodically repeats the unit on the image plane,
creating a mosaic-like filter array pattern. The incorporation of
repeated mosaic patterns, such as the 4 × 4 or 5 × 5 spectral fil-
ter arrays found in IMEC hyperspectral sensors,108 RGB and
near-infrared spectral filter array,109 or the 2 × 2 polarization
filter arrays like those in Sony’s Polarsens,110 facilitates hyper-
spectral and polarization imaging in a snapshot manner. This
approach is akin to the Bayer pattern used in RGB imaging.
Demosaicking algorithms111 could enable to restore spatial

resolution across multiple hyperspectral or polarization channels.
The multichannel images with spatial resolution corresponding
to the original sensors could be restored. Meanwhile, the details
could be lost depending on the period of the mosaic unit, the
larger the period is, the more the detail loss is. In addition to
periodic coding, random coding has been introduced for spatial,
hyperspectral, and polarization imaging using metasurface-
based random encoding. Utilizing random encoding, hyperspec-
tral or full-Stokes polarization imaging can be achieved in a
compact form, leveraging the metasurface’s compactness. To
enhance sampling efficiency for specific scenarios, unsupervised
learning-based methods, such as PCA-based encoding, can be
employed. As a widely used dimensionality reduction tech-
nique, PCA-based coding can effectively lower the dimension-
ality of high-dimensional data while preserving the majority
of information, further boosting sampling efficiency. Beyond
PCA, dimension reduction methods, such as linear discriminant
analysis for supervised dimensionality reduction,112 locally
linear embedding,113 and autoencoders114 in deep learning, each
suited to specific data types and objectives, might be further
utilized for design-efficient encodings. Moreover, end-to-end
learning-based encoding offers the potential for the efficient
capture of high-dimensional light-field information.

Aperture plane modulation serves as another frequently
adopted scheme in computational imaging. Contrasting with im-
aging plane modulation, aperture plane modulation achieves
global modulation through convolution models. The convolu-
tional PSF of aperture plane modulation can vary based on
the wavelength, polarization, and depth of the scene points.
Thus it is commonly used to capture depth, spectral, and polari-
zation states using targeted modulation techniques like PSF
engineering or to extend the DoF or FoV of imaging. Among
all computational imaging techniques with metasurfaces, some
metasurface design directions draw heuristic inspiration from
canonical phase patterns in classical optics, such as EDoF
phases and 3D localization phases. Furthermore, harnessing the
advantages of metasurfaces to enhance canonical PSF-coding
schemes, like multiplexing multiple canonical codings within
the spectral or polarization dimensions, emerges as a promising
research avenue. Additionally, when the required aperture size is
impractically large, synthetic aperture-sensing methods come
into play, enabling the achievement of a large metalens aperture
from multiple smaller subapertures. Alongside SAMs, multia-
perture-based imaging setups can also be utilized to capture
higher-dimensional information, such as depth or hyperspectral
data.

Beyond modulation on either the aperture or image plane,
interspace modulation between these planes can effectuate
local modulation across both spatial and angular domains. This
method finds its niche in light-field-related imaging scenarios,

Fig. 9 Metasurface modulation-based computational sensing methods.
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e.g., light-field imaging,96 spectral light-field imaging,91 and ex-
treme DOF imaging.59 In addition to the interspace modulating
between the aperture and image plane, combined with the
computational algorithm, the lens-free imaging methods70 could
reconstruct images from the specially designed metasurfaces
without focusing lenses. Beyond angle-filtering, there exists a
diverse array of lens-free techniques through introducing ampli-
tude and phase modulations. These innovative approaches con-
tribute to eliminating the need for traditional lenses, thereby
facilitating imaging processes without the use of lenses.10,11,115–118

4.2 Computational Algorithms

In computational imaging systems, the target information is
usually modulated in a nonexplicit manner, necessitating the
specially designed algorithms to extract the information and re-
construct the desired images. The efficacy of the entire system
largely hinges on the performance of these computational algo-
rithms. Therefore, it is essential to review the existing algorithm
techniques in computational imaging.

