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ABSTRACT
The inverse Faraday effect (IFE), which usually refers to the phenomenon in which a quasi-static axial magnetic field is self-generated when a
circularly polarized beam propagates in a plasma, has rarely been studied for lasers with unconventional polarization states. In this paper, IFE
is reconsidered for weakly relativistic full Poincaré beams, which can contain all possible laser polarization states. Starting from cold electron
fluid equations and the conservation of generalized vorticity, a self-consistent theoretical model combining the nonlinear azimuthal current
and diamagnetic current is presented. The theoretical results show that when such a laser propagates in a plasma, an azimuthally varying
quasi-static axial magnetic field can be generated, which is quite different from the circularly polarized case. These results are qualitatively
and quantitatively verified by three-dimensional particle-in-cell simulations. Our work extends the theoretical understanding of the IFE and
provides a new degree of freedom in the design of magnetized plasma devices.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0120072

I. INTRODUCTION

In laser plasma physics, quasi-static self-generated magnetic
fields play important roles in particle acceleration,1–4 photon
emission,5 laser fusion,6–10 and other high-energy-density
processes.11–14 Among the mechanisms for the generation of
quasi-static magnetic fields, the inverse Faraday effect (IFE) is of
particular importance. The IFE usually refers to the phenomenon
in which a quasi-static axial magnetic field is self-generated when
a circularly polarized beam propagates in a plasma. Since its
first observation in a plasma,15 the IFE has been widely studied,
and a number of explanations of this phenomenon have been
proposed.16–30

In early work, IFE was explained using a magnetic dipole
moment model,16 in which the strength of the magnetic field is
proportional to the electron number density, since electron motion
is circular in a circularly polarized laser. This phenomenological
model was developed further through the incorporation of col-
lisionless cold electron fluid equations.17–21 According to this
nonlinear beating current model, when the electromagnetic waves
are circularly polarized, the gradients in both plasma density and

laser intensity will result in a nonlinear azimuthal current,17 which
leads to the generation of an axial magnetic field. When the
electromagnetic waves are linearly polarized, this current will dis-
appear, and no magnetic field will be generated. Since this nonlinear
azimuthal current is generated by the electron quiver velocity beat-
ing with the high-frequency density perturbation, the generated
magnetic field will dissipate quickly when the laser is no longer
present. In Refs. 18–20, the effect of the diamagnetic current was
taken into account through the introduction of conservation of
generalized vorticity.31 The results of the nonlinear beating current
model were compared with those of particle-in-cell (PIC) simula-
tions in Ref. 21.

When laser absorption and the accompanying angular momen-
tum (AM) transfer are taken into account, it is found that linearly
polarized beams can also lead to the generation of axial magnetic
fields,22 in contrast to the predictions of the nonlinear beating
current model. It is known that a circularly polarized laser carries
spin angular momentum (SAM).32 When electromagnetic waves are
absorbed by a plasma, the SAM of the waves will be transferred to the
plasma, leading to the generation of an axial magnetic field.23–26 As
pointed out by Allen et al.,33 laser beams with Laguerre–Gaussian
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(LG) modes carry orbital angular momentum (OAM), and
Ali et al.22 explained how the axial magnetic field was generated
due to OAM transfer during laser absorption. Recent advances in
laser technology34–38 have enabled the production of laser beams
possessing intense OAM, which, with account taken of laser absorp-
tion, indicates that there is significant self-generation of magnetic
fields by these LG beams.27–30,39 Nuter et al.29 found that when an
intense (1018 W/cm2) radially polarized laser propagates in a plasma,
the AM of the laser can be transferred to the plasma without any
dissipative effect, and a megagauss quasi-static axial magnetic field
can be generated. This nondissipative AM absorption was further
found to be caused by a process resembling direct laser acceleration,
which is significant for intense lasers.39 Longman and Fedosejevs30

explored the spatial and temporal evolutions of magnetic fields
driven by ultrahigh-intensity (1020 W/cm2) beams carrying AM,
and demonstrated the generation of kilotesla magnetic fields that
persisted for several picoseconds after the laser had left the
plasma.

In comparison, the nonlinear beating current mechanism18–20

may be dominant in the presence of large plasma density gradi-
ents, such as in plasma channels,19 and the IFE mechanism based
on AM absorption22,23,25,26 may become important when significant
AM is transferred from laser beam to plasma.29,30 It should be noted
that almost all the previous studies27–30 of magnetic fields gener-
ated by LG beams were based on AM absorption theory, with little
attention being paid to the nonlinear beating current model.18–20

It is unclear whether LG beams can generate axial magnetic fields
when AM absorption is negligible. Besides, laser beams can possess
unconventional polarization states, as in the case of full Poincaré
(FP) beams,40–43 which contain all the possible laser polarization
states on the surface of the Poincaré sphere. We are interested in
whether such a laser can generate an axial magnetic field when
propagating in a plasma, and the possible distribution of the mag-
netic field as well as its relation to the polarization states is also of
interest.

