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ABSTRACT
An accurate theoretical description of the dynamic properties of correlated quantum many-body systems, such as the dynamic structure factor
S(q, ω), is important in many fields. Unfortunately, highly accurate quantum Monte Carlo methods are usually restricted to the imaginary
time domain, and the analytic continuation of the imaginary-time density–density correlation function F(q, τ) to real frequencies is a noto-
riously hard problem. Here, it is argued that often no such analytic continuation is required because by definition, F(q, τ) contains the same
physical information as does S(q, ω), only represented unfamiliarly. Specifically, it is shown how one can directly extract key information such
as the temperature or quasi-particle excitation energies from the τ domain, which is highly relevant for equation-of-state measurements of
matter under extreme conditions [T. Dornheim et al., Nat. Commun. 13, 7911 (2022)]. As a practical example, ab initio path-integral Monte
Carlo results for the uniform electron gas (UEG) are considered, and it is shown that even nontrivial processes such as the roton feature of
the UEG at low density [T. Dornheim et al., Commun. Phys. 5, 304 (2022)] are manifested straightforwardly in F(q, τ). A comprehensive
overview is given of various useful properties of F(q, τ) and how it relates to the usual dynamic structure factor. In fact, working directly in
the τ domain is advantageous for many reasons and opens up multiple avenues for future applications.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0149638

I. INTRODUCTION

An accurate theoretical description of nonideal (i.e., interact-
ing) quantum many-body systems is centrally important in numer-
ous research fields in physics, quantum chemistry, material science,
and related disciplines. While the basic equations governing quan-
tum mechanics have been known for around a century, they are
usually too complex to be solved in practice, even in the case of
a few particles. The first attempts to circumvent this obstacle were
based on uncontrolled approximations such as the Hartree–Fock
approach, where the difficult treatment of correlations is aban-
doned in favor of a substantially simplified mean-field picture.1
Nevertheless, such mean-field methods have given important qual-
itative insights into various phenomena, such as collective plasmon
excitations2–4 and Bose–Einstein condensation.5,6

Over past decades, the exponential increase in available com-
puting time has sparked a remarkable surge of activity in fields
such as computational physics and computational chemistry. In
particular, state-of-the-art numerical methods often allow one
to drastically reduce or even completely avoid approximations
and simplifications. In this regard, a case in point is the den-
sity functional theory (DFT) approach.7 More specifically, DFT
combines an often sufficient level of accuracy with manageable
computational cost, which arguably makes it the most success-
ful electronic structure method available. Indeed, a sizeable frac-
tion of the world’s supercomputing time is being spent on DFT
calculations, and the number of DFT-based scientific publica-
tions has grown exponentially in recent years.8 In addition, the
quantum Monte Carlo (QMC) paradigm,9–11 which is compu-
tationally even more expensive, can even give exact results in
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many situations,12 both at finite temperature13 and in the ground
state.

From a practical perspective, a particularly important property
of quantum many-body systems is their response to an external per-
turbation.14 Such linear-response properties are readily measured in
scattering experiments15 and can (in principle) give access to the
full thermodynamic properties of a system. In this context, the key
quantity is the dynamic structure factor (DSF)4

S(q, ω) = ∫
∞

−∞
dt eiωtF(q, t), (1)

where the intermediate scattering function for wave vector q is
defined as the correlation of two density operators in reciprocal
space, i.e.,

F(q, t) = ⟨n̂(q, t)n̂(−q, 0)⟩. (2)

For example, neutron scattering experiments with ultracold helium
have given invaluable insights into the collective excitations of
superfluids5 and normal quantum liquids,16–18 including the dis-
tinct roton feature19,20 present at intermediate wave numbers. A
second important example is the diagnosis of warm dense matter
(WDM), an extreme state21–23 that occurs naturally in astrophys-
ical objects such as the interiors of giant planets24 and is impor-
tant for technological applications such as inertial confinement
fusion.25 Here, x-ray Thomson scattering (XRTS) experiments26,27

are a highly important diagnostic method and give insights into
important system parameters such as the temperature T28,29 or the
charge state Z.

Unfortunately, theoretical modeling of the dynamic proper-
ties of correlated quantum many-body systems, such as S(q, ω),
is notoriously difficult. In practice, DFT cannot give direct access
to many-particle density correlation functions such as Eq. (2), and
time-dependent formulations30 require additional approximations,
such as the dynamic exchange–correlation (XC) kernel or a time-
dependent XC potential. Furthermore, exact QMC methods are
usually restricted to the imaginary-time domain. For example, the
ab initio path-integral Monte Carlo (PIMC) approach9,13,31 gives
straightforward access to F(q, τ), corresponding to the intermedi-
ate scattering function evaluated at the imaginary time t = −iτ with
τ ∈ [0, β] and β = 1/(kbT). Note that we assume Hartree atomic
units throughout this work. The connection to the sought-after
dynamic structure factor is then given by a two-sided Laplace
transform, i.e.,

F(q, τ) = L[S(q, ω)]

= ∫

∞

−∞
dω e−ωτS(q, ω). (3)

Equation (3) is the basis for an analytic continuation (AC),32 i.e., the
numerical inversion of L[S(q, ω)] to compute S(q, ω). This prob-
lem is well known but also notoriously difficult, the latter being
because any noise in the QMC data for F(q, τ) leads to instabilities
and ambiguity in the DSF. Despite these formidable difficulties, AC
is still one of the most promising routes to capturing rigorously the
complex interplay of nonideality, quantum degeneracy, and possibly
thermal excitations. Consequently, there are many AC methods33–44

with different strengths and weaknesses. Unfortunately, different

methods must often be benchmarked against each other,45 and
so the accuracy of the reconstructed spectra generally remains
unclear.

The present work is aimed at partially circumventing such
challenges in describing the dynamics of correlated quantum many-
body systems. More specifically, we argue that because of the
uniqueness of the two-sided Laplace transform, the imaginary-
time density–density correlation function (ITCF) F(q, τ) con-
tains the same information as does S(q, ω) itself, only in a form
that might be unfamiliar at first glance.46 While the traditional
way of doing physics in the frequency domain emerges natu-
rally (e.g., from scattering experiments detecting an energy-resolved
signal), it is not the only—or necessarily preferred—option in
practice because literally all physical concepts known from the ω
domain of S(q, ω) have an analog in the τ domain of F(q, τ).
Indeed, many features such as sharp quasi-particle (QP) peaks
in S(q, ω) can (in principle) also be identified in the τ domain.
Moreover, we stress that imaginary time is directly connected
to the physical concept of quantum-mechanical delocalization,
which means that F(q, τ) gives straightforward insights that can
only be observed indirectly in the DSF. Consequently, our aim
is not to find good approximations to concepts derived in the ω
domain but instead to highlight how physical effects are manifested
directly in F(q, τ).

