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Abstract. We propose a physics-informed neural network (PINN) as the forward model for tomographic
reconstructions of biological samples. We demonstrate that by training this network with the Helmholtz
equation as a physical loss, we can predict the scattered field accurately. It will be shown that a pretrained
network can be fine-tuned for different samples and used for solving the scattering problem much faster than
other numerical solutions. We evaluate our methodology with numerical and experimental results. Our PINNs
can be generalized for any forward and inverse scattering problem.
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1 Introduction
Optical diffraction tomography (ODT) is an imaging technique
for extracting the three-dimensional (3D) refractive index distri-
bution of a sample, e.g., a biological cell using multiple two-
dimensional (2D) images acquired at different illumination
angles. The refractive index of the sample provides useful mor-
phological information, making ODT an interesting approach for
biological applications.1–3 The conventional method to reconstruct
the 3D refractive index from multiple projections was proposed
by Wolf in 1969.4 In Wolf’s method, the 3D Fourier domain of
the refractive index is filled with 2D Fourier transforms of the
measured scattered fields. However, due to the finite number
of projections, the limited numerical aperture of the optical sys-
tem, and the single scattering approximation, missing frequencies
are causing some distortion, elongation, and underestimation of
the reconstructed refractive index.5

In the last several years, many different iterative methods
have been proposed to reconstruct accurate refractive indices
from ill-posed measurements.5–9 The main idea behind these
iterative approaches is to use a forward model that predicts
the candidate projections for the current estimation of the refrac-
tive index in that iteration, compare this 2D prediction with the

experimental measurements of the projection as a loss function,
and update the estimation of the refractive index upon the min-
imization of this loss function plus possibly any other prior
knowledge, e.g., sparsity conditions. Importantly, such an iter-
ative scheme requires an analytical/semi-analytical model to
backpropagate the computed loss and update the estimation
of the refractive index. This precludes the use of common
mesh-based numerical solvers such as finite difference and finite
element methods (FEMs). In Ref. 5, the authors use a linear
(single-scattering) forward model, in the approach proposed
in Refs. 6–8, referred to as learning tomography. The forward
model is the beam propagation method (BPM) and, in Ref. 9,
the authors resort to the Lippmann–Schwinger equation. The
forward models used in these iterative solutions either have in-
accuracies in the cases of multiple-scattering and high-contrast
samples, or they are computationally demanding. As a result,
presenting a fast, accurate, and differentiable forward model
is necessary to be used in iterative ODT. Physics-informed
neural networks (PINNs) can be a good candidate for solving
forward scattering problems and for being used in iterative
tomographic reconstruction.

PINNs have recently gotten intense research attention for
solving different complex problems in physics.10,11 These net-
works use physics laws as the loss function instead of the
data-driven loss functions. In conventional supervised deep
learning, a large dataset of labeled examples is used for the
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training process: by comparing the known ground truth with the
predictions from a deep multi-layer neural network, one can
construct a loss function and tune the parameters of the network
to solve complex physical problems. Different examples of
these data-driven neural networks are proposed for optical ap-
plications such as resolution enhancement,12 imaging through
multi-mode fibers,13,14 phase retrieval,15 ODT,16 and digital
holography.17,18 In these networks, the knowledge acquired by
the network strongly depends on the statistical information pro-
vided in the dataset, and training such a network requires access
to a large dataset. In contrast, PINNs directly minimize the
physical residual from the corresponding partial differential
equation (PDE) that governs the problem instead of extrapolat-
ing physical laws after going through a large amount of exam-
ples. In the pioneering approach proposed by Lagaris et al.,19 the
neural network maps independent variables, such as spatial and
time coordinates, to a surrogate solution of a PDE. By applying
the chain rule, e.g., through auto-differentiation integrated in
many deep-learning packages, one can easily extract the deriv-
atives of the output fields with respect to the input coordinates
and consequently construct a physics-based loss.20 The correct
prediction can be therefore retrieved by minimizing the loss with
respect to the network weights. This approach has been used to
solve nonlinear differential equations,21–24 to realize the forward
model in the inverse design of optical components,25 and to
extract material parameters in near-field microscopy.26

Having the independent variables of PDE as the input of the
neural network limits the use of PINNs when fast inference is
required. For the example of optical scattering, the neural net-
work should be trained for each refractive index distribution
separately. A different idea was proposed recently in Ref. 27
to solve Maxwell’s equations for micro lenses with different
permittivity distributions. The calculation of physical loss, in
this case, is based on the finite difference scheme, and in con-
trast to the previous approach that is trained for a single exam-
ple, this model proved to be well-suited for cases in which fast
inference is required. However, such a PINN was only demon-
strated to work for homogeneous 2D samples.