In this paper, based on the nonlinear beating current
model,18–20 the IFE of weakly relativistic linearly and circularly
polarized LG beams is reconsidered, and the IFE of weakly relativis-
tic FP beams is investigated in detail. Starting from the cold electron
fluid equations and the conservation of generalized vorticity, an
integrated theoretical model that takes into account the polarization
states and LG modes is developed. The theoretical results show that
for linearly polarized LG beams, no axial magnetic field can be
generated. For circularly polarized LG beams, although axial
magnetic fields can be generated, these fields are related only
to the laser intensity, not to the helical phase structure of the
LG beams. For FP beams that can be constructed by applying
different azimuthal modes of LG beams on the two orthogonal
polarizations,40 azimuthally varying axial magnetic fields can be
generated, which is quite different from the circularly polarized
case. The structures of such magnetic fields are affected mainly by
the LG mode difference Δl and the initial phase difference Δφ of
the two orthogonally polarized beams forming the FP beam. We
also perform three-dimensional (3D) PIC simulations. To enable
accurate comparisons of the simulation and theoretical results and
keep other IFE mechanisms out of play, special care is taken in
making the following choices of parameters: a long pulse with
moderate intensity (5 × 1016 W/cm2) is considered to interact with

a cold plasma (10 eV, 1.1 × 1020 cm−3), with the effects of colli-
sions and parametric instabilities being neglected. The simulation
results verify the theoretical results in terms of the distribution
of magnetic fields, the distribution of source currents, and the
conservation of generalized vorticity. In addition, it is noted that
an axial magnetic field with arbitrary azimuthal distribution can
be obtained if the polarization distribution of the constituent laser
is properly designed using the linear superposition method. This
provides a new azimuthal degree of freedom for magnetized plasma
devices.37,44–46

The rest of the paper is organized as follows. In Sec. II, the
theoretical model and corresponding results are given. In Sec. III,
3D PIC simulations are conducted to verify the corresponding
theoretical results. In Sec. IV, we provide an intuitive explanation
of these results and demonstrate a method for obtaining an arbitrary
azimuthal distribution of the axial magnetic field. Conclusions are
presented in Sec. V.

II. THEORETICAL MODEL
Electromagnetic waves propagating in the x direction

can be expressed as EL = g(x − ct)[Ey(x, y, z)ey + Ez(x, y, z)ez]
exp[i(k0x − ω0t)], where k0 and ω0 are the laser wavenumber
and frequency in vacuum, respectively, c is the speed of light in
vacuum, g(x − ct) is the laser temporal envelope and is assumed
to be constant, Ey,z(x, y, z) are the complex amplitudes with their
respective polarizations, and ey,z are the unit vectors in the y, z
directions. The laser pulse duration is assumed to be shorter than
ω−1

pi (where ωpi is the ion plasma frequency), so that the motion
of ions can be neglected, and longer than ω−1

pe (where ωpe is the
electron plasma frequency), so that the longitudinal variation can
be neglected. The laser beams are assumed to be weakly relativistic
∣Ey,z ∣/E0 ≪ 1 (E0 = meω0c/e, where me is the electron mass and e
is the elementary charge), so that the AM absorption described in
Refs. 29, 30, and 39 can be ignored (a detailed discussion is provided
in the Appendix).

We begin with the cold relativistic electron fluid equations and
Maxwell equations

∂n
∂t

+∇ ⋅ (nu) = 0, (1)

( ∂

∂t
+ u ⋅ ∇)(γ0meu) = −e(E + u × B), (2)

∇× B = μ0ε0
∂E
∂t

− μ0neu, (3)

∇ ⋅ E = e
ε0

(n0 − n), (4)

where n and u are the electron number density and velocity, respec-
tively, E and B are the electric and magnetic fields, respectively,
n0 is the ion number density, which is equal to the initial electron
number density for H-like plasmas, and γ0 ≈

√
1 + ∣EL∣2/(2E2

0) is
the Lorentz factor averaged over the laser period. These variables
can be decomposed into relatively low- and high-frequency (laser
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frequency) components, which are denoted by subscripts s and f ,
respectively.

