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ABSTRACT
A neural network-based approach is proposed both for reconstructing the focal spot intensity profile and for estimating the peak intensity of
a high-power tightly focused laser pulse using the angular energy distributions of protons accelerated by the pulse from rarefied gases. For
these purposes, we use a convolutional neural network architecture. Training and testing datasets are calculated using the test particle method,
with the laser description in the form of Stratton–Chu integrals, which model laser pulses focused by an off-axis parabolic mirror down to
the diffraction limit. To demonstrate the power and robustness of this method, we discuss the reconstruction of axially symmetric intensity
profiles for laser pulses with intensities and focal diameters in the ranges of 1021–1023 W cm−2 and ∼(1–4)λ, respectively. This approach has
prospects for implementation at higher intensities and with asymmetric laser beams, and it can provide a valuable diagnostic method for
emerging extremely intense laser facilities.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0126571

I. INTRODUCTION

Progress in the development of high-power laser technology
has enabled the construction of laser facilities with laser beam power
exceeding the petawatt (PW) level.1 After tight focusing, laser pulses
generated by such systems may achieve extreme peak intensities
of 1022 W cm−2 and higher. Although the number of PW class
facilities is gradually increasing, achieving ultrahigh peak intensities
remains a difficult technical challenge. In 2004, a peak intensity of
1022 W cm−2 was demonstrated on the 0.3 PW HERCULES facility
(USA),2 and, after an upgrade, this record was surpassed by an inten-
sity of 2 × 1022 W cm−2.3 It was a long time before similar results
could be achieved elsewhere. Only toward the end of the last decade
were intensities exceeding 1022 W cm−2 obtained on the 0.3 PW
J-KAREN-P (Japan),4 Texas PW (USA),5 4.0 PW CoReLS (South

Korea),6 and 5.4 PW SULF (China)7 facilities. More recently, in
2021, with careful wavefront control, a higher peak intensity exceed-
ing 1023 W cm−2 was reported on CoReLS.8 With these increasing
intensities, their measurement is becoming more and more impor-
tant and challenging, owing to the many concurrent processes that
occur in the highly nonlinear regime of extreme intensity.

A rough method of measurement is to estimate the peak laser
intensity based on the peak laser power P0, which can be calculated
knowing the total energy contained in the laser pulse and its tempo-
ral profile. The peak intensity I0 may then be obtained for a given
spatial distribution of the laser beam in the focal plane I(r) = I0 f (r)
as I0 = P0/∫ ∞0 f (r)2πrdr. For example, for a laser beam with Gaus-
sian spatial profile given by I(r) = I0 exp[−4r2/(D2

F ln 2)], where
DF is the focal-spot diameter at half-maximum, the expression for
the peak intensity is I0 = 4P0/(πD2

F ln 2). Thus, estimation of the
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peak intensity with this approach requires information on the beam
size and its spatial profile in the focal plane. At lower laser energies,
these characteristics may be measured with conventional techniques
by imaging the focal plane on diagnostic cameras and beam pro-
filers. After that, the result needs be extrapolated to the full laser
energy, but it may differ substantially from the real experimen-
tal values owing to nonlinear effects. The record-making results
mentioned above have been obtained by a far-field reconstruc-
tion at the beam focus, which involves the use of expectations
based on mathematical prediction.5 Thus, new approaches based on
direct intensity measurement, which could probe what actually hap-
pens at the focus of an ultrahigh-intensity laser beam, are of great
importance.

Several methods have been proposed in this context, includ-
ing the use of multiple tunneling ionization of high-Z atoms
with high ionization potentials,9–11 nonlinear Compton/Thomson
scattering,12–19 electron–positron pair production,20 and pondero-
motive scattering of electron bunches.21 Some of these can be used
to diagnose other pulse parameters (such as pulse duration and
focal spot size) along with the peak intensity estimation. To achieve
the desired accuracy with the proposed methods proposed, certain
difficulties need to be overcome. While the major problem of the
multiple tunneling ionization method at intensities above 1022 W
cm−2 is the importance of ponderomotive acceleration of high-Z
ions in the laser field, the other approaches mentioned require per-
fect synchronization and spatial overlap of both particle and laser
beams, as well as full characterization of the electron beam. At
the same time, achieving the highest laser intensity requires tight
focusing of the laser pulse, which results in strong gradients of the
ponderomotive force that can accelerate even some heavy particles
without synchronized pre-acceleration. The resulting angular energy
distributions contain information about the laser pulse parameters,
which in principle may be extracted as a solution of an inverse prob-
lem. There have been some investigations considering electrons as
detecting particles,22–28 but, for a tightly focused laser pulse with
high peak intensity, electrons are expelled from the focal volume
before interaction with the main laser peak, which is one of the main
disadvantages of this approach for full laser pulse characterization.
In a recent work,29 it has been proposed to use protons for diagnos-
tic purposes in the case of laser pulses with intensity from 1021 to
1024 W cm−2. A further development of this method is to use both
types of particles (i.e., protons and electrons),30 which makes it pos-
sible to simultaneously estimate the peak intensity of a high-power
laser pulse, the size of its focal spot, and its duration. In this work,
we address the principal approaches to the inverse problems of focal
parameter reconstruction for a tightly focused extremely intensive
laser beam, based on ponderomotively accelerated protons.

Although, as mentioned above, some methods may be applied
to estimate several laser parameters, they need information concern-
ing the spatial–temporal distribution of the laser pulse, because of
the dependence of the results on the focal laser distribution.28,31 It
has been shown28 that the form of the electron energy spectrum
depends on the focal distribution of the laser beam. Similarly, some
relationship is expected between the distributions of accelerated pro-
tons and laser profiles that are studied in this paper. The inverse
problem of reconstruction of laser focal profiles based on particle
angular energy distributions, in turn, may be targeted with use of an
artificial neural network (ANN). Here, we use convolutional neural

network (CNN) architectures, which have gained wide recognition
as useful tools for computer vision and image analysis tasks.32,33

Moreover, with the development of deep CNNs, such architectures
have become the dominant approach for almost all recognition
and detection tasks and are approaching human performance.34 In
addition to general technical tasks (e.g., face and text recognition),
they have also been widely used to solve various classification and
regression problems in physical sciences.35–42

This article focuses on the interplay between the physics of pro-
ton dynamics in the extremely highly focused electromagnetic field
and the key featured imprints on the obtained spectra, with the aim
of reconstructing both the laser intensity distribution and the peak
value in the focal region. In our previous work,29 we have already
shown that in the regime of nonrelativistic proton acceleration, the
angular characteristics of proton distributions depend on the focal
spot size, while their energy characteristics are also determined by
the pulse peak intensity and its duration. It has been pointed out that
a nonisotropic distribution of the laser intensity in the focal plane
leads to nonisotropic proton spectra, i.e., the dependence of the laser
spatial distribution on the polar angle results in a corresponding
dependence of the particle distribution. At the same time, the impor-
tant question of how the dependence of the laser spatial distribution
on the radius in the focal plane impacts on the proton distribu-
tions has not been considered, while non-Gaussian focal distribu-
tions with different energies in diffraction half-rings are sometimes
observed in experiments.6,7 To analyze this effect, here, for the pur-
pose of demonstration, we consider axially symmetric laser beams.
As in our previous work,29 the proton dynamics are calculated using
the nonrelativistic ponderomotive force approximation,43 and the
laser pulses are simulated by Stratton–Chu integrals,44 which model
laser beams with different spatial profiles focused by an off-axis
parabolic mirror down to the diffraction limit. As shown in Ref. 29,
in a certain range of laser intensities and focal spot sizes, the proton
angular energy distribution can be scaled based on a simple expres-
sion. In this range, this allows us to prepare an augmented dataset
using data calculated for only one intensity value for each focal spot
size and spatial distribution. Using such a dataset, we present a neu-
ral network approach that enables reconstruction of the laser pulse
focal distribution (including its quantitative characteristics such as
focal spot size) as well as the laser peak intensity using the angular
energy distributions of the particles. We use the calculated angular
energy distributions and focal spatial profiles as samples for ANN
training and testing. Although our approach is tested here for axi-
ally symmetric beams, it can be applied in more general cases with
changes in the shape of the input data covering additional variables
upon which the focal distribution may depend, such as the polar
angle ϕ.