While both domains are formally equivalent, they tend to
emphasize different aspects. Consequently, when viable, one should
analyze both S(q, ω) and F(q, τ) to obtain a more complete physi-
cal picture. In practice, working with F(q, τ) instead of S(q, ω) has
a number of important benefits that are summarized in Fig. 1 for
the case of XRTS experiments. Traditionally, one would construct an
approximate model for the DSF and then convolve it with the instru-
ment function R(ω) that characterizes the laser beam and detector
for comparison with the experimentally measured intensity signal
I(q, ω),47 i.e.,

I(q, ω) = S(q, ω)⊛ R(ω). (4)

A straightforward deconvolution of the experimental signal to
obtain an experimental S(q, ω) is generally impossible because of
numerical instabilities.

In stark contrast, these obstacles are completely absent in the
τ domain. First, note that computing the two-sided Laplace trans-
form of the experimental signal is both easy and numerically well
behaved.28,29 Moreover, the deconvolution is trivial in the τ domain
because here the convolution works as a simple multiplication; thus
we find

L[S(q, ω)] =
L[S(q, ω)⊛ R(ω)]

L[R(ω)]
, (5)

where both the numerator and denominator on the RHS of Eq. (5)
are easily evaluated in practice. Thus, it is possible to obtain exper-
imental results directly for F(q, τ), which in turn give model-free
access to physical parameters such as the temperature.28,29 In addi-
tion, QMC methods such as PIMC can give exact theoretical results
for F(q, τ), which opens up the enticing possibility for unprece-
dented accurate comparisons between theory and experiment. For
completeness, note that it is also possible to translate well-known
approximate models for S(q, ω) such as the widely used Chihara
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FIG. 1. Advantages of working with F(q, τ) in the context of x-ray Thomson scat-
tering (XRTS) experiments. Traditionally (left column), XRTS experiments have
been interpreted by constructing an approximate model for the dynamic structure
factor (DSF) S(q, ω) and then convolving it with the instrument function R(ω)
for comparison with the measured intensity I(q, ω) [cf. Eq. (4)]; a deconvolu-
tion to obtain experimental data directly for S(q, ω) is generally impossible. In
contrast, working in the τ domain makes the deconvolution trivial [cf. Eq. (5)],
which allows the direct extraction of important system parameters such as the
temperature without any models or simulations.28 Furthermore, one can compare
these experimental results directly with exact quantum Monte Carlo (QMC) data
for F(q, τ), which opens up the possibility for unprecedented agreement between
theory and experiment.

decomposition48 into the τ domain, where they can be benchmarked
against more-accurate simulation data.

The present aim is to provide the first systematic overview
of a number of recent developments focusing on different aspects
of the ITCF.28,29,46,49,50 In addition, we connect the imaginary-
time domain with other concepts such as the roton feature in the
strongly coupled uniform electron gas (UEG),19 and we introduce
the conceptual basis for various new developments, including the
extraction of QP energies and the possibility of comparing experi-
mental measurements of F(q, τ) both with exact and approximate
simulations.

This paper is organized as follows. In Sec. II, we introduce the
relevant theoretical background starting with the UEG model51,52

that we consider throughout this investigation. However, we empha-
size that all conclusions drawn about the physical insights from the
ITCF are completely general and in no way particular to the UEG.
Section II B is devoted to the ab initio PIMC method9,13,53 and how
it gives straightforward access to F(q, τ). In addition, in Sec. II C
we discuss the connection between the DSF and ITCF in linear-
response theory. This is followed in Sec. II D by a comprehensive
overview of some general properties of F(q, τ). In Sec. III, we present
our new results, starting with a qualitative investigation of some gen-
eral trends based on synthetic trial spectra S(ω) in Sec. III A. This is
followed by a detailed investigation of exact PIMC results for F(q, τ),
which give important insights into a number of physical processes
including the connection between temperature and imaginary-time

diffusion, as well as the nontrivial roton feature in the DSF.19 The
paper concludes with a summary and outlook in Sec. IV.

II. THEORY
A. Uniform electron gas

The UEG51,52 (also known as the jellium in the literature) is the
quantum version of the classical one-component plasma.54,55 More
specifically, the Hamiltonian of the UEG with N electrons is given
by

Ĥ = −
1
2

N

∑
l=1
∇

2
l +

N

∑
l<k

ϕE(r̂l, r̂k) +
N
2

ξM, (6)

with ξM being the usual Madelung constant, and the Ewald pair
potential ϕE(r̂l, r̂k) taking into account both the interaction between
two electrons (and their infinite periodic array of images) and
that with their respective positive neutralizing homogeneous back-
ground. See Fraser et al.56 for an extensive and accessible discussion
of the Ewald potential for the UEG.

From a physical perspective, the UEG can be characterized
fully by three dimensionless parameters.57 (1) The density para-
meter (also known as the Wigner–Seitz radius in the literature)
rs = r/aB, with r being the average particle separation and aB being
the first Bohr radius, plays the role of the quantum coupling para-
meter. Consequently, the UEG attains the limit of a noninteracting
Fermi gas for rs → 0 and forms a Wigner crystal for rs ≳ 100.58–61

(2) The degeneracy temperature Θ = T/TF, with TF being the Fermi
temperature,4,52,57 determines whether the UEG is fully quantum
degenerate (Θ≪ 1) or semi-classical62 (Θ≫ 1). (3) The spin-
polarization parameter ξ = (N↑ −N↓)/N, where N↑ and N↓ are the
numbers of spin-up and spin-down electrons, respectively; here we
restrict ourselves to the fully unpolarized (i.e., paramagnetic) case
of ξ = 0. The WDM regime is typically defined by the condition
rs ∼ Θ ∼ 1.

The UEG is one of the most fundamental model systems
in physics, quantum chemistry, and related fields. Indeed, accu-
rate parameterization of various UEG properties63–68 based on
QMC simulations both in the ground state69–71 and at finite
temperature72–76 has been fundamentally important for a wide spec-
trum of applications, most notably as input for DFT simulations of
real materials.