In this paper, we extend this idea for inhomogeneous and 3D
cases and present a MaxwellNet that is able to solve different
forward scattering problems, such as light scattering from bio-
logical cells. In the first part of the work, we train MaxwellNet
for 2D digital phantoms and show how this pretrained network
can be fine-tuned to predict light scattering from more complex
and experimentally relevant samples, in our case, HCT-116
cells. We benchmark the performance of MaxwellNet in solving
scattering problems for 2D and 3D objects. Next, we demon-
strate that such PINN can be efficiently used to invert the
scattering problem through an iterative scheme and improve
the results of conventional ODT. We first demonstrate the
reconstruction of the refractive index distribution from synthetic
data and then we validate the technique with experimental mea-
surements of scattering from polystyrene microspheres.

2 Methodology
The main idea of our work, shown in Fig. 1, consists of two
blocks. The first, MaxwellNet, is a neural network that takes
as an input the refractive index distribution nðrÞ and predicts
the scattered field Us. Its structure is based on the U-Net archi-
tecture,28 and the training is performed on a large dataset of dig-
ital phantoms using a physics-defined loss function. Then, this
network is used as a forward model in a second optimization
task that compares the fields predicted by MaxwellNet for a can-
didate refractive index (RI) distribution with the ground truth
projections, e.g., computed numerically or evaluated experi-
mentally, and updates nðrÞ up to convergence.

2.1 Forward Model: MaxwellNet

In this section, we describe the implementation of a PINN that
predicts the scattered field for a known input RI distribution. For
the sake of simplicity, we first describe the method for the 2D
case, but we will show the extension to 3D in the following. In
this case, MaxwellNet takes as an input the RI distribution as a
discrete array of shape Nx × Nz × 1 and we do expect an output

Fig. 1 Schematic description of MaxwellNet, with U-Net architecture, and its application for tomo-
graphic reconstruction. The input is a refractive index distribution and the output is the envelope
of the scattered field. The output is modulated by the fast-oscillating term ejk0n0z to compute
the physics-informed loss for tuning the weights. For tomographic reconstruction, we minimize
a data-driven loss based on the difference between measured and calculated projections using
MaxwellNet. A regularization term can be added to improve the reconstruction.
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with size Nx × Nz × 2, where the two channels correspond to
the real and imaginary parts of the complex field. Among all
the available architectures, the choice of U-Net appears favor-
able as we do expect to embed the latent features of the RI
distributions in a lower dimensional space through consecutive
2D convolutions and then retrieve the complex electromagnetic
field in the same spatial points through the decoding step. A
similar architecture was also proven to provide good accuracy
for the computation of the scattered field from micro lenses.27

We implement the present network in TensorFlow 2.6.0. For
each step in the encoder, we use two Conv2D layers, each fol-
lowed by batch-normalization and the elu activation function. A
total number of five layers are adopted to encode the informa-
tion and each one is terminated with average pooling to reduce
the dimension. The maximum number of channels that we get in
the latent space is 512. On the decoder side, we used transposed
convolutional layers to the output with the size Nx × Nz × 2 (or
Nx × Ny × Nz × 2 in the 3D case). It should be noted that we
also use residual skip connections from the encoder branch. In
common data-driven training, we would tune the weights of this
network by minimizing the difference between predictions and
ground truth data computed with numerical solvers, in turn re-
quiring a large database of simulations and consequently
a massive computational cost. Here, we do not provide input-
output pairs; instead we train the network by requiring that the
Helmholtz equation is satisfied on the predicted field. To speed
up the training and improve performances, we require the net-
work to predict the slowly varying envelope of the scattered
field Us

env being the scattered field obtained after demodulated
by the fast-oscillating component along the propagation direc-
tion Us ¼ Us

envejk0n0z. We define a physics-informed loss func-
tion to be minimized by updating the weights of the network:

LPh ¼
X
r

1

N
k½∇2 þ k20n

2ðrÞ�Us þ k20½n2ðrÞ − n20�Uik2; (1)

where k0 is the wave number which is k0 ¼ 2π∕λ and
λ ¼ 1.030 μm is the wavelength. nðrÞ is the RI distribution
and n0 is the RI of the background medium. The summation
in Eq. (1) is done over the pixels of the computational domain
and N is the number of pixels. To implement the Laplacian in
Eq. (1), we follow the Yee grid finite difference scheme, com-
puting the derivative of the variables by 2D convolutions with a
5 × 5 kernel.29 Additionally, light scattering is by defining an
open boundary problem. To satisfy the Sommerfeld radiation
condition and confine the problem in a finite space we use
a stretched-coordinate perfectly matched layer (PML)30 at the
edges of the simulation domain by introducing a complex
coordinate transformation [x → xþ ifðxÞ] when calculating
the derivatives inside the PML region. We use the gradient of
the so-computed physical loss function to update the weights of
the neural network, w through an Adam optimizer:

w → w − γPh
∂LPh

∂w : (2)