II. PROTON DYNAMICS IN THE FIELD OF TIGHTLY
FOCUSED LASER PULSES WITH DIFFERENT
SPATIAL PROFILES

The method presented in this paper for reconstructing the
intensity profile of a laser pulse is based on analysis of the angular
energy distributions of protons after their acceleration by the diag-
nosed tightly focused laser beam. Figure 1 shows the main setup of
this laser diagnostic method. A laser pulse focused by an off-axis
parabolic mirror interacts with protons from a rarefied gas, after
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FIG. 1. Main scheme of laser pulse diagnostics via the angular spectral
distributions of protons accelerated from the focus of the measured laser pulse.

which those particles expelled from the focal volume are detected
at certain angles counted from the direction of laser propagation,
and their angular energy distributions are used to predict the focal
profile of the laser beam and its peak intensity. Such a diagnostic
approach is possible if the distribution of particles is determined
by the parameters of the laser pulse. This limits the parameters of
diagnostic gases by neglecting the effects of both the interaction of
protons with the volume of the residual charge (after expelling elec-
trons) and multiple proton scattering due to collisions of protons
with hydrogen nuclei (ion–ion collisions). Both factors have been
discussed in detail in Ref. 29.

We recall the main expressions for estimating the experiment
parameters to satisfy the conditions for applicability of the method.
The first effect is related to the insignificance of the Coulomb inter-
action of an individual proton with the volume charge compared
with the ponderomotive force of the laser pulse. In this case, the
proton concentration is limited by np ≪ 1023a2

0pD−8/3
Fλ (λ/0.8 μm)−2

cm−3, where a0p = qE/mωc is the normalized amplitude of the laser
field in terms of the proton mass m, λ is the laser wavelength, and
DFλ = DF/λ. For the laser parameters considered in this paper (a
minimum peak intensity I = 1021 W cm−2 and a maximum focal
spot size DF = 4λ), the proton concentration should be less than
1017 cm−3. Proton–proton scattering leads to energy losses and
distortion of emission angles. Taking the latter into consideration,
the proton concentration and thickness l of the gas jet should be
limited by npl < 1.5 × 1019(Δϑer)2(2εp/mec2)2 cm−2, where Δϑer is
the acceptable angular error in degrees, which should be as low as
the accuracy of the angular measurement, and me is the electron
mass. For example, for Δϑer = 1○ and εp = 2 keV, the gas parameters
are limited by npl < 1015 cm−2. This condition can be satisfied in
experiments, for instance, by using a gas jet of low concentration
(<1016 cm−3) and 1 mm thickness. For low values of Δϑer, the
energy losses of protons become negligible compared with the final
particle energy. This condition may require a specifically designed
nozzle backed by a pressure of a few kilopascals. With optimal
parameters of the nozzle and sufficiently low pressure, densities as
low as 1015–1016 cm−3 can be obtained in a jet with a diameter of a
few millimeters.45

A. Models used to simulate the interaction
of a particle with a laser pulse

Following the general approach presented in Ref. 29, we use the
approximation of a nonrelativistic ponderomotive force to describe

the interaction of a proton with a laser pulse whose intensity is in the
extreme range from 1021 to 1024 W cm−2:

dp⃗drift

dt
= F⃗p = −

q2

4mω2 ∇⃗∣E⃗∣2, (1)

where q and m are the charge and mass of the particle, and ω and
E⃗ are the laser frequency and the electric component of its field,
respectively. The force describes the dynamics of the average pro-
ton momentum related to the slow proton drift due to high laser
intensity gradients in the case of tight laser focusing. To predict the
spatial distribution of real laser pulses, the ANN must be trained on
data similar to those obtained in experiments. For generating such
data, we normally use a model based on Stratton–Chu integrals,44

which can simulate laser pulse focusing by an off-axis parabolic per-
fect mirror,46 as used in real-life experiments. Occasionally and if
necessary, an arbitrary phase shift can be introduced at any point on
the mirror surface. This model accurately describes particle dynam-
ics in the intensity range from 1021 to 1024 W cm−2, although the
upper limit of the peak intensity may be easily extended. In this
work, it is set by the nonrelativistic ponderomotive force approxima-
tion, which provides accurate results up to 1024 W cm−2. However,
Eq. (1) may be modified to take relativistic effects into account. The
lower limit is set by factors that may affect particle dynamics, such as
proton–proton scattering. The conditions on the gas jet described at
the beginning of this section were obtained for 1021 W cm−2. For
reliable applicability at lower intensities, more challenging condi-
tions may be required. In principle, the constraints on the gas density
and the lower intensity limit could be lifted by switching to a dif-
ferent model in which particle dynamics were calculated via kinetic
simulations accounting for collective effects.

We let the incident laser pulse propagate along the z axis
and take the origin of the coordinate system at the position of the
parabola focus, and thus the electric field of the laser pulse focused
by the mirror (with radius ρ, off-axis angle ψoff, and parent parabola
focal length F) is represented as

E⃗(x1, y1, z1) =
1

2Fλ∬ (iAe +
ae

krQS
) ⋅ E⃗ieikl

r2
QS

dxdy,

l = rQS − F(s − 1)

=
√

r2
1 + r2 − 2(xx1 + yy1 + zz1) − F(s − 1), (2)

where E⃗i(x, y, z) = [E0x(x, y)e⃗x + E0y(x, y)e⃗y] exp[−i(kz + ωt + ϕ0)]
is the electric field of the laser pulse incident on the mirror,
k and λ are the wavenumber and the wavelength, respectively,
r⃗QS = {ΔxQS, ΔyQS, ΔzQS} = {x − x1, y − y1, z − z1} is the vector
from the observation point Q to the point S on the mirror surface
[see Fig. 2(a)], r and r1 are the respective distances between the laser
focus and the points S and Q, and the tensors

Ae =
⎛
⎜⎜⎜⎜
⎝

2FrSQ − xΔxQS −yΔxQS 0

−xΔyQS 2FrSQ − yΔyQS 0

x(rSQ − ΔzQS) y(rSQ − ΔzQS) 0

⎞
⎟⎟⎟⎟
⎠

,

ae = r⃗SQ ⋅ (x y 0).
(3)
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FIG. 2. (a) Scheme for focusing a laser pulse by an off-axis parabolic mirror. F and
Feff are the parent and effective focal lengths, ψoff is the off-axis angle, and ρ is
the mirror radius. (b) Coordinate systems used in this work, taking into account the
positions in the scheme (a).

The integration area is the projection of the paraboloid surface onto
the xy plane, i.e., (x − h)2 + y2 ≤ ρ2, where h is the distance between
the centers of the mirror and the corresponding parent parabola on
the xy plane. Numerical integration is carried out by the Simpson
method,47 and the discretization scheme resolves the variations in
the shape of the incident pulse.48 Owing to the asymmetry of the
integration surface with respect to the center of the paraboloid, the
laser beam reflected by the mirror propagates at an angle ψoff rela-
tive to the z axis. Therefore, it is convenient to switch to a primed
coordinate system obtained by applying a rotation matrix:

x1 = x′ cos ψoff − z′ sin ψoff,

z1 = x′ sin ψoff + z′ cos ψoff,

y1 = y′.