B. Path-integral Monte Carlo and imaginary-time
correlation functions

Since its original inception for describing ultracold 4He in the
1960s,77 the ab initio PIMC method has become one of the most suc-
cessful simulation tools in statistical physics and related fields.9,13,53

The basic idea is to express the canonical partition function (i.e., vol-
ume V , number density n = N/V , and inverse temperature β are
fixed) in coordinate space, which for an unpolarized electron gas
gives

Zβ,N,V =
1

N↑!N↓!
∑

σ↑∈S↑N
∑

σ↓∈S↓N
sgn (σ↑, σ↓)

× ∫
V

dR⟨R∣e−βĤ
∣π̂σ↑ π̂σ↓R⟩. (7)
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Here, the metavariable R = (r1, . . . , rN)
T contains the coordinates

of all N = N↑ +N↓ electrons in the system. Note that the antisym-
metry of the fermionic electrons with identical spin orientation
is taken into account by the sums over all possible permuta-
tion elements σi

(i ∈ {↑, ↓}) of the respective permutation group
Si

N , and the corresponding permutation operators π̂σi . As can be
seen, the density operator ρ̂ = e−βĤ in Eq. (7) can be interpreted
straightforwardly as a propagation in imaginary time by an interval
of t = −iβ.

Unfortunately, direct evaluation of Eq. (7) is precluded by the
absence of knowledge about the matrix elements ⟨R∣e−βĤ

∣R′⟩, given
that the kinetic and potential contributions to the full Hamiltonian
Ĥ = K̂ + V̂ do not commute. To circumvent this obstacle, we use the
exact semigroup property

e−βĤ
= (e−ϵĤ

)
P

(8)

with ϵ = β/P, leading to

Zβ,N,V =
1

N↑!N↓!
∑

σ↑∈SN

∑
σ↓∈SN

sgn (σ↑, σ↓)

× ∫
V

dR0 . . . dRP−1⟨R0∣e−ϵĤ
∣R1⟩

× ⟨R1∣ . . . ⟨RP−1∣e−ϵĤ
∣π̂σ↑ π̂σ↓R0⟩. (9)

As can be seen, the single imaginary-time propagation has
been replaced by P shorter steps of length ϵ. From a practical
perspective, the main point is that each matrix element must be
evaluated at P times the original temperature. In the limit of large
P, one can introduce a suitable high-temperature factorization,
and the error can be made arbitrarily small. A detailed discus-
sion of different factorization schemes is beyond the present scope
but is given in Refs. 78 and 79. For the parameters of interest
herein, it is sufficient to restrict ourselves to the simple primitive
factorization80

e−ϵĤ
= e−ϵK̂ e−ϵV̂

+O(ϵ−2
). (10)

Note that the convergence of Eq. (10) is ensured by the Trotter
formula,81 and that the convergence with P is checked carefully in
practice. Inserting Eq. (10) into Eq. (9) then gives the final expression
for the partition function, i.e.,

Z = ∫
V

dX W(X)

= ∫
V

dX
P−1

∏
α=0
{WV(Rα)WK(Rα, Rα+1)}, (11)

where the new metavariable X = (R0, . . . , RP−1)
T contains the coor-

dinates of all particles on all P imaginary-time slices, and it holds
that R0 = RP. For simplicity, we assume that the summation over all
permutations as well as the combinatorial normalization factors are
contained implicitly in dX. The weight function W(X) can now be

evaluated explicitly; see the second line in Eq. (11). More specifically,
the potential term is given by

WV(Rα) = exp
⎛

⎝
−

ϵ
2

N

∑
k≠l

W(rl,α, rk,α)
⎞

⎠
, (12)

with W(r, s) being the pair interaction between two particles [com-
bining both the Ewald pair potential and the Madelung constant
from the UEG Hamiltonian of Eq. (6)], and rl,α being the coordinate
of the lth particle on imaginary-time slice α. The kinetic term is off-
diagonal and corresponds to the density matrix of a noninteracting
system, i.e.,

WK(Rα, Rα+1) =

exp(−∑N
l=1
(rl,α−rl,α+1)2

2σ2
ϵ
)

(2πσϵ)
3N/2 . (13)

A graphical illustration of Eq. (11) is presented in Fig. 2, where
we show a fictitious configuration of N = 4 particles in the τ–x
plane. First and foremost, note that each particle is now repre-
sented by an entire closed path along the imaginary-time direc-
tion. This is the well-known classical isomorphism,83 given that we
have effectively mapped the complicated quantum system of inter-
est onto a system of classical ring polymers. The beads of each
particle interact via the usual pair potential; see Eq. (12). Further-
more, the beads of the same particle but on adjacent imaginary-
time slices interact via the harmonic spring potential introduced in
Eq. (13). In particular, the characteristic width of the correspond-
ing Gaussian is directly proportional to the thermal wavelength
σϵ = λϵ/

√
2π, with

λϵ =
λβ
√

P
and λβ =

√
2πβ. (14)

In practice, this spring potential determines the diffusion through-
out imaginary time; see the yellow Gaussian curve at the RHS of
Fig. 2. For high temperature, λβ is small and the diffusion is severely
restricted. In the classical limit of β→ 0, the Gaussian becomes
infinitely narrow, and the paths collapse to point particles. In con-
trast, the paths become more extended for low temperatures, which
is a direct manifestation of quantum delocalization. The nontriv-
ial interplay of the potential and kinetic terms in Eq. (11) then
gives an exact description of quantum diffraction. The basic idea
of the PIMC method is to randomly generate all possible paths
(including all different possible permutations;31 e.g., see the per-
mutation cycle including two identical particles in the center of
Fig. 2) using a particular implementation of the Metropolis algo-
rithm.84 In practice, we use an off-diagonal canonical version85 of
the worm algorithm idea by Boninsegni et al.86,87 for all calculations
in this work. An additional obstacle is given by the antisymmetry
of identical fermions under the exchange of particle coordinates [cf.
Eq. (7)], which implies that the configuration weight W(X) can
be both positive and negative. This is the origin of the notorious
fermion sign problem,88–90 which leads to an exponential increase
in computing time with system parameters such as N or β. While
there are various approximate frameworks for dealing with the
sign problem,74,91–95 here we carry out exact unrestricted PIMC sim-
ulations, so our simulations are computationally demanding but
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FIG. 2. Illustration of path-integral Monte Carlo (PIMC) method and corresponding
estimation of imaginary-time density–density correlation function (ITCF) F(q, τ).
Shown is a configuration of N = 4 particles in the x–τ plane with P = 6 imaginary-
time propagators. The two horizontal dashed green lines depict the evaluation of a
pair of density operators at τ = 0 and τ1. The yellow Gaussian curve on the right
corresponds to the kinetic part of the configuration weight [Eq. (13)]. Adapted from
Ref. 82.

exact within the given Monte Carlo error bars. See Ref. 90 for a
detailed discussion of the sign problem.

