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ABSTRACT
In traditional finite-temperature Kohn–Sham density functional theory (KSDFT), the partial occupation of a large number of high-energy
KS eigenstates restricts the use of first-principles molecular dynamics methods at extremely high temperatures. However, stochastic density
functional theory (SDFT) can overcome this limitation. Recently, SDFT and the related mixed stochastic–deterministic density functional
theory, based on a plane-wave basis set, have been implemented in the first-principles electronic structure software ABACUS [Q. Liu and
M. Chen, Phys. Rev. B 106, 125132 (2022)]. In this study, we combine SDFT with the Born–Oppenheimer molecular dynamics method to
investigate systems with temperatures ranging from a few tens of eV to 1000 eV. Importantly, we train machine-learning-based interatomic
models using the SDFT data and employ these deep potential models to simulate large-scale systems with long trajectories. Subsequently, we
compute and analyze the structural properties, dynamic properties, and transport coefficients of warm dense matter.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0163303

I. INTRODUCTION

Understanding the behavior of materials under extremely high-
temperature conditions, such as warm dense matter (WDM) and
hot dense plasma (HDP), is essential in a number of physical and
astrophysical contexts, such as the interiors of giant planets,1 iner-
tial confinement fusion,2 and high-intensity, high-energy laser pulse
experiments.3

However, the extremely high temperatures of WDM and HDP
pose significant challenges in terms of measuring their properties
experimentally or predicting them theoretically.4 After decades of
combined efforts from both experimental5 and theoretical4 perspec-
tives, it has been recognized that an adequate quantum-mechanical
description of electrons is essential for theoretical calculations to
have the necessary predictive power. In fact, various first-principles
approaches based on different levels of approximations are avail-
able to address this issue. The methods most commonly employed
for this task are Kohn–Sham density functional theory (KSDFT),6,7

path-integral Monte Carlo (PIMC),8–11 orbital-free density func-
tional theory (OFDFT),12–15 extended first-principles molecular
dynamics (Ext-FPMD),16–19 and stochastic density functional theory
(SDFT).20–24

KSDFT with the Mermin finite-temperature density-functional
approach25 is typically employed to compute properties of materi-
als at low temperatures. However, when temperatures are elevated
to the WDM regime, the partial occupation of a large number
of high-energy KS eigenstates becomes a severe hurdle, since the
number of electronic states that need to be considered is propor-
tional to T3/2, rendering the KSDFT method unfeasible.26–29 By
contrast, the cost of PIMC calculations decreases significantly at
higher temperatures.8–11 In practice, although combining KSDFT
with PIMC has been successfully applied to study the equations of
state for low-Z elements,30 PIMC is severely limited at lower tem-
peratures.31 Compared with KSDFT, the OFDFT method avoids the
need to diagonalize the wave functions and is more efficient.12–15

However, the applications of OFDFT are still limited by insufficient
accuracy in the kinetic energy density functional.32

The Ext-FPMD method has been proposed to evaluate systems
at extremely high temperatures with first-principles accuracy.16–19

This method treats the wave functions of high-energy electrons ana-
lytically as plane waves, thereby avoiding the partial occupation of a
large number of high-energy KS eigenstates. However, it is still chal-
lenging to adopt the Ext-FPMD method to investigate the electrical
conductivity and electronic thermal conductivity of materials, owing
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to a lack of orbital information for high-energy electrons. Similarly,
the SDFT scheme adopts stochastic orbitals in combination with
the Chebyshev trace method to overcome the limitation imposed by
partial occupation of a large number of high-energy KS eigenstates.
Moreover, the statistical errors can be effectively reduced when a
greater number of stochastic orbitals are included or larger sys-
tems are utilized. In addition, mixed stochastic–deterministic DFT
(MDFT) combines the KS and stochastic orbitals and speeds up cal-
culations.33 Note that the SDFT and MDFT methods, based on a
plane-wave basis set, can be used with the k-point sampling method
and have recently been implemented in the first-principles package
ABACUS (https://github.com/deepmodeling/abacus-develop).34–36

Since both SDFT and MDFT employ stochastic wave functions, we
will refer to these two methods as SDFT throughout the remainder
of this paper.

Recently, machine-learning-assisted atomistic simulation
methods have achieved remarkable success and have attracted
considerable attention.37–48 In particular, deep neural networks
are often adopted to learn the potential energy surfaces that are
generated by the relations between atomic configurations and
their corresponding energies, forces, and stresses. Essentially, these
neural-network-based models demonstrate high efficiency while
maintaining ab initio accuracy, since they effectively bypass the need
to solve quantum-mechanics-based equations. Among them, the
deep potential molecular dynamics (DPMD) method49–52 achieves
high performance53,54 and stands out as a promising method to
study WDM. For example, the DPMD method has been applied
to study the structural and dynamic properties15,55 and ion–ion
dynamical structure factor55 of warm dense aluminum, thermal
transport by electrons and ions in warm dense aluminum,56 and the
principal Hugoniot curves of warm dense beryllium.51

To summarize, two main challenges exist for large-scale first-
principles simulations of WDM. First, the partial occupation of a
large number of high-energy KS eigenstates results in computation-
ally expensive simulations of WDM at high temperatures. Second,
obtaining converged results for certain physical properties of WDM

with a small number of atoms is difficult unless a large cell with a
long molecular dynamics trajectory is obtained.

In this work, we first validate the accuracy of SDFT by analyz-
ing the statistical errors from the stochastic orbitals and compare
our results with those from the traditional KSDFT method. Here, we
select warm dense boron (B) and carbon (C) as benchmark systems.
Second, we couple the Born–Oppenheimer molecular dynamics
(BOMD) method with SDFT to simulate warm dense B. Specifically,
we generate two DP models to describe B at a density of 2.46 g/cm3

with two different temperatures (86 and 350 eV); the training data
are obtained from SDFT-based BOMD simulations. Third, by per-
forming DPMD simulations, we significantly extend the time and
spatial scales of warm dense B and obtain converged data for certain
physical properties. This workflow is shown in Fig. 1.