(4)

The components of the laser field in the primed system can then be
derived from Eq. (2) by the inverse transformation: {Ex′ , Ey′ , Ez′}
= {Ex cosφ + Ez sinφ, Ey,−Ex sinφ + Ez cosφ}; the laser pulse
propagates along the z′ axis. The latter representation of the laser
components is used in this work to simulate laser pulses. Changing
the ratio f# = F/ρ makes it possible to model laser beams with
different focal spot sizes. The larger the ratio, the wider is the focal
spot.

We neglect border effects from the mirror edge, as well as the
influence of the temporal profile on the laser spatial distribution. The
former is possible for mirrors with a large focal length F of the par-
ent mirror compared with the laser wavelength, i.e., kF ≫ 1,49 and
although spatial–temporal couplings must be taken into account to
simulate single- or few-cycle tightly focused laser pulses,50–52 these
remain beyond the ranges discussed in this article.

In this paper, we demonstrate the robustness of the proposed
method while applying it to laser pulses linearly polarized along the
x axis (hereinafter, we omit the primes on the coordinates: x′, y′, z′)
with a Gaussian temporal profile and a FWHM duration of 30 fs and
one of the following spatial profiles: flat-top, Gaussian distributions
of the second, fourth, and sixth orders, and the Laguerre–Gaussian
mode (L0

1). The pulses are focused to a spot with a FWHM size in
the range of ∼(1–4)λ. This is achieved using a parabolic mirror with
radius ρ = 15 cm and off-axis angle ψoff = 60○, with its focal length
being varied to obtain the desired beam size. The laser peak intensity
is set in the range of 1021–1023 W cm−2.

Using the above laser configuration, we calculate the final ener-
gies and the emission angles of protons, which were initially at rest,
by independently integrating Eq. (1) by the Adams method.53 With
axially symmetric laser beams, the final distribution of accelerated
particles also does not depend on the polar angle in the xy plane ϕ,
measured from the direction of laser polarization.29 Note that the
use of axially symmetric beams in this example facilitates the anal-
ysis, although it is not demanded by the method itself, which, with
certain modifications of the training data set, namely, considering
more general asymmetric cases, can be used to assess more complex
beams with no axial symmetry. With polar-angle symmetry, we con-
sider θE distributions of particles, where E is the final proton energy
and θ is the azimuth angle between the particle emission direction
and the z axis.

B. Influence of the distribution of the laser
pulse near its focus on proton dynamics

The laser intensity distribution in the focal spot, in both the
transverse and longitudinal directions, has a direct impact on the
angular and energy distributions of protons accelerated from the
focal spot region. To demonstrate this, we consider, for example,
two beams with Gaussian and Laguerre–Gaussian initial transverse
intensity profiles, focused into a spot with the same FWHM size
DF = 1.0λ and peak intensity 1022 W cm−2. Note that for the same
peak intensity, the two considered profiles have different total ener-
gies: for the Laguerre–Gaussian beam, the total energy is ∼4 times
greater than that of the Gaussian beam owing to differences in their
intensity distributions. The transverse intensity profiles of the two
beams in the focal plane are shown in Figs. 3(a1) and 3(a2). In this
plane, the main and most noticeable difference between the profiles
is the presence of a secondary maximum for the Laguerre–Gaussian
profile in the form of a radial ring that extends from ∼1λ to ∼2λ.
Within this ring, the differences between the two profiles are less
pronounced. Moreover, their longitudinal distributions also make
it possible to distinguish the Gaussian and Laguerre–Gaussian dis-
tributions from each other. These longitudinal cross-sections are
presented in Figs. 3(b1) and 3(b2), without any time dependence
being imposed on them. As can be seen, the Laguerre–Gaussian
beam is much more prolonged along the propagation direction z in
comparison with the Gaussian beam of the same diameter DF = λ.
The Rayleigh length of the former is about four times greater than
that of the latter. This difference is reflected in the angular energy
spectra of protons. For axial symmetric laser pulses, proton spec-
tra do not depend29 on the polar angle ϕ and can be integrated
over it. In a more general case, the data for each ϕ have to be pre-
served. In this work, we focus on assessment of the radial intensity
profile from the angular energy distribution of particles, and we
integrate over ϕ. The resulting spectra for the considered Gaussian
and Laguerre–Gaussian beams are shown in Figs. 3(c1) and 3(c2).
Qualitatively, both particle distributions are similar in the sense
that the protons of maximum energy are accelerated in the direc-
tion perpendicular to the laser axis θ = 90○; the more they depart
from this direction, the less energetic the particles become. The
cutoff energy, i.e., the maximum energy observed for particles at
θ = 90○, is about 18 keV in both cases. However, the characteris-
tic width of the angular energy distribution at half the maximum
energy differs qualitatively between the two cases. For the Gaussian
beam, the characteristic width is ∼4 times greater. These results can
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FIG. 3. (a1) and (a2) Focal intensity profiles for a tightly focused Gaus-
sian beam with f# = 0.70, DF = 1.0λ, and zR = 4.3λ and for a tightly focused
Laguerre–Gaussian beam with f# = 1.05, DF = 1.0λ, and zR = 17.8λ, respec-
tively. (b1) and (b2) Longitudinal intensity profiles for these Gaussian and
Laguerre–Gaussian beams, respectively; temporal profiles are not taken into
account in these plots. Note the substantial degree of asymmetry resulting from
tight focusing by an off-axis parabolic mirror. (c1) and (c2) ϕ-integrated spectral
distributions of protons for the Gaussian and Laguerre–Gaussian beams, respec-
tively. The vertical and horizontal axes as well as the color axis are the same for
each image pair (a1) and (a2), (b1) and (b2), and (c1) and (c2).

be interpreted using the simplest analytical expressions. The maxi-
mum energy of particles, Emax, is observed along the direction of the
highest intensity gradient, i.e., along the beam radius r, and, for an
elementary estimate, the value of this cutoff can be considered29 to be
proportional to the square of the intensity gradient in this direction:

Emax ∝ ( ∂I(r, z)
∂r

∣
r0 ,z0

)
2

, (5)

where r0 and z0 are the coordinates of the position at which the
maximum gradient is observed with the given beam spatial pro-
file. Since the intensity variation is steepest in the inner area of
the Laguerre–Gaussian beam, where it closely matches the Gaus-
sian beam, and both beams have the same diameter, protons with
the highest energy accelerate from the same region under the action
of intensity gradients of approximately the same strength. Thus,
their maximum energies almost coincide, which can be observed
in Figs. 3(c1) and 3(c2). When studying the same distributions for
beams with no axial symmetry, the value of the cutoff energy in
each direction ϕ will be different, and so if the input is treated as
a three-dimensional array with ϕ as the third variable, it is possi-
ble to estimate the maximum gradient and consequently the slope
of the beam profile in this particular direction. The angular width of
the spectrum, Δθ, in turn, depends on the gradient along the prop-
agation direction z, which should be greater for a Gaussian beam
owing to the smaller Rayleigh length in comparison with that of the
Laguerre–Gaussian beam. According to an equation from Ref. 29,
the angular width of the proton spectrum relates to the parameters
of the beam as follows:

tan(Δθ/2)∝ DF

zR
. (6)

Substituting the corresponding beam parameters, namely, DF = λ
and zR = 4.3λ for the Gaussian beam and DF = λ and zR = 17.8λ for
the Laguerre–Gaussian beam, into this formula yields a difference by
a factor of ∼4 in the angular width of their proton spectra, which is
consistent with the results presented in Figs. 3(c1) and 3(c2).