The low-frequency component of Eq. (3) describes the gen-
eration of the quasi-static magnetic fields and can be written as

∇× Bs = μ0ε0
∂Es

∂t
− μ0e⟨n f u f ⟩ − μ0ensus. (5)

Here, the angle brackets represent averaging over the laser period.
The right-hand side of Eq. (5) indicates three possible sources for
the generation of a quasi-static magnetic field. Es in the first term
comes mainly from the charge separation field caused by the laser
ponderomotive force. When the laser propagates steadily, this elec-
tric field hardly changes with time, and the first term can therefore
be ignored. In the second term, Jnl = −e⟨n f u f ⟩ is a second-order
nonlinear current as described in Refs. 17–21. The third term
Jdm = −ensus represents the diamagnetic current resulting from the
diamagnetic effect in response to the magnetic field generated
by the nonlinear current in the second term. Applying conserva-
tion of generalized vorticity31 and combining the high-frequency
components of Eqs. (1)–(3), we can obtain the form of Jnl and
the differential equation satisfied by Jdm, from which the dis-
tribution of the self-generated magnetic field can be calculated
accordingly.

First, Jnl can be obtained from the high-frequency components
of Eqs. (1)–(3), which can be written as

∂n f

∂t
+∇ ⋅ (nsu f ) = 0, (6)

γ0me
∂u f

∂t
= −e(E f + u f × Bs), (7)

∇× B f = μ0ε0
∂E f

∂t
− μ0nseu f . (8)

Since the laser is weakly relativistic and the quasi-static self-
generated magnetic field Bs is much weaker than the laser magnetic
field, the high-frequency electron velocity satisfies ∣u f /c∣ ≪ 1
and ∣u f × Bs∣/∣E f ∣ = ∣u f Bs∣/∣cB f ∣ ≪ 1. Thus, u f ≈ eE f /(iω0γ0me) is
obtained from Eq. (7). In addition, because the plasma is under-
dense, the amplitude of the laser field approaches that in vacuum,
E f ≈ EL. Equation (6) then gives n f = −e∇(ns/γ0) ⋅ EL/(meω2

0).
Neglecting diffractive and refractive effects on the laser, we obtain
Jnl in a cylindrical coordinate system as

Jnl = −e⟨n f u f ⟩ = −
e3(EyE∗z − E∗y Ez)

4iγ0m2
eω3

0

∂

∂r
(ns

γ0
)eθ, (9)

where the asterisk ∗ indicates the complex conjugate, and ns = n0
+ npond = n0 + ε0∇ ⋅ (∇∣EL∣2/γ0)/(4meω2

0), with npond being the
density fluctuation induced by the laser ponderomotive force. Thus,
if Jnl exists, it contains only a eθ component, which means that the
self-generated magnetic field is mainly along the axis. For a weakly
relativistic laser propagating in an initially uniform plasma, npond is

usually relatively small, resulting in a self-generated magnetic field
that is too weak to be detected in simulations. However, if there
is an initial large density gradient ∂n0/∂r, the self-generated mag-
netic field can be significantly enhanced. In the following analysis, an
initial nonuniform electron density will be applied to facilitate a
clearer demonstration of the quasi-static magnetic field.

The other key current Jdm is determined mainly by us.
Since us is generated together with the magnetic field, it should
be self-consistently calculated from the integral equation, taking
account of the conservation of generalized vorticity. The electro-
magnetic fields E and B can be expressed in terms of potential
fields A and φ as E = −∂A/∂t −∇φ and B = ∇×A. Then,
Eq. (2) can be rewritten as ∂(γ0meu − eA)/∂t = ∇(eφ −mec2γ) + u
× [∇× (γ0meu − eA)], from which it follows that ∂ω/∂t = ∇
× (u × ω), where ω = ∇× (γ0meu − eA) is the generalized vorticity.
Then, ω = 0 is always satisfied when we set the initial vorticity as zero
in our model. The low-frequency part of ω gives

∇× (γ0meus) = eBs. (10)

Equation (10) is the differential equation satisfied by us, which can
be used to calculate Jdm. It will be shown in the subsequent PIC
simulations that this current always tends to weaken the magnetic
field generated by Jnl, which is why Jdm is regarded as a diamagnetic
current.

Combining Eqs. (5), (9), and (10) and eliminating us, we finally
obtain the equation describing the generation of the axial magnetic
field:

∇× (γ0

ns
∇× Bs) +

μ0e2

me
Bs = μ0∇× (γ0

ns
Jnl). (11)

From Eq. (11), it can be seen that the distribution of Bs is determined
mainly by Jnl and ns. Once ns and EL are known, the quasi-static axial
self-generated magnetic field can be calculated.18,20

The above analysis is applicable to laser beams with different
distributions and polarizations. In this paper, we focus mainly on
laser beams with LG modes. Near the focal plane (x = 0), the com-
plex amplitude of LG beams with p = 0 (where p is the radial index)
can be written as

ELG/E0 = a0h(r) exp(ilθ + iφ)

= a0Cl(
r

w0
)
∣l∣

exp(− r2

w2
0
) exp(ilθ + iφ), (12)

where h(r) = Cl(r/w0)∣l∣ exp(−r2/w2
0) is the beam radial dis-

tribution, l (= 0,±1,±2, . . .) is the azimuthal index, r =
√

y2 + z2,
θ = arctan(z/y), φ is the initial phase, a0 is the dimensionless laser
amplitude, and w0 is the waist radius on the focal plane. Cl is a
constant that ensures that different l modes of LG beams have the
same maximum amplitude: C0 = 1, and Cl = (2e/∣l∣)∣l∣/2 when l ≠ 0.
LG beams have two unique features: one is the hollow amplitude
distribution represented by (r/w0)∣l∣ exp(−r2/w2

0), and the other is
the helical phase structure represented by exp(ilθ).