Our work demonstrates that combining SDFT with the deep
potential (DP) method offers a promising route to simulate WDM
over a wide range of temperatures.

The rest of the paper is organized as follows. In Sec. II, we
describe the computational methods utilized in this work. In Sec. III,
we discuss the results obtained from SDFT and the DP model.
Finally, we summarize our results in Sec. IV.

II. COMPUTATIONAL METHODS
A. Stochastic and mixed stochastic–deterministic
density functional theory

In the KSDFT framework,6,7 the single-particle DFT Hamilto-
nian is defined as

ĤDFT = −∇2/2 + V̂Hartree + V̂xc + V̂ext, (1)

where the first term is the kinetic operator, V̂Hartree is the Hartree
potential, V̂xc is the exchange-correlation (XC) potential, and V̂ext
is the potential of interactions between the electrons and the

FIG. 1. Workflow of the simulation of WDM with the SDFT and DPMD methods. (a) Stochastic orbitals are employed in SDFT to perform molecular dynamics simulations on
smaller systems (32 atoms in a bulk B) and initial training data are collected that include atomic positions, energies, forces, and virial tensors. (b) The gathered training data
are used to construct a DP model with the temperature-dependent DPMD model. The deep neural network contains both embedding and fitting networks. (c) The new model
enables simulations to be performed on large systems (16 384 atoms) and at extremely high temperatures (350 eV). (d) Several physical quantities such as radial distribution
functions, static structure factors, dynamic structure factors, and shear viscosities can be calculated, and the data are converged with large systems and long trajectories.
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nuclei as well as other external fields. Within finite-temperature
Mermin–Kohn–Sham theory,25 the electron density is given by

n(r) = 2 Tr [ f (ĤDFT,μ, T)δ(r̂ − r)]

= 2
Nk

∑
k=1

ωk

NKS

∑
i=1

f (εik,μ, T)∣ϕik(r)∣2, (2)

where r̂ is the position operator of the electron and the pref-
actor 2 accounts for the electron spin. The parameter ωk is the
weight of the k-point, with Nk being the number of k-points, while
NKS is the number of occupied orbitals, with i being the index.
The Fermi–Dirac distribution function takes the form f (εik,μ, T)
= 1/[e(εik−μ)/T + 1], where μ is the chemical potential. Here, ϕik(r)
and εik are the eigenfunction and eigenvalue, respectively, of the
self-consistent KS Hamiltonian

ĤDFTϕik(r) = εikϕik(r). (3)

In practice, solving ϕik(r) and εik is costly at high temperatures, since
the required number of KS wave functions is proportional to T3/2.21

Given any orthogonal and complete basis set {ψj}, a stochastic
orbital χnk in SDFT20,21 can be defined as

⟨ψj ∣ χnk⟩ =
1√
Nsto

exp (i2πθnk
j ), (4)

which satisfies

lim
Nsto→+∞

Nsto

∑
n=1
∣χnk⟩⟨χnk∣ = Î, (5)

where θnk
j is randomly generated by a uniform distribution between

0 and 1, and Nsto is the number of stochastic orbitals.
In MDFT,33 both deterministic orbitals ϕik and stochastic

orbitals χ̃nk are used:

∣χ̃nk⟩ = ∣χnk⟩ −
NKS

∑
i=1
⟨ϕik ∣ χnk⟩∣ϕik⟩. (6)

Here, the stochastic orbitals are defined to be orthogonal to the
deterministic orbitals. The number of deterministic orbitals is set to
NKS, which is typically chosen to be a subset of occupied states. In
addition, both sets of orbitals satisfy the relation

lim
Nsto→+∞

Nsto

∑
n=1
∣χ̃nk⟩⟨χ̃nk∣ +

NKS

∑
i=1
∣ϕik⟩⟨ϕik∣ = Î. (7)

The electron density is then given by

n(r) = 2
Nk

∑
k=1

ωk[
Nsto

∑
n=1
∣⟨r∣
√

f (Ĥ DFT,μ, T)∣χ̃ nk⟩∣
2

+
NKS

∑
i=1

f (εik,μ, T)∣ϕik(r)∣2], (8)

where
√

f (ĤDFT,μ, T) is calculated by the Chebyshev expansion.57

If Nsto = 0 or NKS = 0, the MDFT method changes to the standard
KSDFT or SDFT method, respectively.

Notably, using stochastic orbitals in practical calculations
results in statistical errors, since these orbitals only form a complete
basis when the number of stochastic orbitals approaches infinity. As
reported in previous studies,22,23,36 the error caused by the stochastic
orbitals is proportional to 1/

√
Nsto. However, when periodic bound-

ary conditions (PBCs) with k-point sampling are considered and
each k-point has Nsto stochastic orbitals, the resulting σs is propor-
tional to 1/

√
NkNsto, suggesting that the use of a greater number of

k-points can reduce the stochastic errors. To evaluate the accuracy
of SDFT, we perform both SDFT and KSDFT calculations for B and
C bulk systems under extreme conditions.