4.2.1 Overall framework

In general, the computational imaging problem consists mainly of
the forward imaging process, which models the imaging process
from the original signal to the measurements, and the inverse pro-
cess, which reconstructs the images from measurements. As for
the forward imaging process, an imaging model is commonly in-
troduced to characterize the light-modulation function presented
by the metasurface-based imaging system. This model estab-
lishes the correspondence between the essential information
from the scenes and the measurements obtained. In contrast,
the inverse process aims at reconstructing the target image from
measurements. In this section, we will conclude the forward im-
aging models and reconstruction algorithms in the existing com-
putational metasurface imaging systems.

4.2.2 Forward image modeling

Since most imaging systems follow the linear process, simple
linear modeling is commonly used for simulating the physical
imaging process of the computational imaging systems. Typically,
matrix multiplication is commonly used to formulate the forward
imaging model.2,5,44,45 The imaging process could be represented
with a measurement matrix A, and the imaging process could be
formulated as

y ¼ Axþ n; (1)

where x denotes the unknown target image and n denotes noise.
y denotes the measurement from the imaging system. As for the
forward imaging model of spectral aberration,30,31,34 the most
simplified forward imaging model could be represented with
a spatial uniform convolutional operation, i.e.,

y ¼ k � xþ n; (2)

where k denotes the convolution kernel that represents the ap-
proximated global uniform spectral aberration, which denotes
the PSF of the imaging system. The convolutional kernel could
be calibrated beforehand, and clear images could be recovered
with deconvolution algorithms.

In addition to the simple linear modeling, in the homo-
geneous, linear, isotropic matter, the solution of Maxwell

equations could be simplified by the scalar Helmholtz equation
ð∇2 þ k2ÞΨ ¼ 0, based on which the scalar diffraction theory
could be applied for calculating the propagated light fields
after passing through metasurfaces into near or far fields.119

To characterize the effect of the modulation of metasurfaces120,121

in the imaging process, the scalar diffraction-based modeling is
widely used in the metasurface-based computational imaging
systems,122 such as the Rayleigh–Sommerfeld diffraction inte-
gral,59 the Fresnel diffraction integral,51 and angular spectrum
methods.73

To account for the polarization modulation and realize the
full-Stokes imaging through engineering the different diffrac-
tion order for different polarization analyzers, the matrix
Fourier transform that formulates the polarization modulation
effect of each unit cell of metasurface with the Jones matrix4

is proposed, enabling the optimization of different diffraction
orders of light with inverse design. Locally, the Jones matrix
of the metasurface is approximated by a linearly birefringent
wave plate, i.e.,

Jðx; yÞ ¼ Rðθðx; yÞÞ
�
eiϕxðx;yÞ 0

0 eiϕyðx;yÞ

�
Rð−θðx; yÞÞ; (3)

where R is the 2 × 2 rotation matrix, θ, φx, and φy are for the
specific metasurface structures that could be easily and contin-
uously adjusted by varying the dimensions and angular orien-
tations of a simple dielectric pillar, which is easy to fabricate
lithographically. Based upon this matrix Fourier modeling,
the freedom of the polarization dimension can be optimized with
inverse design methods, facilitating higher dimension modula-
tion design of metasurfaces.

For accurately modeling the metasurface, the solution of
Maxwell equations is required. However, considering the lack
of a general analytical solution, the numerical solver for the
Maxwell equations is commonly used for designing metasurfa-
ces accurately. Some metasurface-based imaging or detection
works123,124 have been proposed to take the metasurface design
into consideration, with different types of numerical electro-
magnetic solvers125 involved in the entire computational frame-
work, such as finite-difference time-domain (FDTD),126 finite-
difference frequency-domain (FDFD),127 and finite-element
method.128 While with high accuracy, the required high com-
putational cost prevents these types of forward models from
wide application, especially with metasurfaces of large-scale
aperture.

