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ABSTRACT
Nonlocal thermal transport in magnetized plasmas is studied theoretically and numerically with the Vlasov–Fokker–Planck (VFP) model,
in which the magnetic field has nonzero components both perpendicular to and along the temperature gradient. Nonlocal heat transport is
found in both the longitudinal and transverse directions, provided the temperature gradients are sufficiently large. The magnetic field tends to
reduce the nonlocality of the thermal transport in the direction perpendicular to the magnetic field, i.e., the difference between the heat fluxes
predicted by the Braginskii theory and the VFP simulation decreases with increasing magnetic field strength. When the initial temperature
gradient is steep, the nonlocal heat flux depends not only on the present temperature profile, but also on its time history. Moreover, the con-
tribution of high-order terms in the spherical harmonic expansion of the electron distribution function becomes important for a magnetized
plasma, in particular for thermal transport in the direction perpendicular to the temperature gradient.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0086783

I. INTRODUCTION

Thermal transport plays a critical role in inertial confinement
fusion (ICF), leading to fusion target compression and heating.
Classically, heat transport in a plasma is described by Spitzer–Härm
theory.1 Assuming that the plasma is sufficiently close to ther-
mal equilibrium, the transport coefficients can be derived by
linearization of the Vlasov–Fokker–Planck (VFP) equation. How-
ever, Spitzer–Härm theory often becomes invalid in the presence
of steep temperature gradients in laser-produced plasmas, where
nonlocal transport models are required.2–12 Nonlocal thermal trans-
port is also widely encountered in other plasma systems, such as
magnetic fusion devices, astrophysical environments, and general
laser–plasma interactions.13–24

On the other hand, megagauss magnetic fields can be
self-generated in laser-produced plasmas via various mechanisms
such as the Biermann battery effect when the temperature and
density gradients are noncollinear,25 the Weibel instability due to
anisotropic electron velocity distributions,26 and the transport of hot

electrons.27 Also, it has been proposed that the application of strong
external magnetic fields could improve energy coupling efficiency
in ICF, and there have been some experimental implementations
of this proposal.28–30 In a magnetized plasma, the transport coeffi-
cients are expressed in tensor form and are classically given by the
Braginskii theory.31 On the basis of this theory, some more accu-
rate and practical models for arbitrary atomic numbers have been
proposed.32,33 Generally, magnetic fields tend to inhibit and divert
the heat flux, and nonlocal thermal transport also takes place in
magnetized plasmas with steep temperature gradients. In previous
studies, the magnetic fields have usually been assumed to be applied
in the direction perpendicular to the temperature gradient.10,11,34–37

In real experiments, however, magnetic fields can be found in
arbitrary directions.

In this paper, nonlocal electron thermal transport with DC
magnetic fields applied in arbitrary directions is investigated
theoretically and numerically using a VFP simulation code devel-
oped with a spherical harmonics expansion method. In contrast to
local heat transport, it is found that the presence of a magnetic field
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component along the temperature gradient can lead to significant
coupling of thermal transport along the directions parallel (longitu-
dinal) and perpendicular (transverse) to the temperature gradient in
nonlocal heat transport. The remainder of the paper is structured as
follows. In Sec. II, the local theory of thermal transport in a mag-
netized plasma is reviewed briefly. Section III introduces the basic
equations and numerical scheme for the VFP code that is developed
here and used in the subsequent investigation. Thermal transport in
a magnetized plasma under different configurations is investigated
in Sec. IV. Conclusions are presented in Sec. V.

II. THEORY OF LOCAL THERMAL TRANSPORT
IN A MAGNETIZED PLASMA

Thermal transport in a fully ionized plasma can be described by
the VFP equation

∂ f
∂t
+ v ⋅ ∇ f − (

eE
me
+ v ×

eB
mec
) ⋅ ∇v f = Cee + Cei, (1)

where f (v, x, t) is the electron distribution function (EDF), me and
e are the electron mass and charge, and E and B are the electric and
magnetic fields. The operators on the right-hand side represent the
effects of electron–electron and electron–ion collisions. Under the
assumption that the temperature gradient is sufficiently small, with
∇Te/Te ≪ 1/λe, where λe is the electron mean free path, the distri-
bution function can be expanded as a homogeneous zeroth-order
term plus a small anisotropic term:31

f (v, x, t) ≃ f0(v, x, t) +
v
v
⋅ f1(v, x, t), (2)

where the isotropic term f0(v, x, t) is initially assumed to be a
Maxwellian distribution given by f0 = ne(me/2πTe)