When we train MaxwellNet for a class of samples, it can ac-
curately calculate the field for unseen samples from the same
class. However, the key point to mention is that if we want
to use MaxwellNet for a different set of RI distributions, we
can fix some of the weights and adjust only a part of the network
for the new dataset instead of re-starting the training from

scratch. This process, referred to in the following as fine-tuning,
is much faster than the original training of MaxwellNet. We will
elaborate and discuss this interesting feature in Sec. 3.

It should be mentioned that we train MaxwellNet based on
the Helmholtz equation with a scalar field approximation, as
described in Eq. (1). The scalar approximation allows us to have
a network with 2-channel output, representing the real and
imaginary parts of the scalar field. We can also consider the
full-vectorial Helmholtz equation where we need a larger net-
work with 6-channel output to represent the real and imaginary
parts of the three components of the field vector. However, the
depolarization term can be neglected for samples with low re-
fractive index gradients,31,32 allowing us to have a MaxwellNet
with fewer parameters and the scalar Helmholtz equation as the
loss function.

2.2 Optical Diffraction Tomography Using MaxwellNet

Once MaxwellNet has been trained on a class of RI distribu-
tions, it can be used to rapidly backpropagate reconstruction er-
rors with an approach similar to learning tomography.6 Let us
assume that we measure L projections Um

i , with i ¼ 0;…; L,
from an unknown RI distribution nðx; zÞ for different rotational
angles. From these data, we can reconstruct a first inaccurate
candidate nðx; zÞ through the Wolf’s transform using the
Rytov approximation. Then, we need to calculate the projec-
tions byMaxwellNet for different illumination angles. To imple-
ment illumination angle rotation, we can geometrically rotate
nðx; zÞ based on the corresponding illumination angle and cal-
culate the scattered field for the rotated refractive index. By
feeding MaxwellNet with niðx; zÞ ¼ Rifnðx; zÞg, where Ri is
the image rotation operator that corresponds to the i-th projec-
tion, we predict the complex scattered fields Us

i for the same
L angles. Consequently, we can construct a data-driven loss
function LD given by the difference kUs

i − Um
i k2 plus any addi-

tional regularizer, compute its gradient through auto-differentia-
tion, update nðx; zÞ, and iterate up to convergence:

LD ¼
XL
i¼1

1

L
kUsðRifngÞ −Um

i k2 þRegfn; UsðnÞg; (3)

n → n − γD
∂LD

∂n : (4)

Also, in this case, we use an Adam optimizer for updating
the RI values. The regularizer in Eq. (3) consists of three
parts: a total-variation (TV), a non-negativity, and physics-
informed terms, Regfn;Us

l ðnÞg¼ λTVRTVðnÞþ λNNRNNðnÞþ
λPhLPhðn;UsÞ. The TV regularizer helps smooth the RI
reconstruction and the non-negativity regularizer adds the prior
information that nðx; zÞ should be larger than the background
refractive index:

RTVðnÞ ¼
X
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j∇xnðrÞj2 þ j∇ynðrÞj2 þ j∇znðrÞj2

q
; (5a)

RNNðnÞ ¼
X
r

min ½nðrÞ − n0; 0�2: (5b)
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Importantly, we have to remark that MaxwellNet is trained
for a specific dataset and accurately predicts the scattered field
for RI distributions that are not too far from this set. To take into
account this effect, we add the physics-informed loss to the reg-
ularizer. This further correction term helps to find RI values in
a way that MaxwellNet can predict the scattered field for them
correctly. In contrast to TV and non-negativity constraints that
are used due to the ill-posedness of the ODT problem, the
physics-informed regularizer is necessary in our methodology
to ensure that the index distributions remain within the domain
in which MaxwellNet has been trained.

The key advantages of using MaxwellNet with respect to
other forward models are: differently from BPM, it can accu-
rately calculate field scattering, considering reflection, multiple-
scattering, or any other electromagnetic effects;5–8 once trained,
the field computations are performed in milliseconds, much
faster than the Lipmann–Schwinger model; and finally, the
data-driven error in Eq. (3) can be easily backpropagated differ-
ently from commercially available full-vectorial solvers. We
discuss the reconstruction results and compare them with other
methods in Sec. 3.2.