In the first-principles molecular dynamics simulations of
WDM, the KSDFT couples with the dynamics of ions, usually
through the BOMD method. Since the motions of ions are treated
classically in the BOMD method, we need to evaluate the force of an
atom i in the form of

Fi = −
∂E
∂Ri

, (9)

where E is the sum of the electrons’ energy and the ion–ion repulsion
energy, and Ri is the position of atom i. By utilizing a plane-wave
basis set and norm-conserving pseudopotentials within the tradi-
tional KSDFT and SDFT methods, the force of an atom can be
decomposed into three parts:

Fi = FL
i + FNL

i + FII
i , (10)

where FL
i is the local pseudopotential force term, FNL

i is the nonlocal
pseudopotential force term, and FII

i is the Ewald force term origi-
nating from ion–ion interactions. Furthermore, the stress is defined
as

σαβ = −
1
V

∂E
∂ϵαβ

= σT
αβ + σL

αβ + σNL
αβ + σHartree

αβ + σxc
αβ + σII

αβ, (11)

where ϵαβ is the strain, with spatial coordinates α and β. The kinetic
energy term of the electrons is σT

αβ. σL
αβ and σNL

αβ are the local and non-
local pseudopotential terms, respectively. σHartree

αβ is the Hartree term,
and σxc

αβ is the XC term. The Ewald term is σII
αβ. Further details of

the implementation of the total energy, total free energy, forces, and
stresses within the framework of SDFT in ABACUS can be found in
Ref. 36. Note that the SDFT method employed in this work still uses
a plane wave basis, and so it is still computationally demanding for a
system consisting of a few hundred atoms.

B. Deep potential molecular dynamics
In the DPMD method,49,50 the total energy E of a system is

expressed as a sum of atomic contributions, i.e., E = ∑i Ei, where
the energy Ei from atom i depends on an environment matrix Ri,
which includes the information of those atoms neighboring atom i
within a cutoff radius. The DP model maps Ri via an embedding
neural network to a symmetry-preserving descriptor and then maps
this descriptor to a fitting neural network to yield Ei. A loss function
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is utilized to optimize the parameters in the embedding and fitting
networks to generate DP models. The loss function is defined as

L(pϵ, p f , pξ) = pϵΔϵ2 + p f

3N∑i
∣ΔFi∣2 +

pξ
9
∥Δξ∥2, (12)

where N is the number of atoms, ϵ = E/N is the energy per atom, Fi
is the force acting on atom i, ξ is the virial tensor per atom, and Δ
is the difference between the training data and the results predicted
by the DP model. Here, pϵ, p f , and pξ are tunable prefactors. The
stochastic gradient descent scheme Adam58 is adopted to train the
DP model.

We separately train the data from SDFT-based BOMD trajec-
tories of B at 86 and 350 eV, where the Perdew–Burke–Ernzerhof
(PBE)59 functional is used. As a result, we obtain two DP models of
warm dense B at the two temperatures. To better characterize the
warm dense B at 350 eV, we adopt the temperature-dependent deep
potential (TDDP) method51 to train the DP model. Note that the
TDDP method, as shown in Fig. 1(b), introduces the electron tem-
perature of the system into the fitting net, which is more suitable for
high-temperature systems.

Both embedding and fitting neural networks contain three lay-
ers, with the specific numbers of neurons being (25, 50, 100) and
(120, 120, 120), respectively. The cutoff radius for each atom is cho-
sen to be 6.0 Å. The inverse distance 1/r decays smoothly from 0.5 to
6.0 Å to remove the discontinuity introduced by the cutoff. Both DP
models undergo training for 500 000 steps. Throughout the training
process, the values of pϵ, p f , and pξ are gradually adjusted from 0.02
to 1, 1000 to 1, and 0.02 to 1, respectively. We also employ the DP
compress technique with both DP models to accelerate the DPMD
simulations, as described in the literature.60

III. RESULTS AND DISCUSSION
A. Statistical errors of SDFT

To analyze the statistical errors that arise from the SDFT
method itself, we choose a 32-atom B system with a density of 2.46
g/cm3 at a temperature of 350 eV. In addition, we employ the PBE59

XC functional.
We note that at temperatures of 86 eV and higher, the pseu-

dopotential of B is generated by the ONCVPSP61 method with all
of its five electrons. The cutoff radius for the pseudopotential is set
to 0.7 bohr to avoid overlaps of electron orbitals at high tempera-
tures. In addition, we select energy cutoffs of 180, 240, and 300 Ry
for temperatures of 86, 350, and 1000 eV, respectively.

Figure 2 shows the root-mean-square error (RMSE) of SDFT
vs the number of stochastic orbitals Nsto and the number of
k-points Nk.

For each data point in this figure, we denote the average atomic
force for each atom along a certain direction γ ∈ x, y, z by Fave, which
is computed by averaging nine independent SDFT calculations with
different sets of stochastic orbitals. In each SDFT calculation, we
denote the force acting on each atom along the γ direction by Fsto.
In this case, the RMSE can be evaluated as

RMSE =

¿
ÁÁÁÀ 1

3NcN

Nc

∑
c=1

N

∑
i=1
∑
γ
(Fsto − Fave)2, (13)

FIG. 2. Root-mean-square error (RMSE) of atomic forces arising from the SDFT
calculations for B. The temperature is set to 350 eV and the density to 2.46 g/cm3.
The RMSE is evaluated with respect to (a) the number of stochastic orbitals Nsto,
(b) the number of k-points in the Brillouin zone Nk , and (c) the product of Nsto
and Nk . For each data point, the RMSE is obtained via nine independent SDFT
calculations with different sets of stochastic orbitals.

where Nc = 9 is the number of independent SDFT runs, and N = 32
is the number of atoms, with i being the index of atoms.

The number of stochastic orbitals is chosen from 128 to
11 082 in Fig. 2(a), and the shifted k-point sampling is set to
2 × 2 × 2. Note that the number of k-points is reduced to four after
symmetry analysis.
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We fix the number of stochastic orbitals to be 512 in Fig. 2(b)
and choose shifted k-point samplings of 1 × 1 × 1 (1), 2 × 2 × 2 (4),
3 × 3 × 3 (14), 4 × 4 × 4 (32), and 5 × 5 × 5 (63); here the numbers in
parentheses are the numbers of k-points after symmetry analysis.