3/2

exp(−mev2
/2Te) and the perturbed term f1(v, x, t) is related to the

thermal transport due to the temperature gradient. Substituting
Eq. (2) into Eq. (1), the perturbed term for the steady state can be
obtained as

v∇ f0 −
eE
me
∇v f0 −

eB
mec
× f1 = −νei f1, (3)

where νei is the electron–ion collision frequency. The electron–
electron collision term that would otherwise appear on the right-side
of Eq. (3) can be neglected in the Lorentz gas approximation in the
high-Z limit, which is valid since the characteristic electron–electron
collision frequency νee ≈ νei/Z in neutral plasmas.31

In classical local transport models, it is usually assumed that
the magnetic field B is perpendicular to the temperature gradient,
because the magnetic field does not change the transport along
the magnetic field for the first order of perturbations.32 Under a
transverse magnetic field, the solution to Eq. (3) is given straight-
forwardly by

f1 =
1

ν2
ei + ω2 (−νeig − ω × g), (4)

g = v∇ f0 −
eE
me
∇v f0, (5)

where ω = eB/mec is the gyrofrequency of electrons in the mag-
netic field. Equation (4) shows that there are two terms contributing
to the perturbation of the distribution function, the first of which
is due to the temperature gradient and the second to the pres-
ence of the magnetic field.34 It should be noted that f1 is rotated
by the Lorentz force, and so the heat flux is no longer parallel to
the temperature gradient. In addition, the “effective” electron col-
lision frequency is reduced by the magnetic field via the factor
1/(1 + ω2

/ν2
ei).36

To calculate the electric field and heat flux, Eq. (4) is substituted
into the Ampère–Maxwell law:

J = −
4πe

3 ∫
f1v3 dv =

c
4π
∇× B. (6)

The heat flux is then given by

Q =
2πme

3 ∫ f1v5 dv =
2πme

3 ∫
v5

ν2
ei + ω2 (−νeig − ω × g) dv. (7)

In the notation adopted by Braginskii,31 the above integrations yield
the following transport relations:

eneE = −∇Pe + J × B/c + α�J/ne − α∧b × J/ne

− β�∇Te − β∧b ×∇Te, (8)

Q = −(β� +
5
2
)

Te

e
J − β∧

Te

e
b × J − κ�∇Te − κ∧b ×∇Te, (9)

where Pe is the scalar intrinsic pressure, ne is the electron number
density, and b is the unit vector in the magnetic field direction. The κ
coefficients are for the thermal heat flux from temperature gradients,
whereas the β coefficients give the heat flux driven by electric cur-
rents. These quantities are expressed in terms of components parallel
to the driving terms, which are perpendicular to the magnetic field
and indicated by subscript �, and components in a crossed direction,
which are perpendicular to both the magnetic field and the driving
term and indicated by subscript ∧. The driving terms are the current
density and temperature gradient. The transport coefficients read as
follows:35

κ� =
2Tene

mevT
∣Ω∣

ϕ11ϕ2
7 − ϕ7ϕ2

9 +Ω2
(ϕ11ϕ2

10 + ϕ7ϕ2
12 − 2ϕ9ϕ10ϕ12)

ϕ2
7 +Ω2ϕ2

10
,

κ∧ =
2Tene

mevT

ϕ14ϕ2
7 + ϕ10ϕ2

9 + 2ϕ7ϕ9ϕ12 +Ω2
(ϕ14ϕ2

10 − ϕ10ϕ2
12)

ϕ2
7 +Ω2ϕ2

10
,

β� = ∣Ω∣
ϕ9ϕ7 +Ω2ϕ12ϕ10

ϕ2
7 +Ω2ϕ2

10
−

5
2

, β∧ =
ϕ12ϕ7 − ϕ9ϕ10

ϕ2
7 +Ω2ϕ2

10
,

α� =
1
2

menevT
ϕ7

ϕ2
7 +Ω2ϕ2

10
,

α∧ =
1
2

menevT ∣Ω∣(1 −
ϕ10

ϕ2
7 +Ω2ϕ2

10
), (10)
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FIG. 1. Dependence of transport coefficients (a) κ�, (b) κ∧, (c) β
�

, and (d) β
∧

on the Hall coefficient ωτei .

where Ω = ωτei is the Hall coefficient, τei is the electron–ion collision
time, u = v/vte is the normalized velocity with vte =

√
2Te/me, and

the dimensionless functions ϕn are

ϕn(Ω) =
4

3
√

π ∫
une−u2

du
1 +Ω2u6 . (11)

Figure 1 shows the transport coefficients as functions of the
applied magnetic field strength ωτei, which indicates both the
suppression and deflection of the heat flux by the magnetic field.
As the magnetic field increases, the transport coefficients κ� and
β
�

along the temperature gradient decay rapidly, while the crossed
transport coefficients κ∧ and β

∧
perpendicular to the gradient

and the magnetic field first increase before ωτei ∼ 0.1 and then
decrease.