To enable the efficient inverse design of large-scale aperture,
the semiphysical models, which overcome the computational-
cost bottlenecks in pure physics-based models with fast approxi-
mate operations, have been proposed.33,39 Specifically, a 3D fast
approximate solver based on the convolution of local fields and
vectorial Green function is proposed to predict the local field of
an arbitrary meta-atom with fabricable parameters. Precalculating
the accurate local fields of a training set of meta-atoms with
rigorous coupled-wave analysis (RCWA),39 a surrogate model
based upon the Chebyshev interpolation to predict the local
field of an arbitrary meta-atom is presented, achieving 6 orders
of magnitude faster than direct simulation using RCWA. This
type of semiphysical differential model has been utilized in
efficient inverse design for achromatic RGB or polychromatic
focusing with a metasurface of large aperture33 and single-image
multichannel imaging,94 largely reducing the calculation speed
of the forward imaging process.
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As for the end-to-end computational imaging framework,
the forward model needs to be computed repeatedly during the
training process of neural networks, further exacerbating the
computational cost problem of forward modeling. The empirical
models, which further simplify the forward imaging process
with empirical fitting models, are proposed to further speed
up the model computation. Ethan et al.95 introduced polynomial
fitting to approximate the differential relationships from the re-
sulting phase at a certain wavelength to the duty cycle and from
the duty cycle of metasurface atom to the resultant phase
at different wavelengths. The duty cycle and the corresponding
phase mapping library for function fitting are precomputed with
RCWA.33 Based on the differential relationship between the duty
cycle and the phase at different wavelengths, the PSF array of
varying incident angles is calculated to simulate the blur distri-
bution over a large FoV with different degrees of aspheric blur.
This spatially varied PSF blur assumption could more accurately
approximate the aberration than the global uniform blur, espe-
cially when the FoV is large, and a clean wide FoV image is
recovered with the proposed neural network.

In addition to the empirical modeling methods, to realize the
optimizable forward imaging process, data-driven-based meth-
ods have been proposed to train the deep neural network that
maps the physical parameters of the system to the corresponding
response functions. In addition, various types of neural network-
based modeling methods, e.g., U-Net encoder-based feature
extraction, MLP-based hyperspectral transmission projector,3,129

and artificial neural network-based metasurface coding pat-
tern,130 have also been proposed to learn the differential forward
propagator of metasurfaces. The differential forward model that
predicts the macrography response characteristics of optical
elements from the parameters of nanomicro-structures could
facilitate the end-to-end optimization framework in metasur-
face-based computation imaging.

4.2.3 Reconstruction method

Depending on the characteristics of the algorithms, the recon-
struction methods of metasurface-based computational imaging
systems could be divided into the handcrafted reconstruction
method, the closed-form reconstruction method, the iterative
optimization reconstruction method, and the learning-based
reconstruction method. In the early years of the development
of computational imaging, handcrafted reconstruction methods
were commonly used for their simplicity, for example, the de-
mosaicking algorithm for filter array-based color imaging,111

depth estimation through stereo block matching from binocular
imaging,131 and depth from defocus algorithms.104 Although
various handcrafted reconstruction methods have been applied,
the lack of rigorous mathematical deviation and relatively poor
performance limited the development of the handcrafted
reconstruction method, and optimization-based methods were
introduced.

Different from the handcrafted methods, for the optimiza-
tion-based methods, explicit objective functions are formulated
to be optimized. Generally, the optimization problem of compu-
tational imaging could be commonly formulated with the objec-
tive function composed of a data fidelity term and a prior
term. The data fidelity term restricts the reconstructed target im-
age to reproduce the measurement with the forward imaging
model, and the prior term enforces the sparsity of the target im-
age in a certain transform domain, such as total variation trans-
form domain,132 discrete cosine transform domain,133 wavelet

transform domain,134 or statistically learned over-complete dic-
tionary-based transform domain (dictionary priors),135,136 etc.
To solve the optimization problem, two types of algorithms,
i.e., the closed-form and iterative optimization methods, can
be applied. If the optimization problem has an analytic solution,
i.e., the optima could be computed with a closed-form solution,
the closed-form reconstruction method could be applied to cal-
culate the target images, such as Wiener filtering.137 In general,
the closed-form reconstruction method is highly efficient, with
good reconstruction quality. However, the requirement of
explicit analytic solution limits the form of the objective func-
tions, so that many problems with complex forward models or
prior functions cannot be solved by closed-form methods. For
handling the optimization problems without the closed-form
solution, the iterative optimization reconstruction algorithms,
such as the Richardson–Lucy algorithm,77,78 FISTA,138 TV-regu-
larized optimization,102,103 and dictionary learning-based sparse
optimization,48 have been introduced in the metasurface-based
computational imaging methods. Notably, the optimization-
based methods require NO training data sets, so that they
can be applied for uncharted scenarios, e.g., the breakthrough
computational microscopy or telescope imaging systems that
could see scenarios that never have been imaged by mankind.