For linearly polarized LG beams, ELG
y /ELG

z = const. Equation (9)
then gives Jnl = 0, which means that no axial magnetic field can be
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generated. For circularly polarized LG beams, EL can be written
as ELG

z = ELG
y exp(iσxπ/2), where σx = ±1 represents right/left-hand

circular polarization. Equation (9) can then be rewritten as

Jnl =
σxe3∣ELG

y ∣2

2γ0m2
eω3

0

∂

∂r
(ns

γ0
)eθ. (13)

The sign of Jnl is determined by σx, which indicates that the direc-
tion of the self-generated axial magnetic field is opposite for different
circular polarizations. The main features of the IFE given by this
theory for LG beams are essentially consistent with those given in
Refs. 17, 18, and 20 for linearly and circularly polarized Gaussian
beams. These results are also demonstrated by 3D PIC simulations
for Gaussian and LG beams in the Appendix.

The magnetic fields shown above are related only to the laser
intensity ∣ELG

y ∣2, not to the helical index l. To introduce this helical
index, we consider the case of FP beams,40 which can be constructed
by applying different ∣l∣ modes of LG beams on the two orthogonal
polarizations Ey,z/E0 = ELG

y,z /E0 = ay,zhy,z(r) exp(ily,zθ + iφy,z). Then,
Eq. (9) can be rewritten as

Jnl = −
e3E2

0ayazhy(r)hz(r)
2γ0m2

eω3
0

∂

∂r
(ns

γ0
) sin(θΔl + Δφ) eθ, (14)

where Δl = ly − lz and Δφ = φy − φz . When Δl ≠ 0, Eq. (14) implies
that Jnl varies with θ, which indicates that the self-generated mag-
netic field will also be associated with the azimuth θ. This feature is
extremely different from the circular polarization case.

Figures 1(a)–1(d) display the transverse distributions of quasi-
static axial magnetic fields calculated from Eqs. (11) and (14) for

lasers with different polarization states propagating in a plasma.
The initial density profile of the plasma is n0,0 = nini exp[−(r/rCH)6],
where nini = 0.1nc and rCH = 4λ. Figure 1(a) shows the distribution
of the axial magnetic field generated by a circularly polarized LG
laser (ly = −1, lz = −1, and Δφ = −π/2), which is cylindrically sym-
metrical. Figure 1(b) shows the distribution of the axial magnetic
field generated by a laser with ly = 1, lz = −1, and Δφ = −π/2. It can
be seen that at a given r, the sign of the magnetic field changes four
times as θ increases from 0 to 2π. Figure 1(c) shows the case for
a laser with ly = 1, lz = −1, and Δφ = 0. Compared with Fig. 1(b),
the magnetic field rotates through a certain angle around the axis,
which demonstrates that the azimuthal distribution of the axial mag-
netic field can be changed by changing Δφ. Figure 1(d) shows the
distribution of the magnetic field for a laser with ly = 2, lz = −1,
and Δφ = 0, where the sign of the magnetic field changes six times
azimuthally. The number of periodic changes in direction of the
axial magnetic field is N = 2Δl, in accordance with that indicated in
Eq. (14).

By constructing different l modes of LG beams on the two
orthogonal polarizations, we introduce the helical index of LG
beams into the magnetic field generation, which is reflected by
azimuthal variation of the magnetic field. It is demonstrated that
the distribution of the magnetic field is affected mainly by Δl and
Δφ, which is quite different from the azimuthally homogeneous
magnetic field generated by circular polarization. In Sec. III, we
verify the above theoretical results by 3D PIC simulations.