III. DEVELOPMENT OF THE VFP CODE
Since the diffusion approximation is used, the above theory

is limited to local thermal transport. To study nonlocal thermal
transport under magnetic fields along arbitrary directions, we have
developed a VFP code with a longitudinal spatial coordinate and
three velocity components (1D3V) for electrons, while the ions are
fixed as a neutral background. Generally, the VFP equation can be
written as

∂ f
∂t
+ vx

∂ f
∂x
− (

eE
me
+ v ×

eB
mec
) ⋅ ∇v f = Cee + Cei. (12)

Even though the VFP equation gives a complete description of
electron dynamics, direct solution of this equation is difficult. An
efficient way is to reduce the computational cost by expanding the
distribution function in spherical harmonics Ym

ℓ , with the expansion
being truncated at a certain order ℓ:38–40

f (v, x, t) =
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

f m
ℓ (v, x, t)Ym

ℓ . (13)

This approach is acceptable because the collisions ensure that
the distribution function tends to isotropy. On substitution of the
above expansion into Eq. (12), the equation for the harmonic
components can be written as

∂ f m
ℓ

∂t
+A

m
ℓ +E

m
ℓ +B

m
ℓ = C

m
ℓ . (14)

On the left-hand side of Eq. (14), A m
ℓ represents the contribution of

spatial advection, E m
ℓ that of electric fields, and B m

ℓ that of magnetic
fields, while the term on the right-hand side is due to collisions (see
Ref. 39 for more details of the terms on both sides). The electric field
is calculated via the quasineutral approximation or by Ampère’s law,
and we ignore the evolution of the magnetic fields. The timescale of
electron transport is much shorter than that of ion motion, and so
the ions are treated as a cold background.

The numerical implementations for solving the equations are
identical to the methods in Ref. 40. The central difference approach
is used for the derivatives in real space, and the Vlasov operator
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on the left-hand side is integrated by the Runge–Kutta method.
Following the Chang–Cooper scheme,41 the Fokker–Planck colli-
sion operator is differenced using an implicit and energy-conserving
scheme according to Ref. 42.

To simplify the study, we normalize the variables as follows:

v →
v
vn

, t →
t

τn
, x →

x
λn

,

f →
v3

n f
nn

, E→
eτ2

nE
meλn

, B→
eBτn

me
,

(15)

where the temperature is normalized to a reference value Tn and
the density to nn. Correspondingly, vn =

√
2kBTn/me is the ther-

mal velocity, τn = m2
e v3

n/(4πZe4nn ln Λ) is the electron–ion collision
time, and λn = vnτn. For simplicity, the Coulomb logarithm ln Λ is
assumed to be constant everywhere in spatial space.

To validate the code, we have carried out benchmark studies
by comparing the simulation results with those of the classical local
transport theory given in Sec. II. The initial temperature profile is

Te(x) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

T0, x > 2xmax/3,

T0 + 2ΔT, x < xmax/3,

T0 + ΔT − ΔT cos(
3x

xmax
π), elsewhere.

(16)

By varying the values of xmax and ΔT, different temperature gra-
dients can be obtained. The magnetic field is uniform, and so J = 0
and the heat flux driven by the current is zero. The plasma is ini-
tialized under the assumptions that the density is spatially uniform,
the electron distribution is Maxwellian, and Z = 16. A continuous
boundary condition is applied on two boundaries along the x direc-
tion. The simulation is stopped when the heat wave front reaches the
boundary.