3 Results and Discussion

3.1 MaxwellNet Results

In this section, we evaluate the performance of MaxwellNet for
the prediction of the scattered field from RI structures such as
biological cells. First, we check the performance on a 2D sample
assuming that the system is invariant along the y axis. The num-
ber of pixels for our model is Nx ¼ Nz ¼ 256 for both the
x and z directions, and their size is dx ¼ 100 nm. We also use
PML with a thickness of 1.6 μm at the edges of our computa-
tional domain. We create a dataset of digital cell phantoms and
divide it into the training and testing sets. MaxwellNet has
∼5.9 × 106 parameters to train and we use the Adam optimizer
with a learning rate of 1 × 10−4 and batch training. The details
about the dataset and training and validation losses are discussed
in Appendix B. We train and test MaxwellNet in TensorFlow
2.6.0 on a desktop computer (Intel Core i7-9700K CPU,
3.6 GHz, 64 GB RAM, GPU GeForce RTX 2080Ti).

In Figs. 2(a) and 2(b), we choose two random examples of
the digital phantoms in the test set (which is not seen by the
network during the training). For each test case, in the second
and third rows, we present the prediction of the envelope of the
scattered field by the network, and we compare it with the result
achieved by the FEM using COMSOLMultiphysics 5.4. We can
see a very small difference between the results of MaxwellNet
and COMSOL, which we attribute to discretization errors.
There are different schemes of discretization in two methods
that can cause such differences. To quantitatively evaluate the
performance of MaxwellNet, we define the relative error of
MaxwellNet with respect to COMSOL as

Error ¼
R kUMaxwellNetðrÞ − UCOMSOLðrÞk2drR kUCOMSOLðrÞk2dr

; (6)

where UMaxwellNet and UCOMSOL are the total fields calculated
with MaxwellNet and COMSOL. The integration is done ex-
cluding the PML regions. The calculated relative errors for test
case 1 and test case 2 in Fig. 2 are 4.1 × 10−2 and 4.6 × 10−2,
respectively.

It should be noted that once MaxwellNet is trained, the scat-
tered field calculation is much faster than numerical techniques
such as FEM. We present a time comparison in Table 1. For
the test phantoms in Fig. 2, it took 17 ms for MaxwellNet in
comparison with 13 s for COMSOL, meaning three orders of
magnitude acceleration.

Furthermore, performing a physics-based instead of direct
data-driven training holds promises for exploiting the advan-
tages of transfer learning.33 Maxwell equations are general
but having a neural network that predicts the scattered field
for any class of RI distribution in milliseconds with a negligible
physical loss is usually unfeasible. Most of the previous PINN
studies for solving partial differential equations are trained for
one example, and they will work for that specific example. In
our case, the U-Net architecture proved to be expressive enough
to predict the field for a class of samples. However, if we use
MaxwellNet for inference on an RI distribution completely un-
correlated with the training set, the accuracy drops. To evaluate
the MaxwellNet extrapolation capability, we considered the
model trained on phantoms samples in Fig. 2 and use it for in-
ference on HCT-116 cancer cells. The comparison between
MaxwellNet and COMSOL is shown in Fig. 2(c). The input
of the network is a 2D slice of the experimentally measured
HCT-116 cell in the plane of the best focus. The discrepancy
between MaxwellNet and COMSOL is due to the fact that
the former does not see examples of such RI distributions during
the training. As a result, if we require accurate results for a new
set of samples with different features, we have to re-train
MaxwellNet for the new dataset, which would take a long time
as shown in Table 1. However, it turns out that learning a physi-
cal law, as Maxwell equations, even though on a finite dataset, is
better suited than data-driven training for transfer learning on
new batches. Indeed, we can use the pretrained MaxwellNet
on digital phantoms and fine-tune some parts of the network
for HCT cells achieving good convergence in a few epochs.
In this example, we create a dataset of 136 RI distributions
of HCT-116 cancer cells and divide them into the training
and validation sets. Some examples of the HCT-116 refractive
index dataset are shown in Appendix B. A wide range of cells
with different shapes are included in the dataset. We have single
cancer cells, such as shown in Fig. 2(c), examples of cells in the
mitosis process, or examples with multiple cells. In this case, we
freeze the weights of the encoder part and fine-tune the decoder
with the new dataset. We can see in Fig. 2(d) that after this cor-
rection step, the calculated field is much more accurate. As can
be seen in Table 1, the fine-tuning process is two orders of mag-
nitude faster than a complete training from scratch.