As expected, Figs. 2(a)–2(c) respectively show that the RMSE
of forces acting on atoms exhibits linear behavior with respect to
N−1/2

sto , N−1/2
k , and (NstoNk)−1/2. The numerical results are consistent

with the discussion of statistical error in Sec. II A. Importantly, the

results indicate that as more stochastic orbitals and a larger num-
ber of k-point samplings are employed, the stochastic errors can be
systematically mitigated.

B. Comparison of SDFT and KSDFT results
To select suitable numbers of k-points, KS orbitals, and stochas-

tic orbitals for simulating WDM under specific conditions, we use a

FIG. 3. Forces acting on each B atom as obtained from nine independent SDFT calculations with different stochastic orbitals. The B system has a density of 2.46 g/cm3,
and the temperature is 17.23 eV. For each calculation, the force acting on each atom along the γ direction is denoted by Fsto, and their average is Fave. NKS and Nsto are the
numbers of KS and stochastic orbitals, respectively. Two sets of Monkhorst–Pack k-points are utilized: a 1 × 1 × 1 k-point mesh (the Γ k-point) and a shifted 2 × 2 × 2 k-point
mesh. The RMSE of forces between Fsto and Fave is computed from Eq. (13). The RMSE is obtained via the mentioned nine independent SDFT calculations.

Matter Radiat. Extremes 9, 015604 (2024); doi: 10.1063/5.0163303 9, 015604-5

© Author(s) 2024

https://pubs.aip.org/aip/mre


Matter and
Radiation at Extremes

RESEARCH ARTICLE pubs.aip.org/aip/mre

32-atom B system as an example, with a density of 2.46 g/cm3 and a
temperature of 17.23 eV.

Figure 3 compares the forces on each B atom with different val-
ues for the mentioned parameters. First, we find that increasing the
k-point sampling size from the Γ-point to a shifted 2 × 2 × 2 k-point
sampling substantially reduces the RMSE, which is consistent across
various values of NKS and Nsto. The result is in line with the linear
relationship shown in Fig. 2.

Second, we note that the RMSE with NKS = 0 and Nsto = 256
in Fig. 3(c) is 1.61 eV/Å, while the RMSE with NKS = 128 and Nsto
= 128 shown in Fig. 3(e) is 0.596 eV/Å. The former is considerably
larger than the latter, suggesting that increasing the number of KS
orbitals is more effective than using stochastic orbitals at a relatively
low temperature (17.23 eV).

Consequently, by choosing an adequate number of KS orbitals
(NKS = 128) and stochastic orbitals (Nsto = 128) along with the
shifted 2 × 2 × 2 k-point sampling, we can achieve an RMSE as small
as 0.302 eV/Å. Furthermore, we examine the effects of these para-
meters on B systems at 86 and 350 eV, with the results shown in Figs.
S1 and S2 (supplementary material), respectively. In conclusion, we
find it reasonable to select the same parameters as in the B system at
17.23 eV.

Table I presents a comparison of some key physical proper-
ties obtained from the SDFT and KSDFT methods, namely, the total
energy per atom E, the pressure P, and the degree of ionization α.
For each property, we also show the percentage differenceΔ between
the results obtained from SDFT and the traditional KSDFT. We
consider four systems, namely, two B systems at a temperature of
17.23 eV and densities of 2.46 and 12.3 g/cm3, and two C systems
at a temperature of 21.54 eV and densities of 4.17 and 12.46 g/cm3.
In both the SDFT and KSDFT calculations, we choose the PBE func-
tional.59 Furthermore, we adopt a shifted 2 × 2 × 2 k-point sampling
grid.

TABLE I. Comparison of the total energy per atom E, the pressure P, and the degree
of ionization α for B and C systems as obtained from the SDFT and traditional KSDFT
methods. Four systems are chosen: two B systems at a temperature of 17.23 eV with
densities of 2.46 and 12.3 g/cm3, and two C systems with densities of 4.17 and 12.46
g/cm3 at a temperature of 21.54 eV. Δ denotes the percentage difference between
the results obtained by SDFT and KSDFT.

E (eV) P (GPa) α

B KSDFT −153.683 171 849.112 0.476 617
2.46 g/cm3 SDFT −153.707 884 852.524 0.476 659
17.23 eV Δ 0.0161% 0.4019% 0.0088%

B KSDFT −66.923 177 8730.010 0.390 341
12.3 g/cm3 SDFT −66.924 235 8730.829 0.390 344
17.23 eV Δ 0.0016% 0.0094% 0.0008%

C KSDFT −263.586 543 2018.380 0.505 693
4.17 g/cm3 SDFT −263.595 810 2019.780 0.505 707
21.54 eV Δ 0.0035% 0.0693% 0.0028%

C KSDFT −190.692 843 9168.050 0.440 747
12.46 g/cm3 SDFT −190.698 535 9171.552 0.440 757
21.54 eV Δ 0.0030% 0.0382% 0.0023%

We study B systems with a cell containing 32 atoms. Addition-
ally, we employ a norm-conserving pseudopotential for B with three
valence electrons62 and with an energy cutoff of 150 Ry. We set the
numbers of deterministic orbitals in KSDFT to be NKS = 992 and 400
for the B systems with densities of 2.46 and 12.3 g/cm3, respectively.
These settings ensure that the occupation of electrons is smaller than
10−4 at the highest-energy orbital.

