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Abstract. Synchronization is of importance in both fundamental and applied physics, but its demonstration
at the micro/nanoscale is mainly limited to low-frequency oscillations such as mechanical resonators. We
report the synchronization of two coupled optical microresonators, in which the high-frequency resonances in
the optical domain are aligned with reduced noise. It is found that two types of synchronization regimes emerge
with either the first- or second-order transition, both presenting a process of spontaneous symmetry breaking.
In the second-order regime, the synchronization happens with an invariant topological character number and
a larger detuning than that of the first-order case. Furthermore, an unconventional hysteresis behavior is
revealed for a time-dependent coupling strength, breaking the static limitation and the temporal reciprocity.
The synchronization of optical microresonators offers great potential in reconfigurable simulations of many-
body physics and scalable photonic devices on a chip.
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1 Introduction
Synchronization phenomena are ubiquitously observed in
nature, such as collective neuron bursts, stabilized heartbeats,
and disciplined synchronous fireflies.1–3 Starting from the
Huygens pendulum locked in antiphase,4,5 the synchronization
of nonlinear oscillators has earned in-depth investigation.6 In
daily life and modern industry, synchronization has been the ba-
sis for clock calibration, signal processing, and microwave com-
munication,7 and provides schemes for clustered computing and
memory storage.8–10 Over the past few years, the synchroniza-
tion of mechanical resonators has been implemented, where the
mechanical resonators are coupled strongly through direct con-
junction elements,11,12 optical radiation fields,13–17 or optical trav-
eling waves,18–21 facilitating mechanical-based high performance

networks. Strong mutual coupling together with the nonlinearity
of individually sustainable systems plays a crucial role in the
realization of synchronization.22–27

Likewise, synchronized optical fields also promise great po-
tential in fundamental and applied physics, such as many-body
optical physics and scalable on-chip photonic devices,28–33

while the occurrence is challenged by their relatively low mutual
coupling compared to the high carrier frequencies of light.
Recently, microcomb solitons have been experimentally
synchronized,34,35 significantly expanding their photonic appli-
cations, yet the repetition rates in the range of microwaves rather
than the optical frequency of the comb lines are equalized. In
this article, we discuss the mode synchronization of two optical
microresonators without an external reference frequency, where
the distant modes are self-sustained and mutually aligned
through a weak coupling. The synchronization results from
the spontaneous symmetry breaking and takes the form of a
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first- or second-order transition. Furthermore, an unconven-
tional hysteresis behavior is presented as the coupling strength
varies, permitting nonreciprocal synchronization in a more ex-
tensive parametric space.

2 Results

2.1 Two Self-Sustained Microresonators and Interaction
Model

As shown in Fig. 1(a), the system is composed of two optical
microcavities with different resonant frequencies, ω10 and ω20,
coupled at the strength g. The j’th (j ¼ 1,2) cavity is self-sus-
tained by the internal gain described by the factor Gp;j and the
intrinsic dissipation at the rate κj. In the presence of nonlinear
gain, a self-Kerr type modulation δjða†jajÞ2∕2 is present, with aj
being the annihilation operator and the factor δj describing the
self-Kerr effect.36 With the gain saturation37 or the multiphoton
absorption,38–40 the effective dissipation of the j’th mode is mod-
eled as Kj ¼ κj∕2þ Rjha†jaji, where Rj is the nonlinearity
factor.