The 2D case is helpful for demonstrating the method and rap-
idly evaluating the performances. Nevertheless, full 3D fields
are required for many practical applications. We can straightfor-
wardly recast MaxwellNet in 3D using arrays of size Nx × Ny ×
Nz × 1 as inputs of the network and requiring anNx × Ny × Nz×
2 output, with the two channels corresponding to the real and
imaginary parts of the envelope of the scattered field. In this
case, the network consists of Conv3D, AveragePool3D, and
Conv3DTranspose layers instead of 2D counterparts. As a
benchmark test, we created a dataset of 3D phantoms with
200 examples (180 for training and 20 for testing). The compu-
tational domain is defined with Nx ¼ Ny ¼ Nz ¼ 64, dx ¼
100 nm, and PML thickness of 0.8 μm. To show the proof
of concept of 3D MaxwellNet with limited computational re-
sources, we used a lower number of pixels per dimension with

Saba et al.: Physics-informed neural networks for diffraction tomography
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Table 1 Computation time comparison.

Dataset 2D phantoms (training) 2D HCT-116 (fine-tuning) 3D phantoms (training)

Training details 2700 samples
5000 epochs

122 samples
600 epochs

180 samples
5000 epochs

MaxwellNet training/fine-tuning 30.5 h 0.18 h 15.5 h

MaxwellNet inference 17 ms 17 ms 44.9 ms

COMSOL 13 s 13 s 2472 s

(a) (b)

(d)

Fig. 2 Results of MaxwellNet and its comparison with COMSOL. (a) and (b) Two test cases from
the digital phantom dataset and the prediction of the real and imaginary parts of the envelope of the
scattered fields using MaxwellNet, COMSOL, and their difference. (c) Scattered field predictions
from the network trained in (a) and (b) for the case of an experimentally measured RI of HCT-116
cancer cells and comparison with COMSOL. The difference between the two is no longer
negligible. (d) Comparison between MaxwellNet and COMSOL after fine-tuning the former for
a set of HCT-116 cells. MaxwellNet predictions reproduces much more accurate results after
fine-tuning.

Saba et al.: Physics-informed neural networks for diffraction tomography

Advanced Photonics 066001-5 Nov∕Dec 2022 • Vol. 4(6)



respect to the 2D case, keeping the pixel size, dx, the same to
have an accurate finite difference calculation. As a result, we
have a limited computational domain size, which can be im-
proved using more powerful resources.

The 3D version of MaxwellNet has ∼1.72 × 107 parameters.
We use the Adam optimizer (learning rate ¼ 1 × 10−4) and a
batch size of 10. The results of the predicted field for an unseen
example and its comparison with COMSOL are shown in Fig. 3.
We can see that MaxwellNet performs as well as COMSOL
in field calculation. The quantitative error described in Eq. (6)
is 3.4 × 10−3 for the 3D example of Fig. 3. There are some
marginal differences due to different discretization schemes.
However, we can see in Table 1 that MaxwellNet is about
50,000 times faster than COMSOL in predicting fields (44.9 ms
versus 41.2 min). This result and the significant efficiency in
the computation time highlight the MaxwellNet potential for
the calculation of the field in different applications. In the next

subsection, we demonstrate how this method can be applied for
improving ODT reconstruction fidelity.

3.2 Tomographic Reconstruction Results

To show the ability of MaxwellNet to be used for different
imaging applications, we implement an optimization task with
MaxwellNet as the forward model for ODT, as explained in
Sec. 2.2. In this example, we consider one of the digital phan-
toms in the test set of Fig. 2, and we use 2D MaxwellNet as
the forward model to compute the 1D scattered field along the
transverse direction x for N ¼ 81 different rotation angles θ.
We restrict ourselves to the range θ ∈ ½−40 deg; 40 deg� as
this is consistent with the typical conditions in common
tomographic setups. As is shown in Fig. 4(a), the Rytov
reconstruction obtained from these field projections is elongated
along the z axis and underestimated due to missing frequencies.

Fig. 3 Results of 3D MaxwellNet and its comparison with COMSOL. The RI distribution is shown
in (a). The real part of the envelope of the scattered field calculated by 3D MaxwellNet is shown in
(b), calculated by COMSOL in (c), and their difference in (d). The imaginary part of the envelope of
the scattered field calculated by 3D MaxwellNet, COMSOL, and their difference are presented in
(e)–(g), respectively.