On the other hand, we choose the number of deterministic
orbitals to be NKS = 240 and the number of stochastic orbitals to
be Nsto = 120 in SDFT for the B systems, regardless of their den-
sities. For the C systems, a norm-conserving pseudopotential with
four valence electrons is employed,62 and the energy cutoff is set to
160 Ry. In the KSDFT calculations, we take 8 atoms per cell and
NKS = 350 for a density of 4.17 g/cm3 and 32 atoms per cell and
NKS = 520 for a density of 12.46 g/cm3. In the SDFT calculations,
we adopt NKS = 120 and 240 for densities of 4.17 and 12.46 g/cm3,
respectively, with Nsto = 120 for both cases.

The results in Table I reveal the following.
First, it can be seen that the percentage difference in total

energy (Δ of E) between SDFT and KSDFT is relatively small, being
less than 0.02% for the B systems and 0.004% for the C systems. This
indicates that SDFT provides a high-accuracy estimation of total
energy when compared with the conventional KSDFT method.

Second, the percentage difference in pressure (Δ of P) between
the two methods is smaller than 0.41% for B and 0.07% for C. This
further supports the high accuracy of the SDFT method.

Third, the ionization process of electrons plays a crucial role
in determining the WDM equation of state.19,63,64 This process can
be represented by the degree of ionization α. In practice, the Fermi
energy of the system at 0 K is defined as μ. Consequently, the degree
of ionization α at a finite temperature T can be defined as follows:

α = 1 − NT,occ

N0,occ
, (14)

where NT,occ is the total number of occupied electrons below μ when
the electrons follow the Fermi–Dirac distribution at temperature T.
N0,occ is the special case of NT,occ when T = 0.

The percentage difference in the degree of ionization (Δ of α) is
found to be smaller than 0.009% for both B and C systems. In sum-
mary, all three properties E, P, and α calculated by SDFT show excel-
lent accuracy when compared with those from traditional KSDFT.
This demonstrates that SDFT is a reliable method for simulating
high-temperature materials with first-principles accuracy.

Figure 4 further compares the forces acting on each atom of B
(2.46 and 12.3 g/cm3) and C (4.17 and 12.46 g/cm3) obtained from
both SDFT and KSDFT calculations.

We find that the forces predicted by SDFT are in excellent
agreement with those from KSDFT. For instance, the RMSE of forces
is smaller than 0.05 eV/Å for both C systems. The largest RMSE
occurs in the B system at 2.46 g/cm3, with a value of 0.103 eV/Å,
which is relatively small compared with the magnitude of atomic
forces (a few hundreds of eV/Å). Notably, we find the smallest RMSE
is 0.004 eV/Å in the B system at 12.3 g/cm3. This is due to the fact
that more electronic states of B are occupied by electrons under this
condition, as demonstrated by the smaller degree of ionization of B
(0.39) shown in Table I.
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FIG. 4. (a) Comparison of forces acting on each B atom in a 32-atom cell for densi-
ties of 2.46 and 12.3 g/cm3 at a temperature of 17.23 eV. (b) Comparison of forces
acting on each C atom for densities of 4.17 and 12.46 g/cm3 at a temperature of
21.54 eV. In the SDFT and KSDFT calculations, we denote the forces acting on
each atom along the γ direction (γ ∈ x, y, z) by Fsto and FKS, respectively. The
RMSE of forces between Fsto and FKS is also shown.

Figure 5 illustrates the density of states (DOS) of B (2.46 and
12.3 g/cm3) and C (4.17 and 12.46 g/cm3). Besides the PBE59 XC
functional, we also test the finite-temperature local density approx-
imation functional, i.e., the corrKSDT functional as proposed by
Karasiev et al.65

A Monkhorst–Pack 4 × 4 × 4 shifted k-point mesh is adopted
in the KSDFT calculations to yield the DOS of B and C. However,
unlike the traditional KSDFT method, the DOS in SDFT cannot be
directly obtained from the eigenvalues of Ĥ. Instead, we evaluate the
DOS from the SDFT method via the following formula:

g(E) = 2 Tr{ 1√
2πσ

exp [−(E − Ĥ )2

2σ2 ]}. (15)

Here, σ depicts the width of smearing.
The DOS of SDFT with a shifted 2 × 2 × 2 k-point mesh con-

verges for B with a density of 2.46 g/cm3 when compared with
KSDFT, although there are some deviations observed in the other
three cases. Notably, the DOS predicted by SDFT using a 4 × 4 × 4
shifted k-point mesh shows excellent agreement with the KSDFT
results for both the B and C systems.

By employing a shifted 4 × 4 × 4k-point mesh, it is also
observed that the DOS of corrKSDT65 exhibits no significant dif-
ferences when compared with the PBE59 results, suggesting that
the temperature effects in the XC functional have minimal impacts

on our calculations. Overall, these findings indicate that the SDFT
implemented in ABACUS is adequately accurate for simulating
warm dense B and C systems.

C. High-temperature calculations by SDFT
Table II collects the three force components of each atom in the

32-atom B cell from nine independent runs of SDFT with different
stochastic orbitals. Four different temperatures are chosen, namely,
17.23, 86, 350, and 1000 eV. Furthermore, we select 1 × 1 × 1 and
2 × 2 × 2 shifted k-point samplings for each temperature and evalu-
ate the corresponding RMSE. Under each condition, a set of average
forces Fave are calculated according to Eq. (13). Further details can
be found in Fig. S3 (supplementary material). For temperatures of
17.23 and 86 eV, we set NKS = 128 and Nsto = 128; at higher temper-
atures of 350 and 1000 eV, we find it more effective to use stochastic
orbitals than the KS orbitals. As a result, we do not choose the
Kohn–Sham orbitals (NKS = 0) but set all orbitals to be stochas-
tic orbitals (Nsto = 256). According to our tests, the RMSE of the
atomic force smaller than 3.3 eV/Å is enough for FPMD simulations
of WDM B. Therefore, we employ the Γ k-point with 128 KS orbitals
and 128 stochastic orbitals for 86 eV and the 2 × 2 × 2 shifted k-point
with 256 stochastic orbitals for 350 eV to perform FPMD.