Next, we consider the estimation of imaginary-time correla-
tion functions within the PIMC paradigm.33,82,96 In particular, the
imaginary-time version of the intermediate scattering function is
defined as the ITCF, i.e.,

F(q, τ) = ⟨n̂(q, 0)n̂(−q, τ)⟩. (15)

Naturally, the evaluation of Eq. (15) requires the correlated eval-
uation of the density operator in reciprocal space at two different
imaginary-time arguments. Using the factorization introduced in
Eq. (9), it can be seen that the PIMC method allows for a straightfor-
ward evaluation of F(q, τ) at integer multiples of the factorization
step ϵ,82 i.e.,

F(q, τ j) =
1

Zβ,N,V

1
N↑!N↓!

∑

σ↑∈S↑N
∑

σ↓∈S↓N
sgn (σ↑, σ↓)

× ∫ dR0 . . . dRP−1⟨R0∣n̂(q)e−ϵĤ
∣R1⟩⟨R1∣e−ϵĤ

∣R2⟩

. . . ⟨R j ∣n̂(−q)e−ϵĤ
∣R j+1⟩ . . . ⟨RP−1∣e−ϵĤ

∣π̂σ↑ π̂σ↓R0⟩.
(16)

In practice, the τ grid can be made arbitrarily fine by increas-
ing the number of high-temperature factors P, with a linear increase
in the required computing time. In contrast, the wave-vector grid
is determined by the system size,72,97–99 with q = 2πL−1n and n ≠ 0
being an integer vector.

C. Connection to dynamic structure factor
and linear-response theory

A central relation in the context of the present study is given by
Eq. (3), which unambiguously connects the DSF S(q, ω) to the ITCF

F(q, τ). By definition, both quantities thus contain exactly the same
information because the two-sided Laplace transform is a unique
transformation.

A second crucial relation is given by the well-known
fluctuation–dissipation theorem (FDT)4

S(q, ω) = −
Imχ(q, ω)

πn(1 − e−βω
)

, (17)

which links the DSF to the dynamic density response function
χ(q, ω) known from linear-response theory. It is convenient to
express the latter as100

χ(q, ω) =
χ0(q, ω)

1 − 4π
q2 [1 −G(q, ω)]χ0(q, ω)

, (18)

with χ0(q, ω) being the analytically known density response func-
tion of a noninteracting system, and G(q, ω) being the dynamic
local field correction that contains the full information about XC
effects. Consequently, setting G(q, ω) ≡ 0 in Eq. (18) leads to a
description of the density response at the mean-field level, which
is typically known as the random phase approximation. Evidently,
it is straightforward to compute the ITCF from any dielectric theory
for G(q, ω)101–110 by inserting the corresponding (static or dynamic)
local field correction into Eq. (18), evaluating the FDT [Eq. (17)],
and finally computing the two-sided Laplace transform [Eq. (3)] to
obtain F(q, τ).

Finally, note that the ITCF is connected to the static limit of
Eq. (18) via a simple one-dimensional integral, i.e.,

χ(q, 0) = −n∫
β

0
dτ F(q, τ), (19)

which is sometimes referred to as the imaginary-time version of the
FDT;111 see also the Appendix herein for a short derivation.

D. Properties of imaginary-time intermediate
scattering function

In this subsection, we summarize a number of properties of the
ITCF. As a starting point, we consider the detailed balance relation
of the DSF,4,26 i.e.,

S(q,−ω) = S(q, ω)e−βω, (20)

which holds for uniform systems in thermodynamic equilibrium.
Inserting Eq. (20) into the two-sided Laplace transform [Eq. (3)]
then directly yields the important symmetry relation28

F(q, τ) = ∫
∞

0
dω S(q, ω){e−ωτ

+ e−ω(β−τ)
}

= F(q, β − τ). (21)

Evidently, Eq. (21) implies that F(q, τ) is symmetric about τ = β/2.
Therefore, any knowledge about the ITCF—e.g., from an XRTS
measurement26–29—allows one to read the temperature directly
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from the plot by locating its extremum, which is always a min-
imum; no theoretical model, simulation, or indirect inference is
required.

Another useful property of a correlated quantum many-body
system is given by the frequency moments of the DSF, which we
define as

M(α)S = ⟨ωα
⟩S = ∫

∞

−∞
dω S(q, ω) ωα. (22)

In particular, the odd moments can in principle be obtained by
evaluating nested commutator terms.112 In the quantum-mechanical
case,100 the cases of α = −1, 1, 3 are known from such sum rules.
For example, the well-known f -sum rule gives the important
relation4

M(1)S = ⟨ω1
⟩S =

q2

2
. (23)

To connect Eq. (22) to the ITCF, we differentiate the latter with
respect to τ, which gives

dn

dτn F(q, τ) = (−1)n
∞

∫
−∞

dω ωne−τωS(q, ω). (24)

Therefore, the derivatives of F(q, τ) at the origin give straight-
forward access to both odd and even frequency moments,50,113

i.e.,

M(α)S = (−1)α ∂α

∂τα F(q, τ)∣
τ=0

(25)

for α ≥ 0. In practice, knowledge about such frequency moments
is important for further constraining a potential AC from
the imaginary-time domain to S(q, ω); e.g., see Refs. 114 and
115. In fact, the DSF is fully determined by M(α)S , which is
known as the Hamburger problem.116,117 Therefore, the fre-
quency moments [and thus the derivatives of F(q, τ) around
the origin contain important physical insights as discussed in
Sec. III. Very recently, Eq. (25) was used in Ref. 49 to evalu-
ate the f -sum rule in the imaginary-time domain, which gives
access to the absolute normalization of the XRTS intensity and
therefore to the electron–electron static structure factor S(q)
= F(q, 0).