Saba et al.: Physics-informed neural networks for diffraction tomography
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We then minimize the loss function [Eq. (3)] to improve the
RI reconstruction choosing as regularizer parameters λTV ¼
3.1 × 10−7, λNN ¼ 1 × 10−1, λPh ¼ 5 × 10−2, and the Adam op-
timizer with an initial learning rate of 3 × 10−4. We also sched-
uled the learning rate, halving it every 1000 epochs to speed up
convergence. The resulting RI distribution after 3000 epochs is
shown in Fig. 4. It can be seen that the reconstructed RI is no
longer underestimated nor elongated along the z axis. This is a
significant improvement in comparison with the Rytov predic-
tion. The missing details in the reconstructed RI, which can be
better visible in the 1D cutline in Fig. 4(b), can be due to the
missing information in the 1D fields that the optimization of RI
could not retrieve.

Next, we try a 3D digital phantom from the test set and we
use the 3D MaxwellNet as the forward model in our tomo-
graphic reconstruction method. Since generating synthetic data
with COMSOL is time-consuming for multiple angles, we
create synthetic scattered fields from the phantom with the
Lippmann–Schwinger equation. 9 Later, we will show an exper-
imental example where we illuminate the sample with a circular
illumination pattern with an angle ≈10 deg. As a result, in this
numerical example, we rotate the sample for 181 angles (includ-
ing 1 normal incidence), equivalently to an illumination rotation
with a fixed illumination angle of 10 deg. We keep the exper-
imental conditions, λ ¼ 1.030 μm and n0 ¼ 1.33. Then, we use
these synthetic measurements for our optimization task along
with TV, non-negativity, and physics-informed regularization.
The reconstruction is achieved after 6000 epochs with λTV ¼
1.2 × 10−8, λNN ¼ 2 × 101, and λPh started with 5 × 10−1 and
divided by two in every 500 epochs. The reconstructions are
shown in Fig. 5 in YX, YZ, and XZ planes. The first row shows
the Rytov reconstruction where we can see a significant
underestimation and elongation along the z axis that is due
to the small illumination angle (10 deg). The details in the
reconstruction achieved using MaxwellNet are slightly blurred
in comparison with the ground truth as a result of low resolution
with λ ¼ 1.030 μm.

Additionally, we performed learning tomography6 for the
synthetic measurements using 181 projections. The 3D tomo-
graphic reconstruction using learning tomography is shown
in the third row of Fig. 5. In comparison with MaxwellNet,
learning tomography has some elongated artifacts, which can
be due to the fact that reflection is neglected in its forward
model. However, the reconstruction with learning tomogra-
phy is smoother in comparison with the reconstruction of

MaxwellNet, which is slightly pixelated. This issue happens
because the beam propagation method, as the forward model
of learning tomography, is a smooth forward model with respect
to the voxels of the refractive index distribution, which is not
the case for a deep neural network such as MaxwellNet.
However, the reconstructions are quantitatively comparable.
If we assume the reconstruction error of εðnrecon; ntruthÞ ¼
knrecon − ntruthk22∕kntruth − n0k22, we get an error of 0.613 for
Rytov, an error of 0.146 for learning tomography, and an error
of 0.116 for MaxwellNet reconstructions, as shown in Fig. 5. In
terms of computation time with the desktop specifications we
mentioned earlier, we used 3000 epochs for iterative optimiza-
tion with MaxwellNet, each epoch taking 570 ms and 600
epochs for learning tomography, each epoch taking 710 ms,
which means a four-fold factor for MaxwellNet in the compu-
tation time.

We also evaluated our methodology experimentally. We
mentioned earlier that MaxwellNet takes care of reflection as
a forward model, and therefore, our reconstruction technique
can be used for samples with high contrast. In our experimental
analysis, we try a polystyrene microsphere immersed in water,
where we expect to have a ∼0.25 refractive index contrast.
Polystyrene microspheres (Polybead Polystyrene 2.0 Micron)
are immersed in water and placed between two #1 glass
coverslips. We have an off-axis holographic setup where we
use a yttrium-doped fiber laser (Amplitude Laser Satsuma)
with λ ¼ 1.030 μm and we change the illumination angle with
two Galvo mirrors. Using a delay path, the optical lengths of
the reference and signal arms are matched. We measure holo-
grams for 181 illumination angles and extract the phase and
amplitude of the complex scattered fields using Fourier holog-
raphy. More details about the experimental setup are discussed
in Appendix C. Then, we use the extracted scattered fields for
different projections for our optimization task to reconstruct the
3D RI distribution of the sample. The experimental projections
are 2D complex fields that are imaged in the center of the sample
using a microscope objective lens, and we can propagate them
in the background medium to calculate the scattered field in
any other plane, perpendicular to z axis, after the sample. This
2D field can be compared with the output of MaxwellNet
in that plane, as described in Eq. (3). Additionally, the exper-
imental projections are based on illumination rotation and we
interpolate them to achieve the equivalent sample rotation pro-
jections. We iteratively optimize the loss function in Eq. (3) for
2000 epochs where we use the regularization parameters of