The presence of a ring in the Laguerre–Gaussian beam also
affects the proton spectrum, which is more evident if one considers
ϕ-integrated spectra with a logarithmic scale on the energy axis, as
shown in Figs. 4(b1) and 4(b2), in particular their low-energy parts,
outlined with red rectangles. These distributions are shown together
with plots of the squared intensity gradients in the xz plane in
Figs. 4(a1) and 4(a2), from which it can be seen that as well as a more
prolonged profile along the beam axis z, the Laguerre–Gaussian dis-
tribution has two additional areas where the gradient may reach
∼10−1 of its maximum value. These correspond to the intensity
slopes on the inner and outer edges of the ring. Protons accelerated
from these regions form the low-energy part of the angular energy
distribution; see Figs. S1 and S2 in the supplementary material
for better insight into this. For the Laguerre–Gaussian beam, owing
to the spatial arrangement of gradients in this region, the low-
energy part of the proton spectrum, i.e., the part with energies
10−4 ≲ E/Emax ≲ 10−2, has a peculiar shape with several pronounced
branching wings [see Fig. 4(b2)]. By contrast, for the Gaussian
profile, this part of the angular energy distribution contains signif-
icantly fewer particles and has a much simpler structure, owing to
the less complex structure of the beam itself. These differences can
also be noticed in the total θ,ϕ-integrated energy spectra of pro-
tons. These distributions are presented in Fig. 5(a). Here, for the
Laguerre–Gaussian profile, a substantially greater number of pro-
tons accumulate in the low-energy region, owing to the large volume
of the secondary ring region, while high-energy parts of the spectra
look almost identical, since they are formed by protons accelerated
from the central region with steep intensity changes, where the two
profiles closely resemble one another.
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FIG. 4. (a1) and (a2) Spatial distributions of the squared gradient of the normal-
ized spatial intensity profile g(r⃗) in the xz plane for the tightly focused Gaussian
and Laguerre–Gaussian beams, respectively. (b1) and (b2) ϕ-integrated spectral
distributions of protons, with a logarithmic scale on the energy axis for the Gaus-
sian and Laguerre–Gaussian beams, respectively. The red rectangles outline the
low-energy parts, where the presence of the secondary ring manifests itself for the
Laguerre–Gaussian beam. The vertical and horizontal axes as well as the color
axes are the same for each image pair (a1) and (a2), and (b1) and (b2).

As can be seen in Fig. 5(a), the distinct cutoff energies are
almost the same for these two beam profiles. The general depen-
dence of the cutoff energy on the maximum intensity gradient is
a useful characteristic that, on the one hand, allows the validity of
Eq. (5) to be checked and, on the other hand, allows the analy-
sis to be simplified by making it possible to retrieve the maximum
gradient and peak intensity for a given profile from the measured
maximum energy of protons and vice versa. The curves characteriz-
ing this dependence were obtained in a set of simulations with three
different beam profiles (flat-top, Gaussian, and Laguerre–Gaussian),
beam sizes in the range ∼(1–4)λ, and two different maximum laser
intensities I0 = 1022 W cm−2 and I0 = 1023 W cm−2. These curves are
shown for the two intensities in Figs. 5(b1) and 5(b2), respectively.
At lower intensities, they appear to closely follow the dependence
predicted by Eq. (5), while at higher intensities, nonlinear effects
start to manifest themselves. The greatest deviation from Eq. (5) is
observed in the case of the most tightly focused beam with a diameter
of ∼λ and a peak intensity 1023 W cm−2 and constitutes about 16%
[see Fig. 5(b2)]. The lower values for the real dependence in com-
parison with those predicted by Eq. (5) can be explained by the fact
that in a sufficiently strong intensity gradient, a proton can attain
energies high enough to cause significant shifts in its position dur-
ing the time of its interaction with the laser pulse, which is normally
much shorter than the time necessary for the proton to move from
its initial position by a notable distance. As a result, the proton inter-
acts with maximum gradient for only a fraction of the whole time of

FIG. 5. (a) ϕ, θ-integrated spectral distributions of protons accelerated by tightly
focused Gaussian (blue line) and Laguerre–Gaussian (red line) beams. The para-
meters of the Gaussian beam are f# = 0.70, DF = 1.0λ, and zR = 4.3λ, while
those for the Laguerre–Gaussian beam are f# = 1.05, DF = 1.0λ, and zR = 17.8λ.
(b1) Cutoff (maximum) energy as a function of squared maximum intensity gradient
([∇⃗g(r⃗ )]max)

2, where g(r⃗) is the normalized spatial distribution of the intensity.
The maximum intensities at the focal spot for all data points are set to 1022 W
cm−2. The green, blue, and red dots show the data for flat-top, Gaussian and
Laguerre–Gaussian profiles, respectively; the black line shows the linear approx-
imation Emax ∼ ([∇⃗g(r⃗ )]max)

2. (b2) The same as (b1), but with the maximum
intensities set to 1023 W cm−2.

the interaction and attains a lower final energy. Thus, this analysis
indicates that the simplified scaling given by Eq. (5) is applicable up
to 1023 W cm−2. In this range, if the shape of the intensity profile
remains the same, i.e., I2(r⃗) = kI1(r⃗), then the final kinetic energy
of the proton can be immediately found as Ei2 = k2Ei1, eliminating
the need for additional simulations. Conversely, given two values
of the cutoff energy Emax1 and Emax2, it is possible to retrieve the
unknown scale of the second intensity profile with the same rela-
tive slope as I2(r⃗) =

√
Emax2/Emax1I1(r⃗), which is extremely useful

for the reconstruction task considered here.

III. RECONSTRUCTION OF THE LASER SPATIAL
PROFILE AND ESTIMATION OF ITS PEAK INTENSITY
BASED ON CNN

For the development of a robust technique for diagnosing
tightly focused laser pulses with extreme intensity based on the prop-
erties of directly accelerated proton spectra, it is necessary to find
an effective solution of a multiparameter inverse problem. As the
relations between intensity and particle distributions are nontrivial,
assessment of experimental data requires an approach that takes this
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complex and nonlinear behavior into account. Here, to reconstruct
the spatial profile of the laser pulse and estimate its peak intensity
from the angular energy spectrum of accelerated protons, a method
based on an ANN is proposed and analyzed. ANNs constitute a vast
subset of machine learning techniques and are based on an algo-
rithm that is “trained” in advance on labeled data sets. For a detailed
explanation of the basic principles of ANNs, the reader can con-
sult Refs. 54 and 55, and here we just provide a brief description
of the dense feedforward neural network relevant in the context of
this work. The training data set contains both the input and output
variables—explicitly in the case of the former. The ANN is trained to
model output variables for a given input vector. This vector is passed
through one or more intermediate layers of the ANN, called hidden
layers. Each of these generally contains several nodes, called hidden
units, or “neurons.” A neuron takes an input vector, applies to it
adjustable weight and bias vectors, and passes it through a nonlin-
ear activation function. The output vector is compiled from linear
combinations of all the resultant outputs of each hidden node and
passed on in the forward direction. In the final hidden layer, the
hidden units are connected elementwise to the nodes of the output
vector. The procedure of training involves optimizing the weights
and biases of each hidden node to provide the best fit to the out-
put data available for the training set. The “best fit” metric is chosen
for a particular task by the user. One of the common metrics for
regression tasks, where the input variable is mapped to a continuous
output variable (as in our case), is the mean squared residual.