As a final useful relation, we consider the exact spectral
representation of the DSF, which is given by4

S(q, ω) =∑
m,l

Pm∥nml(q)∥
2δ(ω − ωlm). (26)

Here, l and m denote the eigenstates of the Hamiltonian, ωlm
= (El − Em)/h the corresponding energy difference, and nml the
transition element from state m to l due to the density opera-
tor n̂(q). In addition, Pm = e−Emβ

/Z is the probability of occu-
pying the initial state m. The two-sided Laplace transform of
Eq. (26) then gives an analogous spectral representation of the
ITCF, i.e.,

FIG. 3. Top: synthetic Gaussian [Eq. (29)] DSFs S(ω) with β = 1, ω0 = 1, and
different variance σ; the units of all properties are arbitrary. Bottom: corresponding
two-sided Laplace transform F(τ), Eq. (30). Note that we have normalized both
S(ω) and F(τ) to F(0).

F(q, τ) =∑
m,l

Pm∥nml(q)∥
2e−τωlm

= ∑
Em<El

∥nml(q)∥
2
{Pme−τωlm + Ple

τωlm}, (27)

where in the second line we have ordered the eigenstates accord-
ing to their energy. At finite temperature (i.e., T > 0, leading to a
finite value of β), transitions between eigenstates occur in both direc-
tions. Specifically, excitations that increase the energy always lead to
exponential decay with τ (see also Appendix D of Ref. 118), whereas
conversely, excitations that reduce the energy lead to a correspond-
ing exponential increase. Note that this is reflected directly in the
symmetry relation of Eq. (21).

III. RESULTS
A. General trends: Synthetic spectra

To get a general feeling for the relationship between S(q, ω) and
F(q, τ), we start by considering synthetic DSFs of a simple Gaussian
form that obey the detailed balance relation of Eq. (20), i.e.,

S(ω) =
⎧⎪⎪
⎨
⎪⎪⎩

G(ω; ω0, σ) if ω ≥ 0,

eβωG(−ω; ω0, σ) otherwise,
(28)
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FIG. 4. Top: synthetic Gaussian [Eq. (29)] DSFs S(ω) with β = 1, σ = 0.1, and dif-
ferent values of ω0; the units of all properties are arbitrary. Bottom: corresponding
two-sided Laplace transform F(τ), Eq. (30). Note that we have normalized both
S(ω) and F(τ) to F(0).

with the usual definition of a normalized Gaussian, i.e.,

G(ω; ω0, σ) =
exp ( (ω−ω0)2

2σ2 )
√

2πσ2
. (29)

The corresponding two-sided Laplace transform [Eq. (3)] is given by

F(τ) = A(τ; ω0, σ) + A(β − τ; ω0, σ), (30)

with the definition

A(τ; ω0, σ) = e−τω0 eτ2σ2/2
⎛
⎜
⎜
⎝

1 + erf(ω0−σ2τ√
2σ2
)

2

⎞
⎟
⎟
⎠

. (31)

Note that any nascent delta function that includes a parameter con-
trolling the width is acceptable for the present analysis and leads to
identical conclusions; however, Eq. (29) is particularly convenient
because of its simple Laplace transform.

We start the investigation of such synthetic spectra by con-
sidering the impact of the peak width σ. The results are shown
in Fig. 3, with the top (resp. bottom) panel showing the results
for the DSF with β = 1 and ω0 = 1 [resp. the corresponding F(τ)].

FIG. 5. Top: synthetic Gaussian [Eq. (29)] DSFs S(ω) with ω0 = 1, σ = 0.5, and
slightly different values of the inverse temperature β; the units of all properties are
arbitrary. Bottom: corresponding two-sided Laplace transform F(τ), Eq. (30). Note
that we have normalized both S(ω) and F(τ) to F(0).

For σ = 1, the DSF consists of a single broad peak combining
the positive and negative frequency range; note that the damping
for ω < 0 is a quantum effect described by the detailed balance
relation of Eq. (20). This manifests as a more pronounced decay
with τ in the ITCF compared to the other depicted examples. For
σ = 0.5, there remains some significant overlap in S(ω) around
ω = 0, but overall we find a double-peak structure in the DSF. This
pronounced change in the DSF is translated directly to F(τ) decay-
ing less steeply with τ. Finally, the dotted blue curve is the result for
σ = 0.1, which leads to two narrow peaks in S(ω). In practice, such
features are often interpreted as distinct QP excitations. Indeed, our
synthetic model approaches a delta-like QP excitation in the limit
of σ → 0, i.e.,

SQP(ω) = δ(ω − ωQP) + e−βωQP δ(ω + ωQP), (32)

with ωQP being the QP energy, because Eq. (29) is a nascent delta-
function. It is straightforward to show that the corresponding ITCF
is given by

FQP(τ) = e−τωQP + e−(β−τ)ωQP. (33)

The results for Eq. (33) are shown as the solid yellow curve in the
bottom panel of Fig. 3 and agree excellently with the ITCF of the
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FIG. 6. Ab initio PIMC results for ITCF F(q, τ) in q–τ plane. Shown are results for the unpolarized UEG with N = 34 at rs = 10 and different values of the degeneracy
temperature Θ.

Gaussian trial DSF with σ = 0.1. This finding has important conse-
quences for the practical interpretation of scattering experiments.
For example, it is well known that the XRTS signals of a WDM
probe exhibit a sharp plasmon excitation at the plasma frequency
ωp for small wave number q = ∣q∣. In this way, the location of the
plasmon gives direct insight into the density of the unbound elec-
trons that take part in this collective excitation and therefore is an
import diagnostic tool. In practice, this endeavor is complicated by
the convolution with the instrument function, which in combination
with other features in the DSF might mask the true location of the
plasmon. In contrast, Eq. (33) implies that we can extract the plasma
frequency directly from an exponential fit to F(q, τ). As explained in
Fig. 1, the latter can be computed without the bias due to the instru-
ment function because the convolution is just a multiplication in the
τ domain. We thus conclude that working with F(q, τ) not only is
advantageous for diagnosing the temperature of a sample (see the
recent work by Dornheim et al.28 and the discussion of Fig. 5 below)
but also can potentially give access to the free electronic density in
a forward-scattering experiment where the scattering angle and thus
the wave number are small enough to probe the regime of collective
plasma excitations.