D. Radial distribution functions
Previous works have employed the traditional KSDFT cou-

pling with BOMD to study WDM at relatively low temperatures.
Examples include shock Hugoniot curves,30 the radial distribution
function,11,15 the ion–ion static structure factor,15 and the ion–ion
dynamic structure factor.15,55 However, most of these calculations
have been limited by the high computational costs incurred when
dealing with electrons at extremely high temperatures.

To substantially accelerate the calculations, we choose the
DPMD method to perform BOMD calculations for warm dense B
systems, and the training data are obtained from efficient SDFT cal-
culations for warm dense B at temperatures of 86 and 350 eV. Note
that we use the traditional DP method50 to train the data at a temper-
ature of 86 eV. However, we utilize the TDDP method51 and include
the electron temperature as an input parameter of the neural net-
work to train the high-temperature data (350 eV), since this method
exhibits better performance than the traditional DP method at such
a high temperature.

Specifically, we perform SDFT-based BOMD simulations for a
32-atom B system with a density of 2.46 g/cm3. At the temperature
of 86 eV, we adopt a Γ k-point mesh with NKS = 128 Kohn–Sham
orbitals and Nsto = 128 stochastic orbitals.

At the higher temperature of 350 eV, a 2 × 2 × 2 shifted k-point
mesh is used, with Nsto = 256 stochastic orbitals. Note that conver-
gence with respect to the plane-wave energy cutoff and k-point mesh
is examined to ensure tht the computational error of the total energy
is within 0.01%.

The BOMD simulations are performed in the NVT ensemble,
with the ion temperature controlled by the velocity-rescaling ther-
mostat. The electrons and ions in the system are set to the same
temperature. The time step is chosen according toΔt ∼ 1/(ρ1/3T1/2

e ),
where Te is the temperature of the electrons and ρ is the density.
Consequently, the time step is chosen to be 0.035 and 0.007 fs for
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FIG. 5. DOS for the B and C systems as calculated by the SDFT and KSDFT methods. The densities are selected as (a) 2.46 g/cm3 and (b) 12.3 g/cm3 for the B system,
and (c) 4.17 g/cm3 and (d) 12.64 g/cm3 for the C system. The Fermi energy is set to zero. We use two sets of k-point sampling in the KSDFT and SDFT calculations. In
addition, we adopt two XC functionals, namely, PBE59 and corrKSDT.65

TABLE II. RMSE of forces acting on B atoms as obtained from nine independent
SDFT calculations with two sets of stochastic orbitals (128 and 256). The B system
has a density of 2.46 g/cm3, and the temperatures are set to 17.23, 86, 350, and
1000 eV. NKS is the number of KS orbitals, and Nsto is the number of stochastic
orbitals. Two sets of Monkhorst–Pack k-points are utilized: a 1 × 1 × 1 k-point mesh
(include the Γ k-point) and a shifted 2 × 2 × 2 k-point mesh. The RMSE of forces is
computed from Eq. (13).

T (eV) NKS Nsto k-points RMSE (eV/Å)

17.23 128 128 1 × 1 × 1 0.596
128 128 2 × 2 × 2 0.302

86 128 128 1 × 1 × 1 3.26
128 128 2 × 2 × 2 1.54

350 0 256 1 × 1 × 1 6.40
0 256 2 × 2 × 2 3.26

1000 0 256 1 × 1 × 1 2.68
0 256 2 × 2 × 2 1.30

simulations at 86 and 350 eV, respectively. In each BOMD trajec-
tory, 4000 molecular dynamics steps are performed. We then collect
the atomic positions, the total energies E, the atomic forces Fi of each
atom i, as well as the virial tensors Ξ as the training data to generate
DP models for B. Although stochastic DFT exhibits favorable scal-
ability with increasing number of atoms,20 previous research51,66–68

suggests that having 32 B atoms in the training dataset is enough
to generate an accurate deep potential. The use of 32 B atoms to
generate the training set is a choice that balances efficiency and
accuracy.

In the DPMD simulations, we adopt the NVT ensemble with
the Nosé–Hoover thermostat.69,70 We use the LAMMPS pack-
age.71 The number of B atoms ranges from 32 to 16 384. Time
steps of 0.07 and 0.01 fs are set for the systems at 86 and
350 eV, respectively. We perform 400 000 steps of DPMD simu-
lations to yield the radial distribution functions, the static struc-
ture factors, and the dynamic structure factors. Furthermore, 106

molecular dynamics steps are performed to compute the shear
viscosity.
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After the BOMD trajectories are generated, the radial distribu-
tion function can be evaluated according to

g(r) = V
4πr2N(N − 1)

⟨
N

∑
i=1

N

∑
j=1,j≠i

δ(r − ∣ri − rj ∣)⟩, (16)

where V is the cell volume, N is the number of atoms, ri and rj are the
atomic coordinates of atoms i and j, and ⟨⋅ ⋅ ⋅⟩ denotes the ensemble
average.

We plot g(r) of warm dense B with a density of 2.46 g/cm3

at 86 and 350 eV in Fig. 6. We use Ext-FPMD,19 SDFT with two
different XC functionals (PBE and corrKSDT), and DPMD methods
to perform the BOMD simulations.