III. 3D PIC SIMULATIONS
We perform a series of 3D kinetic simulations using the fully

relativistic PIC code EPOCH.47 The main simulation parameters are
the same as those used in the above theoretical analysis. The laser

FIG. 1. Transverse distributions of the quasi-static axial self-generated magnetic fields (normalized by B0 = meω0/e) obtained from (a)–(d) the theoretical model and (e)–(h)
3D PIC simulations for lasers with different polarization states propagating in a plasma. The lasers have (a) and (e) ly = 1, lz = 1, Δφ = −π/2; (b) and (f) ly = 1, lz = −1,
Δφ = −π/2; (c) and (g) ly = 1, lz = −1, Δφ = 0; (d) and (h) ly = 2, lz = −1, Δφ = 0. The electron number density n0,0 = nini exp[−(r/rCH)

6
], where nini = 0.1nc and

rCH = 4λ. For all the lasers, ay = az = 0.2 and w0y = w0z = 4λ.
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propagates in the x direction with wavelength λ = 1 μm. Its inten-
sity remains constant after reaching the maximum ay = az = 0.2 in
three laser periods. The radius of the waist of the LG beams in
the PIC simulations is w0,y = w0,z = 4 μm. The simulation box is
10 μm(x) × 20 μm(y) × 20 μm(z), with 500 × 320 × 320 cells. For
the electrons, 100 particles are applied per cell, and the ions are set to
be immobile. The plasma is located at 2 < x < 8 μm. The distribution
of the initial electron number density is n0,0 = nini exp[−(r/rCH)6],
where nini = 0.1nc and rCH = 4λ. The initial electron temperature
is 10 eV.

Figures 1(e)–1(h) show the transverse distributions of the
quasi-static axial magnetic fields obtained in PIC simulations for
different modes of lasers propagating in a plasma at t = 66.67 fs.
The quasi-static magnetic fields and the related azimuthal currents
are obtained by averaging the instantaneous magnetic fields and
currents over two laser periods (60 < t < 66.67 fs) and then aver-
aging along the laser propagation direction. The distributions of
the axial magnetic fields given by the 3D PIC simulations shown
in Figs. 1(e)–1(h) are quantitatively in good agreement with those
given by the theoretical model in Figs. 1(a)–1(d).

Furthermore, we examine the theoretical model in detail
by confirming the distribution of the azimuthal components of
currents Jnl and Jdm. The parameters are the same as those in
Fig. 1(b). The theoretical Jt

nl,θ obtained from Eq. (14) and Jt
dm,θ

calculated by Jt
dm,θ = −(1/μ0)∂Bx/∂r − Jt

nl,θ are presented in Fig. 2(a)
and 2(b). Figures 2(c) and 2(d) present the transverse distributions
of Js

nl,θ and Js
dm,θ obtained in the corresponding PIC simulation of

Fig. 1(f). Js
dm,θ is diagnosed by Js

dm,θ = ⟨ns
e⟩⟨Js

θ/ns
e⟩, where ns

e and Js
θ

are the electron number density and the total azimuthal current

FIG. 2. Transverse distributions of different azimuthal currents (normalized by
J0 = ncec): (a) Jt

nl,θ from the theoretical model; (b) Jt
dm,θ from the theoretical model;

(c) Js
nl,θ from the PIC simulation; (d) Js

dm,θ from the PIC simulation. The laser
parameters are ly = 1, lz = −1, Δφ = −π/2, ay = az = 0.2, and w0y = w0z = 4λ.
The electron number density n0,0 = nini exp[−(r/rCH)

6
], where nini = 0.1nc and

rCH = 4λ.

in every simulation time step, respectively, and the angle brackets
represent averaging over two laser periods (a total of 120 time steps).
Then, Js

nl,θ is obtained by Js
nl,θ = ⟨Js

θ⟩ − Js
dm,θ. It is obvious that the

theoretical results are in good agreement with those obtained from
PIC simulations for both Jnl,θ and Jdm,θ. In addition, the sign of Jdm,θ
is always opposite to that of Jnl,θ, as can be seen from a comparison of
Fig. 2(c) and 2(d). This reflects the property of Jdm as a diamagnetic
current.

The assumption of generalized vorticity conservation in the
theoretical model can also be verified by the PIC simulations. This
conservation law indicates that if the generalized vorticity is ini-
tially zero, ω = 0, it will remain zero throughout the subsequent
evolution. In the PIC simulation setups, the initial zero-vorticity
condition is satisfied. Therefore, the axial magnetic field can be cal-
culated in another way by using the us given by the PIC simulations

FIG. 3. Magnetic field (normalized by B0 = meω0/e) distributions (a) along y = 0
and (b) along θ at r = 3λ. The black line shows the results of the PIC simulations,
the red line those of the theoretical model, and the green line those calculated from
conservation of generalized vorticity. The laser parameters are ly = 1, lz = −1,
Δφ = −π/2, ay = az = 0.2, and w0y = w0z = 4λ. The electron number density
n0,0 = nini exp[−(r/rCH)

6
], where nini = 0.1nc , and rCH = 4λ.
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through Eq. (10), in addition to the purely theoretical calculation
using Eq. (11) and the direct diagnosis by PIC simulation as shown
in Fig. 1. Figure 3 compares the axial magnetic fields obtained in
these three ways. The black line shows the quasi-static magnetic field
given directly by the PIC simulations, the red line shows the results
from the theoretical model corresponding to those in Figs. 1(a)–1(d),
and the green line shows the results calculated from conservation of
generalized vorticity using the us data from the PIC simulations. It
can be seen that the lines overlap well with each other, which proves
good conservation of zero vorticity.