The dissipative evolution of the system is described by the
Lindblad density-matrix equation (ℏ ¼ 1 hereafter),

_ρ ¼ −i½H; ρ� þ
X
j¼1,2

�
GjD½a†j �ρþ

Rj

2
D½a2j �ρ

�
: (1)

Here,D½o�ρ ¼ 2oρo† − o†oρ − ρo†o and Gj ¼ Gp;j − κj∕2 de-
note the net gain factor. Without an external frequency
reference, the time-independent Hamiltonian ðHÞ is equal toP

j¼1,2½ωj0aj aj þ δjðaj ajÞ2∕2� þ gða2 a1 þ a1 a2Þ, under the
rotating-wave approximation. For simplicity, in the following
we set R1 ¼ R2 ¼ R, G1 ¼ G2 ¼ G, and δ1 ¼ δ2 ¼ δ; the
dimensionless parameters are defined as δ̃ ¼ δ∕R, Δ̃ ¼
ðω10 − ω20Þ∕G, and g̃ ¼ g∕G. The time scale τ ¼ Gt. These
formalisms can be checked from wave functions in systems such

as coupled laser systems.41,42 Though the coupling between the
two modes is linear and energy-conservative, it plays the role of
messenger passing over the weak and detuned drive. The self-
sustained system always favors the resonance mutual driving,
and the synchronization of the two modes is established by
the spontaneous frequency alignment of the individual cavities,
through the self-Kerr effect and the amplitude stabilization
under the saturation effect. In this way, the modes are synchron-
ized in individual cavities.

2.2 Synchrony Solution in Static Case

We focus on the phase difference and the transient frequencies
of two modes in the coherent-state representation.6 In this rep-
resentation, the complex amplitude αj ¼ haji is parameterized
as rj

ffiffiffiffiffiffiffiffiffiffi
G∕R

p
e−iϕj , where rj and ϕj are the amplitude and the

phase, respectively. Let ϕ ¼ ϕ1 − ϕ2 be the phase difference,
which is the preserved degree of freedom, and let ωj ¼ _ϕj
be the transient frequency for the j’th mode.

Following the standard Wigner function formalism,43 the

mode equation is described by ð _Λ; _ΛÞ⊺ ¼ fðΛ;ΛÞ, where
Λ ¼ ðα1; α2Þ and fðΛ;ΛÞ denote the quasiprobability drift flow
of the two modes (see Supplementary Material for details). The
synchrony solution is achieved when fðΛ;ΛÞ ¼ 0, and a fixed
point ΛsðΔ̃; δ̃; g̃Þ emerges in the parametric space (see
Supplementary Material for details). In Fig. 2, we plot the phase
differences and the transient frequencies for different ~g. Three
categories of long-term behaviors are discovered. When the cou-
pling strength is low, ~g ¼ 0.3, for example, the phase difference
ϕ accumulates to infinity quickly [see Fig. 2(a1)], and
the transient frequencies ω1 and ω2 are effectively separated
[Fig. 2(a2)], showing two separated modes in the frequency
spectrum [Fig. 1(b)]. When the coupling strength is turned
higher, ~g ¼ 0.398, for example, the phase difference ϕ vibrates
around the stationary point but does not accumulate [Fig. 2(b1)],
and the frequencies ω1 and ω2 breathe slowly around the sta-
tionary frequency [Fig. 2(b2)], generating a limit cycle state.
A stationary mode is localized around the original two cavity
modes, and a pair of weak limit cycle modes can be found
symmetrically detuned from the stationary modes [Fig. 1(c)].
Finally, with a high enough coupling strength, such as
~g ¼ 0.4, the phase difference ϕ stabilizes [Fig. 2(c1)], and
the frequencies ω1 and ω2 also converge to a single value
[Fig. 2(c2)], reaching the synchronized state with a single mode
in the frequency spectrum [Fig. 1(d)].

It is noted that the temporal translational symmetry (TTS) is
preserved in the synchronized state because both the amplitudes
and phase difference remain invariant while the symmetry is
broken in the unsynchronized and limit cycle states. The dis-
crete topological character number as the average encircling
number is further defined as

χ ¼ T0

2π
lim
T→∞

���� 1T
Z

T

0

dtðω1 − ω2Þ
����; (2)

with T0 being the period of long-term evolution (see
Supplementary Material for details).44 As shown in Fig. 2(a3),
the unsynchronized trajectory encircles the axis r1 ¼ r2 ¼ 0
and has the character number χ ¼ 1. The later two categories
of trajectories, the off-axial circles [Fig. 2(b3)] and the fixed
points [Fig. 2(c3)], have the character number χ ¼ 0 (see the