Aside from the conventional optimization-based reconstruc-
tion method, the learning-based reconstruction methods have
become the research focus currently. Especially, the neural net-
work-based reconstruction methods have attracted much interest
for their remarkably improved performance in recent years
compared with conventional optimization-based methods. In the
reconstruction of metasurface-based imaging using neural net-
works, a variety of CNN architectures have been developed.
Specifically, the multiscale convolutional network architecture
is proposed for RGB and depth image retrieval,89 wide FoV de-
convolution,95 and achromatic aberration removal of light-field
images.59 The multiscale CNN, notable for its efficiency in
contextual and detail capture, proves particularly efficient at
restoring high-fidelity image details. Its design allows for the
extraction and integration of features at various scales, facilitat-
ing the accurate reconstruction of complex images. For recov-
ering full-Stokes images from compressed measurements, the
tailored deep mask-aware compressive neural network is
proposed.5 It leverages the calibrated compressive measurement
matrix of the physical image system to recover full-Stokes im-
ages and reconstruct high-dimensional full-Stokes data from
compressive measurements. Through training the network to
be robust to the disturbance in the compressive measurement
matrix, the trained neural network could be robust to noise
disturbance existing in the imaging process. Beyond the CNN-
based methods, the transformer-based neural network has re-
cently emerged and shows promising performance in various
image restoration tasks,139,140 which have the potential to be
applied in metasurface-based computational imaging tasks for
further pushing imaging performance. Overall, these learning-
based methods leverage the ability of neural networks to learn
complex, nonlinear mappings from data, which is often not pos-
sible with conventional techniques. They are characterized by
their adaptability to different types of data and problems, the
use of large data sets for training, and their ability to generalize
to new, unseen data. The success of these methods in metasur-
face-based imaging suggests that they can effectively handle
the complex and varied distortions introduced by such optical
systems, outperforming classical algorithms that might not be
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as flexible or powerful. However, there still exist several chal-
lenges that need to be resolved for practical applications. Details
of the challenges are discussed in Sec. 5.

5 Challenges and Perspective
The foregoing review underscores that metasurface-based
computational imaging has emerged as a focal point of research
and has experienced significant advancements in recent years.
However, there remain intricate challenges that must be ad-
dressed to seamlessly integrate computation and metasurfaces,
with the aim of achieving high-performance and practical meta-
surface-based computational imaging systems. In the subsequent
discussion, we will delve into these challenges and suggest po-
tential research directions to overcome these challenges.

The foremost challenge lies in constructing a differential
forward imaging model that strikes a balance between accuracy
and computational efficiency. Specifically, for end-to-end de-
sign, differential light-field forward propagation models need to
be integrated with the reconstruction algorithm. This integration
permits the gradient of the reconstruction loss to be backpropa-
gated, thereby facilitating joint optimization of both the meta-
surface design and the reconstruction algorithm. However,
achieving a precise calculation of the output light field postin-
teraction with the metasurface structures is computationally de-
manding. This often necessitates solving the Maxwell equation
using numerical methods, such as FDTD126 or FDFD,127 particu-
larly when designing a large-scale metasurface aperture that
encompasses millions of metasurface units. To address this
challenge, two prevailing solutions are currently employed:
black-box-style learning with substantial training data3,129 and
approximation-based acceleration techniques.33,39 In black-box
learning, the internal working principles of the imaging models
are not directly interpretable. Instead, the model takes input data
and produces the desired output after being trained on a substan-
tial data set. This method is powerful for complex tasks where
defining an explicit imaging model is nearly impossible.
Specifically, training data sets comprising metasurface structure
distributions and their corresponding modulation functions are
generated using high-precision numerical methods. This ap-
proach suffers from the trade-off between approximation accu-
racy and the computational burden of generating expansive data
sets. On the other hand, approximation-based methods, which
are based on a certain understanding and knowledge of the im-
aging process, apply approximations to some processes within
the model. These methods require many fewer data compared to
what is needed by black-box approaches. However, the preci-
sion of such methods depends on the errors introduced by
the approximations themselves. Consequently, efficiently dis-
cerning and leveraging inherent patterns within the forward
propagator to derive a reasonably accurate differential light
propagator remains a pressing issue meriting thorough investi-
gation.