The input of an ANN can have an arbitrary shape, in particular
it can be a two-dimensional map, or, colloquially speaking, an image.
In this case, using a regular dense feedforward neural network may
not always be optimal, since groups of pixels may form distinctive
features, making their relative positions important. If the image is
converted into a one-dimensional vector, these features are ignored,
since the information about mutual positions of pixels is lost. This
problem can be avoided by using a CNN architecture, which intro-
duces one or more convolutional layers before the first hidden layer.
In each of them, an image is convolved with several optimizable ker-
nels extracting different characteristic features. Convolutional layers
may also be followed by so-called “pooling” layers, where the out-
put of the convolutional layer is downsampled on a rougher grid by,
for example, taking local maxima in nodes of the old grid as the val-
ues in each node of the new grid. This procedure reduces the size
of the data with which the ANN works and thus reduces the num-
ber of parameters for optimization, improving the ANN training. It
is interesting to note that the input image of a CNN may also con-
tain multiple color channels, making it a three-dimensional array
rather than a two-dimensional image. This can be used to factor in
some extra information or include an additional variable, which in
the context of this work can be employed for assessment of axially
asymmetric beams that have an additional dependence on the angle
ϕ. This work aims to show that a CNN combined with one fully con-
nected layer is capable of retrieving radial focal distributions of the
laser pulse from the angular energy distribution of protons, which
represents a relevant task for the development of intense laser pulses
diagnostics.

A. Specifics of the proposed approach
To reconstruct the axially symmetric focal distributions of laser

pulses from the angular energy distributions of protons, we chose

FIG. 6. (a) Scheme of the CNN architecture with two convolutional lay-
ers (“Conv2D”) with ReLU activation function, followed by pooling layers
(“MaxPool2D”) and one fully connected (“Dense”) layer with 100 neurons and
sigmoid activation function. The input data are 100 × 100 grayscale images of
ϕ-integrated proton spectra, and the output data are 200 × 200 grayscale images
of intensity distribution. (b) Example of learning curves obtained in one of the train-
ing runs and showing the decrease in the root-mean-square prediction error with
the number of iterations for the training (blue curve) and validation (orange curve)
data sets.

a CNN architecture with two convolutional layers, two pooling lay-
ers, and one fully connected (dense) layer [Fig. 6(a)]. Grayscale 8-bit
images of the angular energy spectra with dimensions 100 × 100
serve as our input. These are similar to the distributions presented
in Figs. 3(a1) and 3(a2), but the energy axis is normalized and
converted into a logarithmic scale, since the latter appears to be
informative in the context of the mandated task. The normalization
is done such that the top row of pixels of the image corresponds
to the cutoff energy Emax, while the bottom row corresponds to an
energy that is four orders of magnitude lower than Emax. The initial
absolute value of the cutoff energy is saved and treated separately to
obtain the scale on the intensity range in accordance with the scaling
law described above. The θ axis uses a linear scale such that the left
column of the image corresponds to θ = 0○ and the right column to
θ = 180○. The intensity of each pixel is set on the basis of proton den-
sity in a particular bin in a logarithmic scale such that the maximum
number of protons always corresponds to 255. For the intensity focal
distributions, 200 × 200 8-bit images serve as the output. Note that
in this work, for a proof-of-principle demonstration, we consider
only axially symmetric beams, which means that the output can be
reduced from a two-dimensional image to a one-dimensional vec-
tor. However, aiming at subsequent realization of a more general
situation in which the output profile may be axially asymmetric,
the two-dimensional shape of the retrieved intensity distributions
is retained. The x and y axes have linear scales and cover the range
from −7.5λ to 7.5λ. The color scale for intensity images, unlike that
for particle distributions, is linear, since this has proved to be more
robust for the reconstruction task. It is normalized such that the
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maximum intensity always corresponds to 255. The absolute value of
the peak intensity is saved and treated separately in conjunction with
Emax and the scaling discussed above. First, input images are passed
through two convolutional layers [“Conv2D” in Fig. 6(a)] with the
rectified linear unit (ReLU) f (x) = max(0, x). As a result of convo-
lution with optimizable kernels, 32 and 64 feature maps are obtained
after the first and second convolutional layers, respectively. In addi-
tion, images after each convolutional layer are downsampled using
pooling layers [“MaxPool2D” in Fig. 6(a)]; in this case, max pooling
is used, i.e., an image is divided into small regions, and local max-
ima in each region are taken for the new pixel value. This allows
small local groups of similar features to be merged into one and
significantly reduces the number of optimized parameters; also, it
enhances CNN training. The output of the final pooling layer with
64 different feature maps is converted into a one-dimensional vec-
tor and submitted to the hidden layer, which is a fully connected
(dense) layer that connects each of the 1600 nodes of this input vec-
tor to each of the 40 000 output vector nodes. Here, the sigmoid
function σ(x) = (1 + e−x)−1 is used as a nonlinear activation func-
tion. The adjustable kernels in the first and second convolutional
layers have sizes of (5, 5) and (3, 3), respectively. These match the
sizes of the first and second pooling kernels, which are also chosen
as (5, 5) for the first pooling layer and (3, 3) for the second pooling
layer. The dense layer consists of 100 neurons. The hyperparameters
of the neural network, such as the number of layers of each type and
the number of nodes in each layer, are adjusted on the basis of a grid-
search algorithm.56 For future studies, the proposed architecture can
be easily modified for assessment of axially asymmetric beams that
depend on the additional variable ϕ by changing the dimensionality
of the input from two to three, i.e., by moving from grayscale single-
channel images to colored multichannel ones. In addition, for axially
symmetric beams, the longitudinal profile may be retrieved by intro-
ducing an additional dimension in the plane containing the beam
axis.

B. Implementation and validation of the method
To train the CNN, a data set consisting of 1030 pairs of

intensity distributions and their corresponding angular energy dis-
tributions of protons was created. The data were roughly evenly
distributed among five different possible initial intensity profiles:
flat-top, Gaussian of the second, fourth, and sixth orders, and
Laguerre–Gaussian. For each profile, ∼20 different f -number val-
ues f# = F/ρ were considered, yielding focal spots with sizes in the
range ∼(1–4)λ. To make the CNN more robust to the quality of input
data, the number of particles for each parameter combination alter-
nated between 103 and 104 for all profiles except Laguerre–Gaussian.
For the latter profile, the number of particles was varied between
2.1 × 104 and 7 × 104. The higher overall number of particles for the
Laguerre–Gaussian beam was used to ensure that the density of the
proton cloud was approximately the same in all cases. Also, since the
Laguerre–Gaussian beam is significantly wider, taking into account
the ring and large Rayleigh length, the total number of particles in
this case had to be increased.

The mean squared error was chosen as the loss function for
optimization, while the optimization itself was performed with a
first-order gradient-based method using the Adam algorithm.57 To
avoid overfitting, which is a common problem resulting from the
high flexibility of ANNs,58 the training continued until the loss

function for the validation subset of the data, which is not explic-
itly used for weight adjustment, did not decrease for more than 20
epochs. At this point, the training was stopped, and the best weights
corresponding to the lowest loss for the validation subset were saved
for subsequent analysis of the intensity distributions. The data were
divided into training and validation subsets in the proportion 9:1.
To obtain statistically significant estimates, a total of ten training
runs were performed. This was done in a k-fold cross-validation
setup55 with k = 10, which implies that for each training run a dif-
ferent 10% portion of the data was taken for validation. An example
of the learning curves obtained in one of these training runs —one
showing the decrease in the root-mean-square error with the num-
ber of iterations for the training and validation subsets—is presented
in Fig. 6(b). As can be seen, after a rapid descent in the initial train-
ing stage, the curves at some point start to level out, especially for the
validation subset, implying that subsequent training does not result
in a significant decrease in the prediction error. It can also be seen
that the final error for the training subset is somewhat lower than
the error for the validation data. This can be attributed to the fact
that the validation subset consists of examples that were not used for
the ANN optimization. Thus, they are “new” to the ANN and are
used to test its ability to generalize and make adequate predictions
on the previously unseen data. Therefore, slightly higher errors are
to be expected for the validation subset.