Fig. 1 Schematic diagram of the system. (a) Two detuned and
self-sustained optical microcavities with different resonant
frequencies, ω10 and ω20, which are directly coupled at strength
g. (b)–(d) Frequency spectra of the coupled cavities, showing
three different long-term states: unsynchronized, limit cycle
(LC), and synchronized (Sync.). Light blue represents the noise
backgrounds from which the first- and second-order synchroniza-
tions are distinguished.
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transformed space in Supplementary Material for details). With
the different symmetries and character numbers, the three long-
term states are classified accordingly (see Supplementary
Material for details).

2.3 Analysis of Different Transition Types

When we further study the maximum of the frequency
differences, max jω1 − ω2j, two types of synchronization tran-
sitions are found. As shown in Fig. 3(a), when the coupling
strength ~g is low, the maximal frequency difference varies
slowly. At a critical strength ~gc, it suddenly falls to zero, which
shows the characteristics of the first-order transition. As shown
in Fig. 3(b), the maximal frequency difference continuously de-
creases to zero but has a discontinuity in its derivative at ~gc,
showing the feature of the second-order transition. In addition,
the noise spectrum is also calculated in long-term motions. For
the synchronized spectrum in Fig. 1(d), the background noise
has coinciding peaks with synchronized frequencies in the
first-order transition, whereas the noise has shifted-away peaks
in the second-order transition (see Supplementary Material for
details).

In order to study the critical coupling strength ~gc and the tran-
sition behaviors in its vicinity, a real-valued dynamical potential
VðΛ;ΛÞ is defined (see Supplementary Material for details).

Only if the dynamical potential has a local minimum, the fixed
point Λsð ~Δ; ~δ; ~gÞ emerges and remains stable, and thus indicates
the existence of a synchronized state (see Supplementary
Material for details). In the vicinity of the fixed point, the
dynamical potential can be expanded as VðΛ;ΛÞ ¼ VðΛs;ΛsÞ
− 1

2
½ðΔΛ;ΔΛÞ · J · ðΔΛ;ΔΛÞ† þ H:c:�, where JðΛ;ΛÞ ¼

∂fðΛ;ΛÞ∕∂ðΛ;ΛÞ is the Jacobian matrix, ΔΛ is the arbitrarily
small displacement from the fixed point, and H.c. is the
Hermitian conjugate. The displacement ΔΛ signifies the break-
ing of the TTS. At ΔΛ ¼ 0, the TTS is preserved. The stability
near the fixed point is thus governed by the eigenvalues of the
Jacobian. When the largest real part of the J eigenvalues [known
as the largest Lyapunov exponent LðΛsÞ] is positive, the fixed
point is unstable and vice versa (see Supplementary Material for
details).45 The critical coupling strength ~gc is then taken at
LðΛsÞ ¼ 0.

In the three-dimensional space ðr1; r2;ϕÞ, the Jacobian J
has purely real 3 × 3 components, and thus the complex eigen-
values must come in pairs. If the largest Lyapunov exponent L
equals one of the eigenvalues, the dynamical potential is sim-
plified as

VðxÞ ¼ b0ðg̃ − g̃cÞx2; (3)

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

Fig. 2 Long-term evolutions of the two cavity modes under different coupling strengths. Three
different categories are shown: (a) the unsynchronized ( ~g ¼ 0.3), (b) limit cycle ( ~g ¼ 0.398),
and (c) synchronized states (g̃ ¼ 0.4). (a1)–(c1) Phase difference; (a2)–(c2) transient frequencies;
(a3)–(c3) trajectory encircling types (black cross as the axis); and (a4)–(c4) dynamical potential
near the synchrony point. In all figures, the given detuning Δ̃ ¼ 0.3 and Kerr factor δ̃ ¼ 0.1.