The second challenge lies in translating optimized meta-
surface designs from simulations to tangible experimental
environments. It has been observed that metasurface-based
computational imaging systems might not manifest the same
efficacy in real-world scenarios as they do in simulations.
This disparity is attributed to the deviations in the metasurface
due to fabrication errors, inexact forward modeling of the im-
aging process, and the complex noise interference that is intrin-
sic to the physical optics system. To pave a path forward, there is
a pressing need to devise a comprehensive forward imaging

model. Such a model would factor in physical imperfections,
capture fabrication discrepancies, and more precisely, account
for the noise of the physical imaging system. By tailoring
the model to be resilient against these discrepancies, we can
anticipate a decrease in potential performance downturns.
Furthermore, once the real-world imaging system is built,
recalibrating its response and meticulous refinement of the
reconstruction algorithm emerges as valuable strategies to
counteract performance degradation. In essence, these method-
ologies hold the promise of narrowing the gap between simu-
lation forecasts and real-world experimental outcomes. Crafting
a framework that ensures generalization to actual physical
experiments is a research topic worthy of exploration, bearing
immense practical implications.

The third challenge revolves around the limited availability
of high-dimensional data sets necessary for optimizing metasur-
faces within an end-to-end design framework. The multidimen-
sional modulation potential of metasurfaces could be harnessed
for efficient high-dimensional imaging. Yet, current high-
dimensional data sets are decidedly scarce. For hyperspectral
imaging, only a few hundred hyperspectral images have been
captured across different camera setups and scenarios.3,141–144

In the realm of polarization, the available data sets primarily
feature limited linear polarization with RGB images.145–147

The full-Stokes polarization spectral image data set has only
recently been made available,148 but it encompasses merely
63 images. To navigate this challenge, approaches like
unsupervised149 or weakly supervised learning150 may offer
solutions. Additionally, a concerted effort to capture more
multidimensional light-field image data sets could alleviate
this shortfall, providing significant momentum to advances in
this domain.

The last challenge lies in the potential for local-optimum en-
trapment when optimizing the metasurface using the end-to-end
design framework. At present, the end-to-end computational im-
aging approach predominantly supervises the terminal imaging
outcome. Meanwhile, metasurface optimization takes place in
the earlier layers of the neural network. This structure poses
a risk: the gradient could dissipate as it propagates from the
terminal loss to the metasurface layer, leading the system’s
optimization process into local minima.151 Regularization and
normalization techniques have been proposed to mitigate the
problem.152,153 Regularization-based methods152 promote the
optimization process to focus on more robust and generalized
patterns in the data, rather than fitting to noise or specific idi-
osyncrasies of the training data set. In addition, normalization-
based methods153 could help in stabilizing the learning process
and help to mitigate the problem of trapping into local minima.
In addition, addressing the need for early layer supervision to
ensure the imaging system converges toward a global optimum
remains a topic of ongoing investigation. This concept involves
providing additional guidance to the network to promote con-
vergence towards practical and optimal performance.154

Delving into this challenge through an interdisciplinary ap-
proach is crucial for the optimal development of highly efficient
metasurface-based computational imaging systems.

6 Conclusion
This review offers an overview of metasurface-based imaging
systems through the lens of computational imaging. Observing
current research trends, we posit that leveraging the multidimen-
sional, flexible, subwavelength, compact modulation capacities
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of metasurfaces can pave the way for the development of inno-
vative computational imaging systems, enabling the realization
of practical, high-performance, and ultracompact imaging sol-
utions. In seeking to narrow the gap between current practices
and future aspirations, we identify four key challenges that merit
exploration. These challenges highlight the directions for devel-
oping cutting-edge imaging techniques and harnessing the full
potential of computational imaging in tandem with nanopho-
tonics.
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