Other concepts such as approximate expressions for the plas-
mon location at finite wave numbers119 that are sometimes used to
diagnose plasma parameters26,120,121 can also be translated directly
into the τ domain. In general, however, we argue against the blind

transformation of ω-native concepts to F(q, τ) because it makes
more sense to work directly with the rich physics that is naturally
inherent to F(q, τ).

We continue our investigation of synthetic spectra by investi-
gating the manifestation of the peak position ω0 shown in Fig. 4.
In fact, the impact of the peak position can qualitatively be seen
immediately from Eqs. (27) and (33). Specifically, transferring spec-
tral weight from larger to smaller excitation energies ω leads to a less
steep decay along τ (for τ < β/2). This is indeed what we find in the
bottom panel of Fig. 4.

From a physical perspective, this finding has important impli-
cations, as we shall see in the discussion of real physical results for
the UEG in Sec. II A. First, it means that the persistence of two-body
correlations throughout the imaginary time 0 ≤ τ ≤ β/2—which we
can observe directly in our PIMC simulations—implies a downshift
in the dominant excitation energies in S(q, ω); see the spectral rep-
resentation in Eq. (26) above. This is strongly related to the roton
feature in the spectrum of density fluctuations in both the UEG19

and quantum liquids such as ultracold helium.5,16–18 In other words,
quantifying the decay of correlations in F(q, τ) is a straightforward
alternative to the usual pseudo dispersion relation ω(q) constructed
from the position of the maximum in the DSF.122 In addition, the
aforementioned effects lead to a maximum in the static linear den-
sity response function χ(q, 0). This can be seen either from the
imaginary-time version of the FDT [Eq. (19)] or by recalling the
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FIG. 7. Snapshots of ab initio PIMC simulation of N = 14 unpolarized electrons at rs = 10 for Θ = 1 (left) and Θ = 4 (right). Top row: paths of spin-up (red) and spin-down
(blue) electrons in x–τ plane. Bottom row: depiction of configurations as paths in 3D simulation cell.

relation between χ(q, 0) and the inverse frequency moment of the
DSF,41,42 i.e.,

M(−1)
S = −

χ(q, 0)
2n

. (34)

We conclude this investigation of synthetic spectra by consid-
ering the impact of the temperature β. A corresponding analysis is
shown in Fig. 5 for three slightly different values of β. Indeed, the
main difference between the spectra is given by the varying ratio
of the peaks at positive and negative frequency. In stark contrast,
we observe a pronounced influence of the temperature on F(τ)
shown in the bottom panel of Fig. 5. Even though from a mathe-
matical perspective S(q, ω) and F(q, τ) are completely equivalent
representations of the same information, both domains emphasize
different aspects of it. For example, the peak width of the DSF
is a concept of the ω domain and can be seen most clearly in
S(ω); see Fig. 3. On the other hand, the τ domain is intimately
connected to the temperature of a system, which manifests as the
somewhat subtle detailed balance relation of Eq. (20) in the DSF.
Meanwhile, the corresponding symmetry [Eq. (21)] of the ITCF
is enhanced substantially. From a physical perspective, this is not

surprising because the (inverse) temperature determines the charac-
teristic variance of the imaginary-time diffusion process (cf. Fig. 2)
and therefore decisively shapes the decay of correlations with τ. In
practice, this means that the τ domain is the representation of choice
for extracting the temperature from an XRTS measurement;28 see
also the recent Ref. 29 for a more quantitative analysis. Last, we note
that the utility of F(q, τ) has been confirmed by the independent
reanalysis of an XRTS measurement of warm dense beryllium123 by
Schörner et al.124

B. Uniform electron gas
Next, we turn our attention to exact simulation results for

a physical system. In Fig. 6, we show our ab initio PIMC results
for F(q, τ) for the UEG at rs = 10 and at different values of
the degeneracy temperature Θ. Note that it is sufficient to con-
sider the interval 0 ≤ τ ≤ β/2 because of the symmetry relation
of Eq. (21). These parameters are located at the margin toward
the strongly coupled electron liquid regime;4,41,125 still, we observe
almost no correlation-induced features in the static structure fac-
tor S(q) = F(q, 0) for all depicted values of Θ. First and foremost,
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FIG. 8. Imaginary-time dependence of F(q, τ) for two selected q values taken
from the full dataset shown in Fig. 6. The solid colored curves correspond to the
different values of Θ, and the dashed black lines show a linear expansion evalu-
ated from the exact f -sum rule, Eq. (23). Note that we have not normalized the τ
axis by the respective values of β.

we observe a decay along the τ direction in the depicted interval
for all values of the wave number q. This is expected because cor-
relations can only become weaker—or in the extreme case remain
unaffected—because of the imaginary-time diffusion process that is
sampled in our PIMC simulations. In addition, this decay of corre-
lations is clearly more pronounced at low temperatures. This can be
explained directly by recalling the discussion of the path sampling
in Fig. 2.

In Fig. 7, we show snapshots of PIMC simulations of N = 14
unpolarized electrons at rs = 10 for Θ = 1 (left column) and Θ = 4
(right column). More specifically, the top row shows path configu-
rations (with the red and blue lines corresponding to spin-up and
spin-down electrons, respectively) for the two different values of Θ.
At the lower temperature, the paths exhibit a more pronounced dif-
fusion along the τ direction compared to Θ = 4. This is expected and
a direct consequence of the definition of the thermal wave length
λβ in Eq. (14). Naturally, the larger displacements in coordinate
space with increasing τ ≤ β/2 lead to a decreasing density–density
correlation function. For illustration, we also show the same con-
figurations as paths in the 3D simulation box in the bottom row
of Fig. 7. In this representation, the more pronounced imaginary-
time diffusion process in the case of Θ = 1 manifests as more-
extended paths. With increasing temperature, the paths become less
extended and attain the limit of classical point particles in the limit
of β→ 0.

FIG. 9. Ab initio PIMC results for F(q, τ) in the q–τ plane. Shown are results
for the unpolarized UEG with N = 34 at Θ = 1 and different values of the density
parameter rs.