IV. DISCUSSION
We have constructed a self-consistent theoretical model for cal-

culating the axial magnetic field induced by the nonlinear azimuthal
current and the diamagnetic current. The soundness of this model
has been comprehensively verified through 3D PIC simulations
in terms of the distributions of magnetic fields and the source
currents, as well as the conservation of generalized vorticity. Here,
in the framework of the electron magnetic momentum model,16 we
present an intuitive explanation of why these magnetic fields vary
with azimuth θ.

Figure 4(a) shows the intensity distribution on the focal plane
for a laser with ly = 1, lz = −1, and Δφ = −π/2, together with the
polarization state distribution marked by the small ellipses. The
white and green ellipses represent left- and right-handed laser
polarization states, respectively. The laser polarization changes
azimuthally, which indicates different electron motions at different
azimuths. Figures 4(b)–4(e) present the trajectories of electrons in
this laser for one laser period T0 near the red points in Fig. 4(a).
The characteristic scale length of electron motion is about 0.06λ,
which indicates that the electrons mainly move locally, owing to
the relatively low laser intensity. On θ = arctan(z/y) = π/4 and
3π/4, the laser can be regarded as linearly polarized, and the
electrons oscillate along a certain direction [shown in Fig. 4(c)

FIG. 4. (a) Distribution of laser intensity with laser parameters ly = 1, lz = −1,
Δφ = −π/2, ay = az = 0.2, and w0y = w0z = 4λ. White and green ellipses repre-
sent laser polarization states that are left- and right-handed, respectively. (b)–(e)
Trajectories of electrons in this laser for one laser period near (r , θ) = (2.8λ, 0),
(2.8λ,π/4), (2.8λ,π/2), and (2.8λ, 3π/4), respectively, marked by the red
points in (a). The color change from blue to red indicates the time evolution.

and 4(e)]. On θ = 0 and π/2, the laser can be viewed as circularly
polarized, and the electrons move circularly, as shown in Fig. 4(b)
and 4(d). It is found that on θ = 0, the direction of circular move-
ment is opposite to that on θ = π/2, which indicates that the
directions of the magnetic fields generated by the magnetic dipole
moments are opposite for θ = 0 and θ = π/2. The variation of the
axial magnetic field on other azimuths can be analyzed similarly.

In addition to the polarization distribution, Eq. (11) implies
that the initial density distribution ns also plays a role. As well as
the super-Gaussian density distribution n0,0 applied above, another
two density profiles are also studied, and the axial magnetic fields
generated are shown in Fig. 5. One density profile is a plasma chan-
nel, n0,1 = nini{1 − exp[−(r/rCH)6]}, and the other is the previous
super-Gaussian density distribution superimposed on a uniform
background, n0,2 = nini{0.5 + exp[−(r/rCH)6]}. The other plasma
and laser parameters are the same as those in Fig. 1(b). These
results reveal that the theory and simulation results are in good
agreement.

Note that the density gradient of n0,1 is opposite to that of n0,0,
and so the corresponding nonlinear current jnl,θ is opposite accord-
ing to Eq. (14), which is verified by the red solid and red dotted lines
in Fig. 6. However, the magnetic field distributions in the two cases
are quite similar, as can be seen by comparing Fig. 1(b) and 5(a).
This suggests that the characteristics of the generated magnetic fields
cannot be determined only by jnl,θ, and the diamagnetic currents
jdm,θ should also be taken into account. The green solid and green
dotted lines in Fig. 6 show jdm,θ corresponding to these two cases.
It can be seen that jdm,θ in the n0,0 case peaks at r < rCH, whereas it
peaks at r > rCH in the n0,1 case. This leads to a similar sinusoidal-like
distribution of the total azimuthal current along r in both cases, as
shown by the black solid and black dotted lines in Fig. 6. Considering

FIG. 5. Transverse distributions of the quasi-static axial self-generated magnetic
fields (normalized by B0 = meω0/e) for different electron number density distri-
butions: (a) and (c) n0,1 = nini{1 − exp[−(r/rCH)

6
]}; (b) and (d) n0,2 = nini{0.5

+ exp[−(r/rCH)
6
]}. Here, nini = 0.1nc and rCH = 4λ. (a) and (b) show the results

from the theoretical model, and (c) and (d) show the results from the 3D PIC simu-
lations. The laser parameters are ly = 1, lz = −1, Δφ = −π/2, ay = az = 0.2, and
w0y = w0z = 4λ.
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FIG. 6. Distributions of different azimuthal currents (normalized by J0 = ncec)
along r at θ = π/2 (y = 0, z > 0) obtained from the theoretical model.
The solid lines (case 0) show the results with the density profile
n0,0 = nini exp[−(r/rCH)