Xu et al.: Synchronization and temporal nonreciprocity of optical microresonators…

Advanced Photonics 046002-3 Jul∕Aug 2019 • Vol. 1(4)

Supplementary Material
Supplementary Material
Supplementary Material
Supplementary Material
Supplementary Material
Supplementary Material
Supplementary Material
Supplementary Material


where x is the perturbation of Λs in the direction of correspond-
ing eigenvector, and the real coefficient b0 ¼ −dL∕dg̃ > 0 (see
Supplementary Material for details). It is noted that the dynami-
cal potential in Eq. (3) becomes a well or a barrier depending on
~g > ~gc or ~g < ~gc, which leads to the synchronized or un-
synchronized state shown in Figs. 2(a4) and 2(c4). Thus, the
first-order transition happens at ~gc, explaining the sudden
convergence of frequency difference in Fig. 3(a). For ~g < ~gc
and ~g > ~gc, the TTS is broken (ΔΛ → ∞) and preserved
(ΔΛ ¼ 0), respectively. If the largest Lyapunov exponent L
equals the real parts of a pair of conjugating eigenvalues, the
averaged dynamical potential is

hVi ¼ b1ðg̃ − g̃cÞρ2 þ b2ρ4; (4)

where ρ is the radial displacement from Λs and the real coeffi-
cients fb1; b2g > 0 (see Supplementary Material for details).46

When ~g < ~gc, a double-well type potential is obtained, corre-
sponding to the limit cycle state shown in Fig. 2(b4). After ~g
surpasses ~gc, the averaged dynamical potential hVi has a single
local minimum at Λs, and the synchronization is reached, ac-
counting for the second-order transition depicted in Fig. 3(b).
The TTS is spontaneously broken as the radial displacement
ρ continuously departs from the synchrony point Λs.

In the light of the static analysis above, the phase diagram in
the ~δ-cross section is plotted in Fig. 3(c), where three regions of
different long-term behaviors are marked. The synchronized and
limit cycle regimes are specified according to the existence of a
single and double local minima of the dynamical potentials, re-
spectively. The inaccessible (unsynchronized) regime corre-
sponds to the saddle nodes in the dynamical potentials, and

thus neither the synchronized state nor the limit cycle state
can survive in this regime. The transition from the unsynchron-
ized state to the synchronized state is of first-order and has a
variant topological character number. The transition from the
limit cycle state to the synchronized state is of second-order
and has an invariant topological character number (see
Supplementary Material for details). It is also found that a triple
phase point emerges at ~gc ¼ ~gT and ~Δ ¼ ~ΔT, where ~ΔT is the
minimal detuning required for the second-order transition. This
point corresponds to the solution where two eigenvalues of the
Jacobi matrix J are zeros. For the detuning ~Δ < ~ΔT ( ~Δ > ~ΔT),
the first-order (second-order) transition happens around ~gc
(black solid line). The triple phase point relies crucially on
the strength of the Kerr effect. In Fig. 3(d), we plot ~ΔT and
~gT with respect to the Kerr factor ~δ, showing monotone increas-
ing and decreasing dependence, respectively. When the factor ~δ
increases, the self-tuning ability of the Kerr effect is strength-
ened, and the second-order synchronization under a larger de-
tuning and a weaker coupling becomes possible.

2.4 Hysteresis Behavior

The two types of synchronization transitions present distinct
hysteresis behaviors near the critical coupling strength g̃c. In
Fig. 4, the frequency differences jω1 − ω2j and their maxima,
max jω1 − ω2j, are plotted, to indicate when the real-time cou-
pling strength ~gðτÞ slowly increases (forward) and then de-
creases (backward). In the first-order transition regime,
whatever direction ~gðτÞ moves, the synchronization emerges
or disappears at the same ~gc as derived in the static analysis

(a) (b)

(c) (d)

Fig. 3 Parameter dependence of the synchronization. (a),
(b) Maximum of the frequency differences, max jω1 − ω2j, versus
the coupling strength ~g, with ( ~Δ ¼ 0.2, δ̃ ¼ 0.1) in (a) and
( ~Δ ¼ 0.3, δ̃ ¼ 0.1) in (b); inset shows the derivative. (c) Phase
diagram in the ð ~Δ; ~gÞ plane with the Kerr factor δ̃ ¼ 0.1. The inac-
cessible (gray), limit cycle (dark blue), and synchronized (light
blue) regimes are marked. The red cross stands for the triple
phase point ð ~ΔT; ~gTÞ. (d) The triple phase point ð ~ΔT; ~gTÞ depend-
ing on the Kerr factor δ̃.