The results reveal the following.
First, we find that the SDFT results are in excellent agree-

ment with those obtained from Ext-FPMD. Second, there are no
substantial differences between the PBE XC functional59 and the
finite-temperature XC functional corrKSDT,65 which indicates that
temperature effects in the XC functional are not significant. Third,
as expected, the g(r) is not smooth, owing to the limited number
of molecular dynamics steps (4000). However, by employing the
DPMD method, we obtain not only an accurate g(r) that agrees well
with the SDFT results but also a smooth g(r), since a larger num-
ber of atoms (108 to 16 384) and a longer trajectory (400 000 steps)

FIG. 6. Radial distribution functions g(r) of B systems with a density of 2.46 g/cm3

at temperatures of (a) 86 eV and (b) 350 eV. The g(r) obtained by Ext-FPMD with
the local density approximation (LDA) functional comes from Blanchet et al.19 The
SDFT calculations are performed with the PBE59 and corrKSDT65 XC function-
als. The number of B atoms is set to 32 in the first-principles molecular dynamics
simulations. DPMD denotes the model trained by the traditional DP method50 and
DPMD-T the model trained by the TDDP method.51 N is the number of B atoms in
a cell, which ranges from 32 to 16 384 in the deep-potential-based simulations.

are considered. Importantly, size effects can be largely mitigated, as
evidenced by the convergence of g(r) at around 108 atoms.

E. Ion–ion static structure factors
The ion–ion static structure factor S(q)measured from diffrac-

tion experiments72,73 contains information regarding the spatial
arrangement of particles in a material. The formula for S(q) is

S(q) = 1
N
⟨

N

∑
i=1

N

∑
j=1

eiq⋅(ri−rj)⟩, (17)

where N is the number of atoms, i and j denote atoms, and q is the
wave vector.

Here, we perform BOMD simulations on a 32-atom cell by
SDFT with the PBE59 and corrKSDT65 XC functionals. Moreover,
we employ DPMD to calculate S(q) for cells containing 32, 108, 256,
2048, and 16 384 B atoms with a density of 2.46 g/cm3. The results
for systems at 86 and 350 eV are illustrated in Figs. 7(a) and 7(b),
respectively.

It is noteworthy that the data points of S(q) generated by SDFT
exhibit oscillations due to the limited number of molecular dynamics
steps (4000). However, the DPMD simulations offer better con-
verged results, since they allow for a larger cell size with considerably

FIG. 7. Static structure factors S(q) of B with a density of 2.46 g/cm3 at temper-
atures of (a) 86 eV and (b) 350 eV. The SDFT calculations are performed with
the PBE59 and corrKSDT65 XC functionals. The number of B atoms is set to 32
in the first-principles molecular dynamics simulations. DPMD denotes the model
trained by the traditional DP method50 and DPMD-T the model trained by the
TDDP method.51 N is the number of B atoms in a cell and ranges from 32 to
16 384 in the deep-potential-based simulations.
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more atoms and a substantially longer trajectory in BOMD simula-
tions. Furthermore, with the use of larger cells in DPMD, we can
obtain reasonable low-q information about S(q), which signifies the
long-ranged order of a system.

F. Ion–ion dynamic structure factors
The collective dynamics of ion density fluctuations can be char-

acterized by the ion–ion dynamic structure factor S(q,ω), which is
experimentally measurable74 and plays a crucial role in investigating
ion dynamics, including collective modes,75 dissipation processes,76

and others. In practice, S(q,ω) can be computed from the interme-
diate scattering function F(q, t) via Fourier transformation using the
following formula:

S(q,ω) = 1
2π∫

+∞

−∞
F(q, t)eiωt dt. (18)

Here F(q, t) takes the form

F(q, t) = 1
N
⟨ρ(q, t)ρ(−q, 0)⟩, (19)

where N is the number of ions, and ρ(q, t) is defined as

ρ(q, t) =
N

∑
i=1

eiq⋅ri(t), (20)

where ri(t) denotes the atomic coordinates for atom i at time t.
Figures 8(a) and 8(b) illustrate the intermediate scattering func-

tion F(q, t) of warm dense B at 86 and 350 eV, respectively. Three
wave vectors are chosen (q = 0.51, 1.02, and 2.50) and three sizes of
cells are tested (256, 2048, and 16 384 atoms). We find that the 256-
atom cell is large enough to converge F(q, t) for both temperatures,
which is beyond the capabilities of SDFT-based BOMD simulations.

Next, we obtain the ion–ion dynamic structure factors S(q,ω)
of warm dense B by performing the Fourier transform of F(q, t). The
results associated with wave vectors q = 0.51, 1.02, and 2.50 Å−1 are
shown in Figs. 9(a)–9(c), respectively. In each figure, two tempera-
tures (86 and 350 eV) and three system sizes (256, 2048, and 16 384
atoms) are adopted.

For the wave vector, q = 0.51 Å−1, Fig. 9(a) shows well-
pronounced ion-acoustic modes located at ω = 206.78 for 86 and
486.80 meV for 350 eV. When q increases to 1.02Å−1 in Fig. 9(b), the
peak of S(q,ω) becomes lower, and its location shifts to 324.95 for 86
and 616.53 meV for 350 eV. Notably, the ion-acoustic mode S(q,ω)
disappears when q = 2.50Å−1, because the noncollective mode dom-
inates at large q. These results for S(q,ω) demonstrate that the DP
method can predict the long-ranged structural and time correlation
of WDM. For high temperatures up to hundreds of eV, there are
experimental measurements of ion–ion static and dynamic structure
factors via x-ray Thomson scattering for materials such as CH77 and
Be,78 but, to the best of our knowledge, no experimental data are
available for B at temperatures of 86 and 350 eV.