6
], the dotted lines (case I) the results with the

profile n0,1 = nini{1 − exp[−(r/rCH)
6
]}, and the dashed lines the results

with the profile n0,2 = nini{0.5 + exp[−(r/rCH)
6
]}. The red lines show the

source current jnl,θ, the green lines the diamagnetic current jdm,θ, and the black
lines the total azimuthal current jθ = jnl,θ + jdm,θ. The plasma parameters are
nini = 0.1nc and rCH = 4λ. The laser parameters are ly = 1, lz = −1, Δφ = −π/2,
ay = az = 0.2, and w0y = w0z = 4λ.

that the magnetic field can be calculated as Bx = μ0∫ ∞r jθ dr, it is no
wonder that the distribution of the magnetic field is similar rather
than opposite for these two cases. Likewise, although jnl,θ is predicted
to be the same for the n0,2 and n0,0 cases (as demonstrated by the
overlap of the red solid and red dashed lines in Fig. 6), the generated
magnetic field distribution is rather different, because the distri-
bution of the diamagnetic current depends on the different initial
density profiles.

Such unique distributions of axial magnetic fields provide a new
azimuthal degree of freedom in designing magnetized plasma-based
devices.37,46 It can be proved that, in principle, arbitrary distribu-
tions of axial magnetic fields in the azimuthal direction can be gen-
erated. Since the electromagnetic waves are weakly relativistic, the
relativistic factor can be approximated as γ0 =

√
1 + ∣EL∣2/2E2

0 ≈ 1.
If the initial electron density gradient is large enough, then
∂ns/∂r ≈ ∂n0/∂r. Equation (14) can then be rewritten as

Jnl = −
e3E2

0ayazhy(r)hz(r)
2m2

eω3
0

∂n0

∂r
sin(θΔl + Δφ) eθ. (15)

By setting ELG
z /E0 = azhz(r) exp(ilzθ + iφz) and ELG

y /E0
= ∑m ay,mhy,m(r) exp(ily,mθ + iφy,m), where m = 0,±1,±2, . . ., we
can obtain Jnl = ∑m Jnl,m sin(Δlmθ + Δφm)eθ, where

Jnl,m = − e3E2
0ay,mazhy,m(r)hz(r)

2m2
eω3

0

∂n0

∂r
,

Δlm = ly,m − lz , Δφm = φy,m − φz.

This indicates that any azimuthally varying distribution of Jnl can
be designed with a proper combination of Δl and Δφ, and the
corresponding axial magnetic field can be manipulated.

As a coda, we present the ladybug-like magnetic field shown
in Fig. 7. It is generated by the above method using a laser
with ELG

z /E0 = azhz(r) exp(−iθ) and ELG
y /E0 = ay,1hy,1(r) exp(iθ)

+ ay,2hy,2(r) exp(2iθ). In a similar way, more complex distributions
of axial magnetic field could, in principle, be designed.

It is worth noting that the results given by the theoretical
model are in good agreement with those given by PIC simu-
lations, which can be mainly attributed to three factors. First,
laser absorption is negligible in our weakly relativistic (5 × 1016

W/cm2) laser plasma interaction, where the effects of collisions and
parametric instabilities are neglected. Thus, AM absorption, which
plays a dominant role in Refs. 29, 30, and 39, is not of concern. If the
AM absorption is significant, the electrons can acquire an apprecia-
ble low-frequency velocity us. The corresponding current J = −ensus
will then be another key source for the magnetic field, and the related
magnetic fields depend strongly on the specific AM absorption
mechanism, which is not considered in our model. Second, the ion
motions are neglected in our discussion, since our model is appli-
cable on a time scale of ω−1

pe < τ < ω−1
pi . It can be anticipated that for

a longer time τ > ω−1
pi , the ion motions under the charge-separation

field might change the transverse density distribution of the plasma
and result in different magnetic field distributions according to our
analysis. Finally, our model is based on the assumption of a cold
plasma. If thermal effects are not negligible, then kinetic models48,49

FIG. 7. Distribution of the axial magnetic field (normalized by B0 = meω0/e)
obtained from the theoretical model for a laser with ELG

z /E0 = azhz(r) exp(−iθ)
and ELG

y /E0 = ay,1hy,1(r) exp(iθ) + ay,2hy,2(r) exp(2iθ). The laser parameters
are az = ay,1 = ay,2 = 0.2 and wz = wy,1 = wy,2 = 4λ. The electron number
density n0,0 = nini exp[−(r/rCH)

6
], where nini = 0.1nc and rCH = 4λ.
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or the ten-moment Grad system of hydrodynamic equations50 are
needed for the analysis, which is beyond the scope of this work.