An additional trend that can be seen from Fig. 6 is that the
imaginary-time decay of F(q, τ) becomes increasingly steep in the
limit of large q. This marks the transition from the collective to
the single-particle regime, which can be reproduced with remark-
able accuracy by a simple Gaussian imaginary-time diffusion model;
see Ref. 46 for an extensive discussion. This trend is investigated in
more detail in Fig. 8, where we show F(q, τ) along the τ direction for
two selected values of q. Specifically, the solid colored curves cor-
respond to the different values of Θ. First and foremost, we note
that we have not rescaled the τ axis by the respective values of
the inverse temperature β as in Fig. 6. Therefore, the minima in
the different curves are located at different positions in descend-
ing order of Θ. In fact, this representation gives a direct insight into
the observed less-pronounced decay of F(q, τ) along the τ direction:
it is not the consequence of a less steep decay by itself, but rather
of the reduced imaginary time that is available for the diffusion
process.

This is illustrated further by the dashed black lines, which
depict a linear expansion of F(q, τ) around τ = 0 evaluated from
the exact f -sum rule of Eq. (23). In particular, the lines are paral-
lel because of Eq. (23), but the initial points are different because
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FIG. 10. Slices along q direction from full ITCF shown in Fig. 9. Top: static structure
factor S(q) = F(q, 0). Bottom: F(q, β/2).

of the different static structure factors S(q) = F(q, 0). In addi-
tion, Eqs. (23) and (25) clearly predict a parabolically increas-
ing decay with respect to q along the τ direction around τ = 0,
which is reflected by the observed steep decay in the limit of large
q in Fig. 6.

From a practical perspective, we find that the localization of the
position of the minimum in F(q, τ) with respect to τ becomes more
difficult for low temperatures in the single-particle regime. How-
ever, this is not a fundamental obstacle because the temperature can
always be inferred via F(q, 0) = F(q, β), which also follows directly
from the symmetry relation of Eq. (21).29

A further interesting research question is given by the depen-
dence of F(q, τ) on the coupling strength. This is investigated in
Fig. 9, where we show our PIMC results for F(q, τ) at the elec-
tronic Fermi temperature Θ = 1 for rs = 4 (top), rs = 10 (center), and
rs = 20 (bottom). In this case, the most pronounced trend is the
increased structure in S(q), i.e., in the limit of τ = 0. This can be
seen particularly well in the top panel of Fig. 10, where we show this
limit for all three considered values of rs. The inset shows a magni-
fied segment around the peaks at rs = 20 (blue) and rs = 10 (red); no
peak can be resolved for rs = 4 (green).

The bottom panel of Fig. 10 shows the same information for
the thermal structure factor F(q, β/2), where F(q, τ) attains its min-
imum value for all q. All three curves exhibit a qualitatively similar
peak around q = 2qF, which is indicative of a reduced decay along
the τ direction. In turn, this implies a shift in the spectral weight
of the DSF S(q, ω) toward lower frequencies; cf. the discussion

FIG. 11. Measure of relative τ decay [cf. Eq. (35)] for same conditions as in Fig. 9.
The vertical bars in the top panel indicate the q→ 0 limit given by a sharp plasmon
excitation at the plasma frequency; see Eq. (33). Bottom: same information but
normalized by the respective value at q = 0, with the horizontal bars indicating the
single-particle limit for q→∞.

above of Fig. 4. Interestingly, the peak height exhibits nonmonotonic
behavior with respect to rs and is minimal for rs = 10. On the other
hand, the peak position is increasing monotonically (albeit weakly)
with rs.

To investigate this effect further, we define a measure of relative
τ decay as

ΔFτ(q) =
F(q, 0) − F(q, τ)

F(q, 0)
, (35)

where the values of zero and unity indicate no decay and full decay,
respectively. The results for ΔFβ/2(q) are shown in the top panel
of Fig. 11. First, we see that all curves converge for large q and
eventually attain the limit of limq→∞ΔFβ/2(q) = 1. This is a direct
consequence of the vanishing value of F(q, β/2) in the single-particle
limit. Around twice the Fermi wave number, the three curves in the
top panel of Fig. 11 start to deviate from each other in a highly non-
trivial way. The horizontal lines indicate the q→ 0 limit of ΔFβ/2(q),
which is determined by the sharp plasmon excitation at the plasma
frequency ωp; see also Eq. (33). For rs = 4, the curve is relatively
featureless and interpolates smoothly between the q = 0 and q→∞
limits. For rs = 10 and particularly rs = 20, the curves become non-
monotonic and exhibit a minimum at intermediate wave numbers.
In other words, the decay along the τ direction is suppressed when
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FIG. 12. Position of maximum in DSF, ω(q), for same parameters as in Fig. 9.
Data taken from Ref. 41.

the wave number is of the order of the average particle separation
d = 2rs.

We have already mentioned several times that such a reduced
decay implies a shift of spectral weight in the DSF to lower
frequencies ω. This is indeed the case for the UEG under the
present conditions; see the original Ref. 41 for all technical details
about the corresponding calculations. The results for the wave-
number dependence of the position of the maximum in the DSF,
ω(q), are shown in Fig. 12. We observe a monotonic curve for
rs = 4 and a distinct roton minimum for rs = 10 and 20 around the
same position as that of the nonmonotonic behavior of ΔFβ/2(q)
in Fig. 11.

To illustrate further the direct physical correspondence
between the reduced τ decay on the one hand and the roton fea-
ture in the DSF on the other hand, we normalize ΔFβ/2(q) by its
q→ 0 limit in the bottom panel of Fig. 11. Note that this is analo-
gous to the normalization with respect to the plasmon frequency of
the dispersion relation ω(q) in Fig. 12. The resulting curves resemble
even more closely the dispersion of the DSF for small to intermedi-
ate wave numbers, and they exhibit the same qualitative trend. In
particular, we find a comparable roton minimum for rs = 10 and
20. This is unsurprising given that both F(q, τ) and S(q, ω) con-
tain by definition the same physical information. Therefore, any
physical process such as the roton feature has to manifest itself in
both the ω and τ domains. This is also evident from comparing
Eqs. (26) and (27).

We conclude this investigation with a brief discussion about the
physical mechanism behind the roton feature in both S(q, ω) and
F(q, τ). Very recently, Dornheim et al.19 showed that the energy
reduction in the spectrum of density fluctuations can be explained
by the spatial alignment of pairs of electrons on different length
scales. More specifically, the roton appears when the wave length
λ = 2π/q of a density fluctuation is comparable to the average inter-
particle distance, and this is indeed the case for q ∼ 2qF. In this
case, the alignment of two electrons at distance λ leads to a reduc-
tion in the interaction energy of the system, which manifests as
(i) the downshift of ω(q) in the DSF and (ii) the stability of spa-
tial correlations along the imaginary-time propagation. Note that
this pair alignment model was subsequently substantiated further in
Refs. 126 and 127.