The trained CNN performed reasonably well on the validation
data set, with an overall profile similar to its a priori known correct
counterpart and with prediction errors for the characteristic para-
meters such as the beam diameter not exceeding a few percent. In
the final test, the validity of its predictions was verified on a com-
pletely new small data set consisting of nine images. The images were
obtained for the following profiles:

● flat-top profiles with { f# = 1.3, I0 = 2 × 1022 W cm−2},
{ f# = 2.8, I0 = 3 × 1021 W cm−2}, and { f# = 3.3, I0 = 6 × 1021

W cm−2};
● Gaussian profiles with { f# = 1.4, I0 = 8 × 1021 W cm−2},

{ f# = 2.2, I0 = 1.3 × 1022 W cm−2}, and { f# = 2.6, I0 = 4
× 1021 W cm−2};

● Laguerre–Gaussian profiles with { f# = 2.1, I0 = 3 × 1021 W
cm−2}, { f# = 2.9, I0 = 1.6 × 1022 W cm−2}, and { f# = 3.5,
I0 = 3 × 1022 W cm−2}.

These profiles, both correct and predicted by the CNN, are shown in
Fig. 7. For the plots presented here, the maximum number of parti-
cles in the proton angular energy spectra was used, i.e., Ntot = 104

for the flat-top and Gaussian profiles and Ntot = 7 × 104 for the
Laguerre–Gaussian profile. The results are summarized in Table I,
including the correct values of the beam diameter DF and the max-
imum intensity I0, the values predicted for the same parameters
by the CNN, their relative errors, and the root-mean-square errors
calculated for the whole two-dimensional profile. It appears that
the CNN has achieved the ability to almost perfectly reproduce the
correct intensity profile from the angular energy distribution of pro-
tons. In some cases, the predictions made by the CNN are nearly
indistinguishable from the correct distributions, while the relative
errors for both the beam diameter DF and the maximum intensity
I0 do not exceed ∼6% for all the presented cases. One-dimensional
cuts are shown for ease of comparison. As an example, two two-
dimensional profiles, the “true” one for laser beam parameters in
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FIG. 7. CNN predictions made on a test data set containing solely cases not
present in the training or validation data set. As the intensity distributions are
axially symmetric, for ease of comparison only radial profiles are shown. Black
lines show correct profiles, and blue markers the CNN predictions. Note that in
some cases these are indistinguishable from one another. (a1)–(a3) Flat-top pro-
files with { f# = 1.3, I0 = 2 × 1022 W cm−2}, { f# = 2.8, I0 = 3 × 1021 W cm−2},
and { f# = 3.3, I0 = 6 × 1021 W cm−2}, respectively; the total number of particles
is Ntot = 104. (b1)–(b3) Gaussian profiles with { f# = 1.4, I0 = 8 × 1021 W cm−2},
{ f# = 2.2, I0 = 1.3 × 1022 W cm−2}, and { f# = 2.6, I0 = 4 × 1021 W cm−2}, respec-
tively; the total number of particles is Ntot = 104. (c1)–(c3) Laguerre–Gaussian
profiles with { f# = 2.1, I0 = 3 × 1021 W cm−2}, { f# = 2.9, I0 = 1.6 × 1022 W cm−2},
and { f# = 3.5, I0 = 3 × 1022 W cm−2}, respectively; the total number of particles
is Ntot = 7 × 104. The vertical and horizontal axes are the same for all plots. (d1)
and (d2) Comparison of the correct two-dimensional intensity distribution with the
two-dimensional profile retrieved by the CNN; the parameters of the laser beam
correspond to (b2).

Fig. 7(b2) and the corresponding one retrieved by the CNN, are pre-
sented in Figs. 7(d1) and 7(d2). The retrieved profile is also axially
symmetric and closely matches the correct one. It has been verified
that the same applies to the rest of the retrieved two-dimensional
distributions. Thus, we can conclude that the CNN-based approach
developed here is viable for reconstructing axially symmetric

intensity distributions in the focal spot region from the angular
energy distributions of accelerated protons.

C. Robustness of the method
In real experiments, the number of particles in each bin of the

angular energy spectra may be different and depends on the density
of the plasma cloud, the sensitivity of detectors, and other factors.
Thus, it is important to ensure that the developed approach is rea-
sonably insensitive to these variations. For this purpose, the CNN
was a priori trained on angular energy distributions with different
numbers of particles in them, ranging between 103 and 104 for all
profiles except Laguerre–Gaussian, for which the number of parti-
cles in the training data was varied between 2.1 × 104 and 7 × 104

for the reasons outlined above. The predictions shown in Fig. 7
were made using particle distributions with the maximum number
of particles in them. To understand how a lower number of parti-
cles affects accuracy and what statistics are sufficient for the CNN
to make adequate predictions, the number of particles was gradually
decreased, and the obtained errors were compared with those pre-
sented in the first nine rows of Table I. The lower limit at which
the accuracy of the CNN predictions appears to be independent
of the particle statistics is about three times lower than the maxi-
mum value, i.e., 3 × 103 for the flat-top and Gaussian profiles and
2.1 × 104 for the Laguerre–Gaussian profile. Examples of angular
energy profiles formed by 100% and 30% of the maximum number
of particles in the simulation are shown for the flat-top intensity pro-
file in Figs. 8(a1) and 8(a2). As can be seen, if only one-third of the
total number of particles participate in forming the angular energy
spectrum, it becomes quite discrete, clearly lacking statistics in cer-
tain regions. Nevertheless, as the analysis conducted here shows,
it is quite sufficient to make accurate predictions. Predicted radial
intensity profiles for the considered angular-spectral distributions
are shown in Figs. 8(b1) and 8(b2). The CNN seems to make cor-
rect predictions, which has also been verified for other test profiles,
and the results have been included in Table I: see rows 10–18. In
certain cases, it was found that the number of particles can even be
decreased by a factor of ∼10; however, for some profiles, the accuracy
decreases, and the errors for the beam diameter and the maximum
intensity may increase by more than 10%–20%.

Considering the limitation on the maximum density of pro-
tons introduced at the beginning of Sec. II, it is worth estimating
how this fits with the obtained requirements on the number of parti-
cles for sufficient statistics. As was shown in the previous paragraph,
≳ 3 × 103 protons are required for correct retrieval of the inten-
sity profile if it does not have wide secondary rings (e.g., a flat-top
or Gaussian profile). In simulations, we average the results over
the polar angle ϕ. In real-life experiments, it will most likely be
impossible to position detectors all around the target in a spher-
ical formation. The ring-like arrangement, on the other hand, is
more plausible. In this case, if the characteristic size of the detec-
tor is Δϕ ∼ 1○, then the total number of particles has to be higher
by a factor of 360○/Δϕ = 360, i.e., there must be about 106 particles,
to obtain the same statistics as in simulations. In addition, detec-
tor efficiency has to be taken into account. For multichannel plate
detectors, which are among the possible types of detectors that can
be used for registering relatively low-energy protons, the absolute
detection efficiency exceeds 10−3 for protons with energies greater
than 10 eV.59 Thus, the number of particles in a focal volume should
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TABLE I. Summary of the CNN predictions made on the basis of ϕ-integrated proton spectra with different numbers of particles for three different intensity profiles: flat-top (FT),
Gaussian (G), and Laguerre–Gaussian (LG). Note that to ensure that the particle density was approximately the same in all cases, a higher number of particles was used for the
Laguerre–Gaussian profiles than for the flat-top and Gaussian profiles.