V. CONCLUSION
The inverse Faraday effect has been extended to full Poincaré

beams, and a novel scheme for generating azimuthally dependent
axial magnetic fields has been proposed. Starting from fluid theory
and conservation of generalized vorticity, we have constructed
an integrated theoretical model of the quasi-static magnetic field
generated by both the nonlinear azimuthal current and the
diamagnetic current. This model predicts that the self-generated
axial magnetic field varies azimuthally for a full Poincaré beam
propagating in a plasma. The structures of such magnetic fields are
determined by the Laguerre–Gaussian mode difference Δl and the
initial phase difference Δφ of the composing orthogonally polarized
lasers. Three-dimensional particle-in-cell simulation results are in
good agreement with the theoretical model both qualitatively and
quantitatively. In addition, it is noted that an arbitrary azimuthally
varying distribution of the axial magnetic field can be obtained by
the linear superposition method, which provides a potential new
azimuthal degree of freedom in the design of magnetized plasma
devices.

ACKNOWLEDGMENTS
This research was supported by the National Natural Sci-

ence Foundation of China (NSFC) under Grant No. 11975014 and
by the Strategic Priority Research Program of Chinese Academy
of Sciences under Grant Nos. XDA25050400 and XDA25010200.
The numerical calculations in this paper were performed on the
supercomputing system at the Supercomputing Center of the
University of Science and Technology of China.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Wei Liu: Visualization (lead); Writing – original draft (lead). Qing
Jia: Funding acquisition (lead); Writing – review & editing (lead).
Jian Zheng: Writing – review & editing (supporting).

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.

APPENDIX: SIMULATION RESULTS OF WEAKLY
RELATIVISTIC GAUSSIAN AND LG BEAMS

PIC simulations of weakly relativistic Gaussian beam plasma
interactions were performed. A comparison of the theoretical and

FIG. 8. Distributions of axial magnetic fields (normalized by B0 = meω0/e) along
y = 0 generated by different polarized Gaussian beams. The red and blue lines
show the results of PIC simulation for right- and left-hand (σx = ±1) circularly
polarized lasers, respectively, the black line shows the result of the theoreti-
cal model for a right-hand (σx = 1) circularly polarized laser, and the green
line shows the result of PIC simulation for a linearly (σx = 0) polarized laser.
The laser parameters are a0 = 0.3 and w0 = 4λ. The plasma has n0,3 = nini/[1
+ 9 exp(−r2

/r2
CH)], where nini = 0.1nc and rCH = 2λ.

simulation results for the magnetic field is shown in Fig. 8. The
overlap between the red and black lines demonstrates the good fit
between our theory and the simulation. A comparison of the blue
and red lines reveals an opposite magnetic field for different circu-
larly polarized (CP) Gaussian beams when other parameters are the
same. The green line shows that the self-generated magnetic field
of an linearly polarized (LP) Gaussian beam is negligible compared
with the case of circular polarization. These results are consistent
with theoretical expectations. For a benchmark, the electron num-
ber density is set as n0,3 = nini/[1 + 9 exp(−r2/r2

CH)], the same as in
Ref. 21, and the magnetic field distribution shown in Fig. 8 is in
agreement with that in Ref. 21.

To further verify that the angular momentum transfer mech-
anism can be ignored in our simulations, three comparative
simulations of the interaction of two CP LG beams (l = ±1, σx = −1)
and one LP LG beam (l = 1, σx = 0) with the same plasma were
performed. The simulation results for the quasi-static magnetic
field distributions are shown in Fig. 9. Our beating current model
predicts the same magnetic field distribution for the two CP beam
cases, given the same polarization (σx = −1) and intensity. This
is confirmed by the overlap of the red and black lines shown
in Fig. 9. By contrast, the angular momentum transfer model22,23

predicts that the magnetic fields for these two CP beams are very
different, given the different OAM distributions (l = ±1) and the
total angular momentum (l + σx = −2, 0). Moreover, a direct proof
can be obtained by comparing the green and black lines, which
shows that the magnetic field generated by the LP LG beam is
negligible. All the above comparisons imply that there is negligible
angular momentum transfer in our weakly relativistic laser plasma
interaction process.
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FIG. 9. Distributions of axial magnetic fields (normalized by B0 = meω0/e) along
y = 0 generated by different LG lasers in PIC simulations. The black, red, and
green lines represent the cases of a left-hand CP (σx = −1) LG laser with l = 1,
a left-hand CP (σx = −1) LG laser with l = −1, and a LP (σx = 0) LG laser
with l = 1, respectively. The other laser parameters are a0 = 0.2 and w0 = 4λ.
The electron number density n0,0 = nini exp[−(r/rCH)

6
], where nini = 0.1nc and

rCH = 4λ.
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