IV. CONCLUSIONS
The present work was devoted to investigating the dynamic

properties of correlated quantum many-body systems in the
imaginary-time domain. In particular, it was argued that the usual
approach in terms of the DSF S(q, ω) in the frequency domain
is not the only option because by definition the ITCF F(q, τ) in
the imaginary-time domain contains exactly the same information,
albeit in an unfamiliar representation. Some properties such as the
peak width of the DSF are more easily accessible in the ω domain,
whereas other physical effects such as the temperature or quantum-
mechanical delocalization are more clearly emphasized in the τ
domain. In fact, even nontrivial physical effects such as the roton
feature in the DSF19 can easily be identified in the ITCF.

Instead of attempting the notoriously difficult analytic continu-
ation from QMC results for F(q, τ) to S(q, ω), we find that it can be
highly advantageous to pursue the opposite direction. Indeed, trans-
forming an experimental signal from the ω domain to the τ domain
is straightforward and well behaved with respect to the inevitable
experimental noise.28,29 In addition, it allows for an easy deconvo-
lution of the instrument function; this is an important point, for
example in XRTS experiments.26,47

First and foremost, we have demonstrated that the availability
of such experimental results for F(q, τ) directly allows for a num-
ber of physical insights. In particular, it allows for the model- and
simulation-free extraction of important system parameters such as
the temperature28,29 and QP excitation energies such as the plas-
mon frequency ωp. In addition, experimental data for F(q, τ) can
be compared straightforwardly to exact QMC results for the same
quantity, which opens up the enticing possibility for unprecedented
agreement between theory and experiment.

We are convinced that the proposed physical interpretation
of the dynamic properties of correlated quantum systems in the
τ domain will have a strong impact in a number of disciplines.
A prime example is the interpretation of XRTS experiments with
WDM,128 which can be used for the systematic construction of
model-free equation-of-state databases.129,130 In turn, the latter
are of paramount importance for the description of astrophysical
objects22 and inertial confinement fusion applications.131 In this
context, we also note the advent of modern free-electron x-ray laser
facilities such as the new European XFEL,132 which with their high
repetition rate will allow for high-quality results for I(q, ω) and in
this way also F(q, τ); see the outlook of Ref. 14 for more details.
This will facilitate measurements at a number of scattering angles
and thus wave vectors, which will be important for resolving physi-
cal dispersion effects such as the roton feature. Moreover, we stress
that the basic idea to use F(q, τ) directly instead of S(q, ω) is in no
way limited to either XRTS or the study of WDM, and it can eas-
ily be applied to a wide range of other systems such as ultracold
atoms.5,17,18,114

In addition to its considerable value for interpreting exper-
iments, we note that the τ domain also opens up the way for
new developments in the theoretical modeling of quantum many-
body systems. For example, a central limitation of linear-response
time-dependent DFT30 is the absence of reliable external input
for the dynamic XC kernel Kxc(q, ω)133 beyond the local den-
sity approximation or generalized-gradient expansions.134 While a
number of model kernels exist for either the UEG135,136 or more-
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generic systems,137,138 they are often restricted to the static limit.
In this regard, exact QMC-based input data for the imaginary-time
dependence of density–density correlations can help in multiple
ways.14 First, we propose pursuing linear-response imaginary-time-
dependent DFT simulations of real materials, which can utilize exact
fully τ-dependent information about XC effects based on ab initio
QMC simulations. More specifically, one might either (i) combine a
static material-specific XC kernel based on DFT calculations134 with
the τ dependence extracted from a PIMC simulation of either the
UEG or a more realistic system or (ii) directly attempt a generaliza-
tion of suitable PIMC simulation data. While it is certainly true that
some features about the dynamic density response of a given system
of interest might be unresolvable in the τ domain (e.g., the width of
a peak in the DSF), often one is primarily interested in frequency-
integrated properties such as the electron–electron static structure
factor See(q) or its inverse Fourier transform, which is given by the
electron–electron pair correlation function. To this end, operating in
the τ domain is not a disadvantage and might allow for the extraction
of electron–electron correlations from DFT simulations with high
fidelity.14 Another interesting route is an explicit time-dependent
DFT propagation along imaginary time,139 although this will likely
be more challenging in practice.

Finally, note that the analysis of ITCFs can be extended
straightforwardly to higher-order density correlators.82 These
higher-order ITCFs can easily be estimated in PIMC simulations
and will give new insights into dynamic three-body and four-body
correlation functions.140 Moreover, such higher-order ITCFs are
directly related to nonlinear response properties.73,141–143 The lat-
ter are known to depend very sensitively on system parameters
such as the temperature and therefore may constitute an additional
diagnostic tool.144
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APPENDIX: IMAGINARY-TIME VERSION
OF FLUCTUATION–DISSIPATION THEOREM

Even though the imaginary-time FDT has found applica-
tions in the literature, to our knowledge no derivation has ever
been reported. The key is selecting an appropriate imaginary-
time integration interval that will allow the application of the
Kramers–Kronig relation.

Combining the two-sided Laplace transform definition of the
imaginary-time intermediate scattering function [see Eq. (3)] with
the linear FDT [see Eq. (17)] gives

F(q, τ) = −
1

πn∫
+∞

−∞
dω
I{χ(q, ω)}

1 − e−βω e−ωτ. (A1)

It is evident that integrating Eq. (A1) in the imaginary-time interval
τ ∈ [0, β] exposes the ω = 0 pole, i.e.,

∫

β

0
dτ F(q, τ) = −

1
πn∫

+∞

−∞
dω
I{χ(q, ω)}

ω
. (A2)

This opens up the way for the direct application of the
Kramers–Kronig relation, which in a simple way yields

∫

β

0
dτ F(q, τ) = −

1
n
R{χ(q, 0)}. (A3)

Given that the static density response is a real quantity, one obtains
the so-called imaginary-time version of the FDT, i.e.,

χ(q, 0) = −n∫
β

0
dτ F(q, τ). (A4)
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