Ntot (×104) Laser profile
DF/λ

(FWHM)
I0

(×1022 W cm−2)
DCNN

F /λ
(FWHM)

ICNN
0

(×1022 W cm−2) δDF (%) δI0 (%) RMSE (×10−3)

1.0

FT
1.37 2.00 1.40 2.02 2.2 1.0 2.7
2.90 0.300 2.93 0.296 1.0 1.5 2.1
3.41 0.600 3.50 0.593 2.6 1.2 4.4

G
1.85 0.800 1.82 0.780 1.6 2.5 4.3
2.87 1.30 2.80 1.29 2.6 1.1 6.3
3.39 0.400 3.19 0.375 6.0 6.2 22

7.0 LG
1.97 0.300 1.96 0.294 0.8 2.1 6.7
2.72 1.60 2.71 1.58 0.3 1.5 9.1
3.27 3.00 3.21 2.92 1.8 2.8 12

0.3

FT
1.37 2.00 1.40 2.02 1.6 1.1 2.9
2.90 0.300 2.93 0.299 1.0 0.4 3.2
3.41 0.600 3.48 0.591 2.2 1.5 4.1

G
1.85 0.800 1.80 0.769 2.4 3.9 7.3
2.87 1.30 2.78 1.24 3.4 4.8 12
3.39 0.400 3.24 0.381 4.4 4.7 17

2.1 LG
1.97 0.300 1.96 0.297 0.8 1.0 3.8
2.72 1.60 2.69 1.57 0.8 2.0 7.6
3.27 3.00 3.26 2.93 0.2 2.5 6.8

be greater by an additional factor of ∼103. The resulting number
of 109 particles are distributed in a volume of ∼(100)3 μm3, yield-
ing a concentration of ∼1015 cm−3. This value is consistent with
the limitations discussed at the beginning of Sec. II (1016 cm−3 for
a 1 mm thick jet). Furthermore, it is worth mentioning that some
high-power laser facilities offer high repetition rates, enabling tens
of shots to be performed per hour; see, for example, Ref. 60. In this
case, if needed, the statistics of registered particles may be bolstered
by accumulating data from multiple shots, provided that the shot-to-
shot stability of the laser pulse energy is sufficiently high. In addition,
they may also be improved by positioning more detectors around the
target, provided that the experimental setup allows this.

In addition to particle statistics, it is important to verify the
effect of detector misalignment on the predicted value. For exam-
ple, in an experiment, the positions of the detectors corresponding
to θ = 90○ and other directions may be set incorrectly, leading to
some distortion of the angular energy proton spectrum in compar-
ison with the model distribution obtained in simulations. To find
the range where the predictions are insensitive to this misalignment,
particle distributions from the test set were artificially modified by
rotation through a small arbitrary angle. The resultant intensity
profiles reconstructed by the CNN from the modified particle dis-
tributions were compared with the correct ones. It was found that
the optimal range of the misalignment angle is about ±1○. Beyond
this range, the particle distributions become significantly distorted
and are misinterpreted by the CNN, with the errors for DF and I0
increasing above ∼10%–20%.

Thus, we can conclude that the total number of particles and
the misalignment angle should be viewed as important parameters
that have to be considered at the stage of preparing the exper-
iment to ensure that intensity profiles are retrieved with good
accuracy.

D. Constraints on the method
As with other neural network-based algorithms, our approach

is data-driven, and its applicability for reconstruction of a particu-
lar focal distribution depends on the extensiveness and diversity of
the training data set. If the spatial profile of the laser pulse is quali-
tatively similar in appearance to those on which the neural network
was trained, the reconstruction is expected to work correctly. How-
ever, this approach may fail in a completely new case that was not
represented in the training data.

Consider an example of an elliptic beam, as shown in Fig. 9(a).
In simulations, this was obtained by tight focusing of a Gaussian
beam with an off-axis mirror, half of which was covered by an
aperture in the area of x < 0 (before reflection). This leads to an
elongation of the intensity profile along the x axis (ϕ = 0○). The
ϕ-integrated angular energy distribution of protons accelerated by
this laser beam is shown in Fig. 9(b). Since the beam has different
widths in different directions ϕ, the angular energy profiles for these
directions are also different, as can be seen in Figs. 9(c) and 9(d),
where spectral distributions of protons along the major and minor
ellipse axes are presented. One of the key distinctions between these
is the value of the cutoff energy. Since the beam has a greater width
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FIG. 8. (a1) and (a2) Comparison of the ϕ-integrated proton spectra obtained for
Ntot = 104 particles and Ntot = 3 × 103 particles, respectively. (b1) and (b2) Cor-
responding radial intensity profiles predicted by the CNN. Black lines show correct
profiles, and blue markers show CNN predictions. Note that despite the threefold
decrease in the number of particles in (a2), the intensity profile (b2) is still retrieved
correctly. The vertical and horizontal axes are the same for each of the image pairs
(a1) and (a2), (b1) and (b2), as are the color axes for (a1) and (a2).

and a lower gradient along ϕ = 0○, protons accelerated along this
axis gain less energy than those accelerated along ϕ = 90○, and the
cutoff for the former is a few times lower. Passing the ϕ-integrated
spectral distribution through the CNN, which was trained purely
on axially symmetric data, yields an axially symmetric reconstructed
profile that has the same widths along the x- and y-axis directions
(ϕ = 0○ and ϕ = 90○, respectively), in contrast to the spatial distribu-
tion of the original laser beam with different widths [see Figs. 10(a)
and 10(b)]. Interestingly, the width of the reconstructed axially sym-
metric profile is closer to the width of the original profile for ϕ = 90○,
i.e., in the direction of the ellipse’s minor axis, which is least affected
by the introduction of the aperture.

It can also be noted that the predicted profile has a pronounced
peripheral ring that was not observed in the original laser beam. The
dependence of the beam width on the angle ϕ leads to a redistribu-
tion of the ϕ-integrated spectrum of accelerated protons compared
with the results obtained for the axially symmetrical Gaussian beam.
The neural network was trained on data in which changes in the
form of the angular energy spectra, namely, changes in the propor-
tions of high-energy and low-energy particles, were the result of the
appearance of peripheral rings, such as the Laguerre–Gauss mode
ring. Thus, in the case of an elliptical laser beam, the neural net-
work works in exactly the same way, predicting peripheral rings to
describe the cause of the proton redistribution. Although separate
treatment of spectral distributions for each angle ϕ for retrieval of
the intensity profile in this direction may seem an apparent solu-
tion, this is also incapable of correct reconstruction, as can be seen

FIG. 9. (a) Focal intensity profile for an elliptic beam produced by tight focusing of
a Gaussian beam with an off-axis mirror, half of which was covered by an aperture.
(b) ϕ-integrated spectral distribution of protons for this elliptic beam. (c) Spectral
distribution of protons accelerated along the ellipse’s major axis with ϕ = (0.0
± 1.0)○. (d) Spectral distribution of protons accelerated along the ellipse’s minor
axis with ϕ = (90.0 ± 1.0)○.

from Figs. 10(c) and 10(d), where predictions made on the basis
of ϕ = (0.0 ± 1.0)○ and ϕ = (90.0 ± 1.0)○ segments of the angular
energy proton spectrum are presented. In this case, for the minor
axis [ϕ = (90.0 ± 1.0)○], the beam width and intensity are repro-
duced with ≈24% error, while the difference between the retrieved
width and intensity constitutes a factor of ∼2 for the major axis
[ϕ = (0.0 ± 1.0)○]. However, the characteristic gradient value is
reproduced correctly in both cases, which is evident from a com-
parison of the slopes of the original and reconstructed profiles. The
great inconsistency of the results obtained for ϕ = (0.0 ± 1.0)○ can be
explained by the impact of the longitudinal distribution of the laser
beam on the proton angular spectra. Previously, the beam diameter
and its Rayleigh length changed reciprocally for a given profile, and
their relation determined the angular width of the spectral distribu-
tion of protons according to Eq. (6). For the beam partially covered
by the aperture, the Rayleigh length stays almost the same, while the
size of the beam along one of the dimensions increases. In accor-
dance with Eq. (6), this leads to a significant broadening of the
spectrum, which can be clearly seen in Fig. 9(c). In the training
data set, such a great angular width was only obtained for a very
tightly focused beam with a diameter of one wavelength; see, for
example, the angular energy spectrum in Fig. 3(c1). Thus, the imple-
mented neural network is biased toward retrieving smaller focal spot
sizes given a spectral distribution with large angular width, which
leads to the observed underestimation of the beam size in the x-axis
direction.

