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Recognized by Einstein, Podolsky, and Rosen in their famous paradox
to argue that quantum mechanics must be incomplete,1 quantum entan-
glement is now considered a fundamental resource of quantum physics
and forms the cornerstone of a variety of quantum information proto-
cols that have the potential to significantly outperform their classical
counterparts. Optical fields have a variety of degrees of freedom
(DoFs), and many of these DoFs can become entangled under suitable
conditions. Recently, much research interest has been drawn to
hyperentanglement2 which is defined as the simultaneous entanglement
in multiple DoFs.3 Hyperentanglement can significantly increase chan-
nel capacity and enable demonstrations of interesting and useful quan-
tum information protocols.4,5

Until now, hyperentanglement has been extensively explored with
discrete variables, such as polarization, spatial mode, time bin, fre-
quency bin, and so on. However, continuous-variable (CV) hyperentan-
glement is less studied (the only previous demonstration was limited to
a very small scale6), but it should hold equal potential for exciting quan-
tum information protocols. A valuable feature of CV optical quantum
states is that they are generated deterministically without post-selec-
tion.7 Therefore, generating large-scale CV hyperentanglement could
trigger the development of high-capacity, deterministic quantum infor-
mation protocols.

As reported recently in Advanced Photonics Nexus,8 a group led by
Jietai Jing from East China Normal University experimentally realized
the deterministic generation of large-scale CV hyperentanglement.
Their scheme utilizes a third-order nonlinear process, four-wave mixing
(FWM) in an atomic vapor, to generate quantum correlated twin beams,
each of which contains a number of optical modes defined by multiple
optical DoFs. These optical modes are in terms of the quadratures of
quantized fields, which have a continuous spectrum, and the entangle-
ment of optical modes is often observed as strong correlations between
the fluctuations of field quadratures. By simultaneously entangling op-
tical modes defined by three DoFs (Fig. 1), the authors were able to
generate CV hyperentanglement and verify the entanglement of 216
pairs of optical modes in their system.

The first DoF they exploited is the optical frequency of the
fields. Frequency has been extensively employed in a multitide of
applications9,10 because its dimension can be considered infinite. In
the present experiment, the entanglement in frequency DoF originates
from energy conservation in the FWM process, and three separate fre-
quency sidebands within the FWM bandwidth are utilized to demon-
strate entanglement. The other two DoFs are based on the spatial modes
of optical fields, which recently have attracted a growing interest for
applications in both classical11 and quantum12–14 photonics. Laguerre-
Gaussian (LG) modes, characterized by azimuthal and radial indices,
are used to provide two spatial DoFs in this experiment. It should be
noted that the two indices of LG modes are independent in terms of
mode orthogonality, meaning that these two spatial DoFs are indepen-
dent from one another. To make a long story short, the three DoFs

together are pieces of a larger jigsaw puzzle that completes the large-
scale CV hyperentanglement picture.

This work takes an important step towards applying abundant and
diverse DoFs of optical fields to the research of quantum information
science. In terms of applications, the study sheds new light on con-
structing novel quantum information protocols. For example, hyperen-
tanglement is an essential resource for realizing multiple-DoF quantum
teleportation.5 Such CV hyperentanglement provides the possibility to
realize deterministic quantum teleportation of multiple-DoFs, which
has never been reported. In addition, these hyperentangled modes
can be efficiently separated from each other, making it particularly use-
ful for parallel, independent quantum communications channels, ena-
bling a wide variety of simultaneous quantum communication tasks.
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Fig. 1 Schematic of CV hyperentanglement in frequency (f ), azi-
muthal (l), and radial (p) DoFs. Black lemniscata indicates the
quantum entanglement between two optical modes.
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