RI profileGround-truthReconstructionRytov(a) (b)

z
x

5µm

Fig. 4 Tomographic reconstruction of RI using MaxwellNet. (a) The RI reconstruction was
achieved by Rytov, MaxwellNet, and the ground truth. (b) 1D RI profile at z ¼ 0 (plane of best
focus), for Rytov (green), MaxwellNet (blue), and the ground truth (orange).
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λTV¼3.8×10−9, λNN¼5×101, and λPh started with 1.5×10−1
and divided by two in every 500 epochs. The reconstruction is
shown in Fig. 6 using Rytov, MaxwellNet, and learning tomog-
raphy. It can be seen that the underestimation and z axis elon-
gation in the Rytov reconstruction are remarkably improved.
The reconstruction using learning tomography in Fig. 6 has
artifacts due to the high refractive index contrast of the poly-
styrene bead and reflections that cannot be considered in the
beam propagation method.

4 Conclusion

In summary, we proposed a PINN that rapidly calculates the
scattered field from inhomogeneous RI distributions such as
biological cells. Our network is trained by minimizing a loss
function based on Maxwell equations. We showed that the net-
work can be trained for a set of samples and could predict the
scattered field for unseen examples that are in the same class. As
our PINN is not a data-driven neural network, it can be trained

Fig. 5 Tomographic RI reconstruction of 3D sample using MaxwellNet. The RI reconstruction
is achieved by Rytov, MaxwellNet, learning tomography, and the ground truth in different rows
at the YX , YZ , and XZ planes in the center of the sample. A z-stack demonstration of the
reconstruction is shown in Video 1 (Video 1, MP4, 1.4 MB [URL: https://doi.org/10.1117/1.AP
.4.6.066001.s1]).
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for different examples in different conditions. Even though the
network is not efficiently extrapolating to classes that are sta-
tistically very different from the training dataset, we showed that
by freezing the encoder weights and fine-tuning the decoder
branch, one can get a new predictive model in a few minutes.
We believe that this can be further used for changing the wave-
length, boundary condition, or other physical parameters.

We used our PINN as a forward model in an optimization
loop to retrieve the RI distribution from the scattered fields
achieved by illuminating the sample from different directions,
known as ODT. This example shows the ability of MaxwellNet
to be used as an accurate forward model in optimization loops for
inverse design or inverse scattering problems.

5 Appendix A: Calculation of Physics-
Informed Loss

During the training of MaxwellNet, we calculate at each epoch
the loss function in Eq. (1) for the network output. To evaluate
the Helmholtz equation residual, we should numerically com-
pute the term ∂2Us

∂x2 þ ∂2Us

∂y2 þ ∂2Us

∂z2 . In the previous PINN papers
for solving PDEs,19–21,23–26 the inputs of the network are the spa-
tial coordinates x, y, z, and the derivatives with respect to these

variables can be calculated using the chain rule. In this
implementation, the weights of the network can be trained to
minimize the loss function for a single refractive index distribu-
tion, nðrÞ in Eq. (1). In our approach, the PINN gets the refrac-
tive index, nðrÞ, on a uniform grid as the input and finds the field
on the same grid which minimizes the loss function for that re-
fractive index. The output of the network is the 3D array of the
scattered field envelope, and we use a finite difference scheme
to calculate the derivative of the field with respect to the co-
ordinates:

∂Us

∂x ¼ Usððiþ 1ÞΔx; jΔy; kΔzÞ − Usðði − 1ÞΔx; jΔy; kΔzÞ
2Δx

;

(7)

in which ði; j; kÞ are the pixel indices, and Δx, Δy, and Δz are
the pixel sizes along the x-, y-, and z-axes. This way, we can
calculate ∂Us

∂x by convolving Us with a kernel of ½−1∕2, 0; 1∕2�
along the x axis. When computing electromagnetic fields, since
the curl of the electric field gives the magnetic field and vice
versa, a smart technique to improve accuracy is to use two stag-
gered grids for discretizing fields, commonly referred to as the

Fig. 6 Tomographic RI reconstruction of a polystyrene microsphere immersed in water. The
projections are measured with off-axis holography for different angles. The RI reconstructions
achieved by Rytov, MaxwellNet, and learning tomography are presented at the YX , YZ , and
XZ planes in the center of the sample, respectively.
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Yee scheme.29 In practice, this can be easily implemented
through two shifted convolutional kernels for the two grids,
½−1∕2,1∕2,0� and ½0;−1∕2,1∕2�.