Based on the analysis conducted here, we come to the famil-
iar conclusion that the neural network may perform inaccurately for
an input on which it was not trained. Thus, to assess more complex
beam profiles, a sufficient amount of relevant data has to be included
in the training data set. For example, if we expect elliptic beams in
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FIG. 10. (a) Radial intensity profiles along the direction ϕ = 0○: correct (black
curve) and predicted on the basis of ϕ-integrated spectral distribution of protons
(blue curve). (b) Radial intensity profiles along the direction ϕ = 90○: correct (black
curve) and predicted on the basis of ϕ-integrated spectral distribution of protons
(blue curve). (c) Same as (a), but with the prediction made on the basis of the
ϕ = (0.0 ± 1.0)○ segment of the spectral distribution. (d) Same as (b), but with
the prediction made on the basis of the ϕ = (90.0 ± 1.0)○ segment of spectral
distribution.

a real experiment owing to the use of one-half of an off-axis mir-
ror, then the training set has to be chosen accordingly, so that the
neural network can model this type of beam. Note that in this case,
a transition to three-dimensional input data will be required, since
the cutoff energies and the general shape of the two-dimensional
angular energy spectrum depend on the variable ϕ. With necessary
modifications and extension of the training data set, the approach
can be applied to treat asymmetric and noncircular beam profiles.
In some cases, some lower symmetry of the beam may probably be
used for reduction of the necessary number of measurements at dif-
ferent angles ϕ. For example, square beam profiles have two lines
of symmetry along the sides of the square and two diagonal lines
of symmetry, and so full measurement of their angular energy dis-
tribution in the range Δϕ = 2π is not absolutely necessary for their
characterization. Some information about possible symmetries may
be obtained on a first step of rough estimation of focal properties
with a reduced intensity.

It is also worth noting that the focal intensity distribution may
be affected by wavefront phase distortions. If these distortions are
significant, they may impede the correct retrieval of the intensity
profile. To avoid this problem, a more diverse and broad training
set with the inclusion of complex intensity profiles resulting from an
imperfect laser beam wavefront would be required. In this regard,
preliminary wavefront estimation with other techniques such as
Shack–Hartmann sensors61 at reduced laser beam energy may

provide useful information about possible wavefront distortions and
their effect on the intensity profile.

IV. CONCLUSION
The development of the high-energy laser facilities with laser

beam power exceeding the PW level requires diagnostic approaches
that can characterize the intensity distribution in the focal spot
region and the peak intensity without the need for a reduction in
laser power. In this work, a promising diagnostic technique for
tightly focused laser pulses with extreme intensities has been dis-
cussed. It is based on measuring the angular energy spectrum of
protons accelerated from the focal spot region. As has been shown
here, the parameters of the particle distribution depend on the
focal distribution of intensity, although in a nontrivial manner,
which consequently complicates the analysis of the obtained data.
Although it has been demonstrated that some parameters, such as
the cutoff energy and the angular width of the particle energy angu-
lar spectrum, are defined by the maximum intensity and diameter of
the focused beam, as well as its Rayleigh length, the whole particle
distribution has to be considered to obtain a complete reconstruc-
tion of the intensity profile. So, for instance, its low-energy part
may contain information about the presence of secondary rings
with relatively low-intensity slope, making this part of the parti-
cle spectrum essential for distinguishing, for example, between a
tightly focused beam with a simple Gaussian profile and a beam with
sufficiently high-intensity slopes on the periphery, such as for the
Laguerre–Gaussian profile considered here.

In this study, we have shown that by using a CNN, it is possible
to reconstruct the radial distribution of intensity of a tightly focused
high-energy laser beam in the focal plane with acceptable accuracy
and with measurement errors of the main beam parameters that do
not exceed a few percent, assuming that necessary conditions on the
number of accelerated particles and the misalignment angle of the
detectors are satisfied. Implementation of the proposed diagnostic
involves the following:

(i) positioning an array of proton detectors able to perform
energy-resolved measurements around the focal spot region
at equal distances from it, so that each of the detectors cor-
responds to a particular angle θ and the whole array of them
encompasses a sufficiently large area around θ = 90○;

(ii) obtaining a set of measurements of proton spectra in each
direction θ;

(iii) preprocessing the obtained data and integrating the one-
dimensional energy spectrum from each detector into one
two-dimensional angular energy distribution;

(iv) passing the experimentally resulting angular energy spectrum
through the trained CNN to obtain the intensity distribution
in the focal spot region.

Although the current scheme has assumed axially symmetric beams,
it is not limited to the study of such beams. In the absence of
axial symmetry, additional arrays of detectors have to be placed
around the target, so that each subset of detectors corresponds to
a different ϕ. The data for each ϕ can then be treated separately
or by a CNN with three-dimensional input to come up with the
radial intensity profile for a particular direction ϕ. Moreover, the
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comparison of the proton spectra along different angles ϕ allows a
test of the hypothesis of laser beam axial symmetry at the beginning
of laser profile reconstruction.

The described method allows direct implementation of the
focal distribution diagnostics in state-of-the-art and forthcoming
facilities such as ELI, APPOLON, and XCELS. Preliminary mea-
surements and expectations of the focused laser beam profile may
facilitate the application of the method, but although the uncertain-
ties of the former do not generally cause problems, more diverse
training sets will be required to account for the more complex focal
distributions resulting from imperfect laser beam wavefronts and
other factors expected in real experiments.

For the further development of the proposed approach, it can
also be adapted to angular energy distributions of particles with
charge-to-mass ratio different from that of protons, i.e., heavier ions
or electrons. The former would allow the approach to be extended
without significant modifications to a wider intensity range, since
heavy ions are expected to reach lower energies than protons, which
justifies the use of the same nonrelativistic ponderomotive force
approximation given by Eq. (1) and a simple linear scaling between
the cutoff energy and maximum squared intensity gradient for
intensities exceeding 1023–1024 W cm−2. The use of electrons, in
turn, may supply additional information about tightly focused laser
pulses, since despite the great difference in their charge-to-mass
ratio in comparison with protons and their much more efficient
acceleration in the laser field, their angular energy distributions also
seem to exhibit some relation to the laser spatial profile, as has
already been shown in previous work.28 Finally, the approach pre-
sented here can be extended to deal simultaneously with several
kinds of particles with different dynamics (protons, electrons, and
possibly heavy ions), which can be used to estimate a wider range of
laser pulse parameters, including duration.30

SUPPLEMENTARY MATERIAL

See the supplementary material for more insight into the effect
of focal intensity rings on the angular distributions of protons.
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