G. Shear viscosities
The shear viscosity is a crucial parameter in WDM studies,

but obtaining a converged viscosity using traditional first-principles
molecular dynamics is computationally expensive. However, this

FIG. 8. Intermediate scattering functions F(q, t) of B with a density of 2.46 g/cm3

as calculated from DPMD trajectories. Three system sizes (256, 2048, and 16 384
atoms) are adopted in DPMD simulations at two temperatures of (a) 86 eV and (b)
350 eV. Three wave vectors are chosen: q = 0.51, 1.02, and 2.50 Å−1.

challenge can be significantly mitigated by employing the DPMD
method with the training data from the SDFT method. One way to
compute the shear viscosity η of WDM is using the Green–Kubo
relations,79,80 according to which the shear viscosity is linked to the
integral of the stress auto-correlation function in the form

η = V
3kBT∫

+∞

0

⎡⎢⎢⎢⎢⎣
∑
αβ
⟨Pαβ(0)Pαβ(t)⟩

⎤⎥⎥⎥⎥⎦
dt, (21)

where V is the volume of the system, T is the temperature, kB is
the Boltzmann constant, and Pαβ(t) (αβ ∈ {xy, xz, yz}) is any of
the three independent off-diagonal elements of the stress tensor at
time t. The above formula can be used when DPMD trajectories are
generated with the stress tensors.

The calculated stress autocorrelation functions of B at a density
of 2.46 g/cm3 and temperatures of 86 and 350 eV are displayed in
Figs. 10(a) and 10(b), respectively. In practice, the computed shear
viscosity may be affected by the system size and the trajectory length
of molecular dynamics simulations. Therefore, we choose seven dif-
ferent system sizes, with the number of atoms per cell ranging from
32 to 16 384.

During DPMD simulations, each system is first relaxed for
50 000 steps. Next, 106 steps of molecular dynamics simulations are
performed to calculate the stress auto-correlation function. In detail,
the trajectory length is 70 for 86 and 10 ps for 350 eV. We take values
from 0.105 to 0.305 and from 0.05 to 0.1 ps to compute the aver-
aged shear viscosity for the systems at 86 and 350 eV, respectively,
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FIG. 9. Ion–ion dynamic structure factors S(q,ω) of B with a density of 2.46 g/cm3

as computed from DPMD trajectories. Three system sizes (256, 2048, and 16 384
atoms) are adopted. The wave vectors q are chosen to be (a) 0.51 Å−1, (b) 1.02
Å−1, and (c) 2.50 Å−1.

and the predicted values are shown in Fig. 10(c) with small error
bars. As a result, the obtained shear viscosity of B varies from 10.3 to
12.3 mPa ⋅ s at 86 eV and from 44.4 to 47.3 mPa ⋅ s at 350 eV. The
above results exhibit no substantial finite-size effects for the shear
viscosity of B, which is consistent with previous conclusions.81–83

There are other formulas that can be used to predict the shear
viscosity of materials.

For example, we note that a recent work proposes an
extended random-walk shielding-potential viscosity model (ext-
RWSP-VM)84,85 to evaluate the shear viscosity of materials in WDM
and HDP states. The viscosity is evaluated as

η =
√

3mkBT
πd4 I, (22)

where d is the collision diameter according to the hard-sphere con-
cept, and I is a quantity that is relevant to T. According to the

FIG. 10. Stress autocorrelation functions [Eq. (21)] of warm dense B with a density
of 2.46 g/cm3 at temperatures of (a) 86 eV and (b) 350 eV. (c) Shear viscosity
of B. DPMD simulations are used, with cells containing 32, 108, 256, 864, 2048,
6912, and 16 384 atoms. Error bars represent standard deviations.

ext-RWSP-VM method, we obtain the viscosities of B to be 12.8 and
47.8 mPa ⋅ s at temperatures of 86 and 350 eV, respectively. Further
details can be found in the supplementary material. Interestingly, the
data are close to our first-principles results.

In addition, we find that the shear viscosity of a plasma can also
be described by the approximate formula86

η = 2
3
√
π

√
mkBT
σo

, (23)

where m is the atomic mass and σo is the total collision cross section
(∼10−20 m2). Thus, the estimated shear viscosities of B are ∼18.7 and
37.8 mPa ⋅ s at temperatures of 86 and 350 eV, respectively.

Matter Radiat. Extremes 9, 015604 (2024); doi: 10.1063/5.0163303 9, 015604-11

© Author(s) 2024

https://pubs.aip.org/aip/mre


Matter and
Radiation at Extremes

RESEARCH ARTICLE pubs.aip.org/aip/mre

It should be noted that σo in the approximate formula is
assumed to be a constant; however, it is related to the relative
velocity between atoms.86 As the relative velocity increases, the inter-
action time decreases, leading to a reduced probability of collisions
occurring. In other words, σo decreases with increasing temperature.
We find that the shear viscosities calculated from DPMD are also
consistent with the approximate values obtained using Eq. (23).

IV. CONCLUSIONS
Simulating WDM with first-principles accuracy has long been

challenging, owing to the partial occupation of a large number
of high-energy KS eigenstates and the resulting limitations on the
time and space scales. Our work has suggested that the advent of
the SDFT method and machine-learning-based molecular dynam-
ics could be of great help in overcoming the difficulties. The SDFT
method described in this work has been implemented with a plane-
wave basis set and the k-point sampling method, which has been
enabled in the ABACUS package. In this work, we have validated
the SDFT-based BOMD method by performing a series of tests for
warm dense B and C.

By combining SDFT with the DP method, we have substantially
extended the time and space scales for simulating warm dense B and
have also reduced the finite size effect. In addition, we have studied
the structural properties, dynamic properties, and transport coeffi-
cients, such as radial distribution functions, static structure factors,
ion–ion dynamic structure factors, and shear viscosities. This work
has validated the combination of stochastic density functional theory
with machine learning techniques to study high-temperature sys-
tems. It has also provided new insights into the properties of WDM.
In future work, we intend to explore the generation of training data
with a larger number of atoms. Future research may further refine
these methods and expand their applicability to other materials and
temperature ranges.

SUPPLEMENTARY MATERIAL

See supplementary material for more details of the calcula-
tion on boron (B) with stochastic density functional theory and the
viscosity in the ext-RWSP-VM model.
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