(a) (b)

(c) (d)

Fig. 4 Hysteresis behavior in frequency difference. (a),
(b) Frequency differences jω1 − ω2j versus the evolution time
τ in the first- and second-order transition regimes. Insets: the
real-time evolution of the coupling strength ~gðτÞ. (c), (d) Maxima
of the frequency differences,max jω1 − ω2j versus ~gðτÞ. For each
plot, the Kerr factor ~δ ¼ 0.1; the detuning ~Δ ¼ 0.2 in (a) and (c),
and ~Δ ¼ 0.3 in (b) and (d).
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[see Fig. 4(a)]. The maximal frequency differences in the for-
ward and backward evolutions are identical to those depicted
in Fig. 4(c), coinciding with Fig. 3(a). In the second-order tran-
sition regime, although the synchronization also emerges at ~gc in
the forward trip, it does not disappear at the same critical point
in the backward trip [see Fig. 4(b)]. Actually, the synchroniza-
tion survives far below ~gc, even into the statically inaccessible
region depicted in Fig. 3(c). Further calculation of the maximal
frequency differences reveals a hysteresis loop in this case [see
Fig. 4(d)]. The forward half of the loop remains the same as the
curve in Fig. 3(b), whereas the backward half is beneath it. The
critical coupling strength under the static model does not apply
under a dynamical model with the second-order transition. As
explained in the Supplementary Material,47 the ~gðτÞ passes ~gc
with the emergence of new non-zero eigenvalues proportional
to − _̃gJ−1. This mechanism is thus attributed to the singularity
of J−1 and the altering direction of real-time ~gðτÞ. The hysteresis
property breaks the minimal coupling required for the synchro-
nization, and the consequent temporal nonreciprocity enables
the reading out of coupling history as has been done in the ferro-
magnetic materials.48

3 Discussion and Conclusion
In summary, we have presented the mode synchronization of
two self-sustained optical microresonators that are largely de-
tuned and linearly coupled together. The synchronization is ac-
companied by a process of spontaneous symmetry breaking,
taking the form of the first- and second-order transitions.
First, when the synchronization takes place, the high transient
frequencies of both modes collapse, offering a possible solution
to the frequency mismatch problem in integrating optical micro-
resonators. The phase noise of the coupled system is dramati-
cally reduced, revealing spontaneous symmetry preservation
and paving the way for error-tolerant device fabrication.19

Second, the topological character transitions cast light on
many-body physics. The experimental realization can be ap-
proached by coupling two toroid cavities etched with the same
mask. Raman gain is applied separately to each cavity at tunable
pump frequencies. With additional thermal control of the refrac-
tive index, perfect phase matching and adjustable mode fre-
quency differences are achievable. Note that in our model the
evolution in the transformed space corresponds to the nontrivial
degeneration of a ring into a point. During the synchronization
of three resonators, however, the transition also includes non-
trivial degeneration of the torus into a ring. The multiple-torus
topological structure in massively coupled resonators offers new
insights for many-body physics.49 Finally, in the second-order
transition regime, an unconventional hysteresis behavior was
predicted, breaking the static critical coupling strength limit.
The coupling history of the resonators can be logged over a
short period autonomously, which is desirable in all-optical
memory designs.50,51 These results thus show great potential
for further research studies in all-optical memory, coupled cav-
ity quantum electrodynamics, and many-body optical physics.
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