To minimize the discretization error, one can use a smaller
pixel size, Δx, or higher-order approximations. Here, we use
the fourth-order finite difference scheme34 in which convolu-
tional kernels of ½0;þ1∕24;−9∕8;þ9∕8;−1∕24� and ½þ1∕24;
−9∕8;þ9∕8;−1∕24, 0� are used for the calculation of the
derivatives in Eq. (1).

6 Appendix B: Training and Fine-tuning of
MaxwellNet

As mentioned in Sec. 3, we create a dataset of digital cell phan-
toms to train and validate MaxwellNet. The dataset for 2D
MaxwellNet includes 3000 phantoms with elliptical shapes
oriented in different directions. The size of these phantoms is
in the range from 5 to 10 μm, their refractive index varies in
the range of (1.38, 1.45), and the background refractive index
is n0 ¼ 1.33. Two examples of these phantoms are shown in
Fig. 2. We divide this dataset into 2700 phantoms for training
and 300 phantoms for testing. We use batch training with a batch

size of 10 for 5000 epochs. This training took 30.5 h and after
5000 epochs, no significant decrease in the validation loss could
be observed. The training and validation curves of the physical
loss are shown in Fig. 7(a). This figure shows that MaxwellNet
performs very well for out-of-sample cases.

We discussed in Sec. 3 using MaxwellNet that was trained
for cell phantoms to predict the scattered field for real cells. A
dataset of HCT-116 cancer cells is used for this purpose. The 3D
refractive index of these cells is reconstructed using the Rytov
approximation, with projections achieved with an experimental
setup utilizing a spatial light modulator, as described in Ref. 8.
Then, a 2D slice of the refractive index is chosen in the plane of
best focus. A total number of 8 cells are used, and we rotated
and shifted these cells to create a dataset of 136 inhomogeneous
cells whose refractive index range is (1.33, 1.41). We use 122 of
these images for training and 14 for validation. Some examples
of the HCT-116 refractive index dataset are shown in Fig. 7(c).
We freeze the encoder of MaxwellNet and fine-tune its decoder
for this new dataset. The training and validation losses are
shown in Fig. 7(b).

For 3D MaxwellNet, a dataset of 200 phantoms is created.
These 3D phantoms have a spherical shape with some details

Training Fine-tuning(a) (b) (c)

Fig. 7 Training and fine-tuning of MaxwellNet. (a) Training (blue) and validation (orange) loss of
MaxwellNet for the digital cell phantoms dataset. (b) Fine-tuning of the pretrained MaxwellNet for a
dataset of HCT-116 cells for 1000 epochs. (c) Examples of the HCT-116 dataset.

Fig. 8 Experimental setup for multiple illumination angle off-axis holography. HW: half-wave plate;
P: polarizer; BS: beam splitter; L: lens; Obj: microscope objective; and M: mirror.
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inside them and the range of their diameter is 1.8 to 2.4 μm. We
randomly choose 180 phantoms for training and 20 phantoms
for testing. We train 3D MaxwellNet with the training dataset
with a batch size of 10. The example of Figs. 3 and 5 is one of
the phantoms in the testing dataset.

7 Appendix C: Experimental Setup for ODT
For ODT, we require complex scattered fields from multiple il-
lumination angles. The off-axis holographic setup to accomplish
that is shown in Fig. 8. It relies on an ytterbium-doped fiber laser
at λ ¼ 1.030 μm whose power is controlled with a half-wave
plate (HW) and a polarizing beam splitter. The optical beam is
divided into the signal and reference arms using a beam splitter
(BS1). In the signal arm, we use two galvo mirrors, GM-V and
GM-H, to control the illumination angle in the vertical and
horizontal directions. Using two 4F systems (L1–L4), we image
these galvo mirrors on the sample plane, so the position of the
beam remains fixed while changing the illumination angle. This
way, we can illuminate the sample with a condensed plane wave.
The sample is then imaged on the camera (Andor sCMOS Neo
5.5) using another 4F system consisting of a 60× water dipping
objective (Obj1) and a tube lens L5. The signal and reference
arms are then combined with another beam splitter, BS2, to
create the off-axis hologram on the camera. A motorized delay
line controls the optical path of the reference arm to match the
optical path of the signal arm.
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