In the case of an unmagnetized plasma, according to the
local transport theory, the electrons with velocities near v ≃ 3.7vte
make the greatest contribution to the heat flux. Correspondingly,
f1 ≈ 533(λe/LT) fM at v ≃ 3.7vte, where LT = Te/∇Te is the scale
length. Therefore, the classical electron thermal transport theory
only holds when λe/LT ≪ 10−3. We have carried out a numerical

FIG. 2. Heat transport in a plasma for a temperature gradient λe/LT ∼ 5 × 10−5

in a magnetic field B = Bxex + Bzez , with eBxτn/me = ωxτn = 0.1 and eBzτn/me

= ωzτn = 0.1, where the heat fluxes along the x, y, and z directions obtained from
the simulation (dots) are compared with those from Braginskii’s local theory (solid
lines), and the temperature profile is shown by the blue line.

simulation in the local transport regime. Figure 2 presents the heat
transport along the temperature gradient with ΔT = 1.5T0, where
the degree of nonlocality at x = xmax/2 is about λe/LT ∼ 5 × 10−5, and
the magnetic field B = Bxex + Bzez , with eBxτn/me = ωxτn = 0.1 and
eBzτn/me = ωzτn = 0.1. It is confirmed that the simulation results
obtained with our code agree well with those of the local transport
theory. It is worth mentioning that the Braginskii heat fluxes are
calculated using the instantaneous density and temperature profiles
obtained from the VFP simulations.

IV. SIMULATIONS OF NONLOCAL TRANSPORT
IN MAGNETIZED PLASMAS
A. Nonlocal transport under magnetic fields along
different directions

Using the VFP code, we investigate the coupling of thermal
transports along the directions parallel and perpendicular to the
temperature gradient in the presence of a DC magnetic field along
different directions.

First, we consider a magnetic field applied along the transverse
(z) direction, which will lead to thermal transport in the y direction
besides the transport along the temperature gradient in the x direc-
tion. When the condition λe/LT ≪ 10−3 is not satisfied, the electron
distribution function (EDF) will no longer be Maxwellian. Further-
more, the perturbation f1 may be greater than f0 in some velocity
region, which will cause breakdown of the local theory of thermal
transport. As a result, the heat flux calculated by the classical theo-
retical models will be significantly overestimated in the case of a large
temperature gradient. Figure 3 shows the heat flux along the direc-
tions parallel and perpendicular to a large temperature gradient.
At a moderately large temperature gradient λe/LT ≈ 0.01, Fig. 3(a)
clearly shows that nonlocal transport appears in an unmagnetized
plasma. Our VFP simulation demonstrates that the peak heat flux Qx
with Bz = 0 is much smaller than the saturated heat flux predicted
by Spitzer–Härm theory. Moreover, the heat flux obtained from
our VFP simulation is distributed over a wider area, which implies
the existence of a preheating effect due to the nonlocal thermal
transport.

When a transverse magnetic field is applied along the z direc-
tion with a normalized field strength ωzτn = 0.05, which is about
16 T for a plasma with Z = 16, ne = 1021 cm−3, and Te = 2.5 keV. It
is found that the heat flux Qx along the temperature gradient can be
significantly reduced in comparison with the unmagnetized case. In
the case ωzτn = 0.05, the heat flux Qx obtained from the VFP simula-
tion almost coincides with that estimated by the classical Braginskii
model, indicating that thermal transport with a large temperature
gradient may become local again under a strong transverse magnetic
field. However, Fig. 3(b) shows that a transverse heat flux Qy along
the y direction will be present in the case of a transverse magnetic
field Bz . As illustrated in Fig. 3(b), this transverse heat flux Qy is well
predicted by the Braginskii theory for a moderately large tempera-
ture gradient λe/LT ≈ 0.01. This is because the magnetic field will be
able to localize the heat flux if the Larmor radius is much shorter
than the scale length of the temperature gradient.36 For the mag-
netic field ωτn = 0.05 and temperature gradient λe/LT ≃ 0.01 used in
Fig. 3(b), we have rL/LT ≈ 0.2.

For comparison, Figs. 3(c) and 3(d) show the heat flux with
a large temperature gradient λe/LT ≈ 0.05. In this case, nonlocal
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FIG. 3. Heat flux distributions in the absence and presence of a magnetic field B = Bzez . (a) and (b) Heat flux components Qx and Qy along the x and y directions,
respectively, for a moderately large temperature gradient λe/LT ≈ 0.01 at t = 200τn (the time at which the heat wave front roughly reaches the boundary). (c) and (d) Heat
flux components Qx and Qy , respectively, for an extremely large temperature gradient λe/LT ≈ 0.05 at t = 20τn. The blue solid line shows the initial temperature profile.
The VFP simulation results are shown by the solid lines with ωzτn = 0.05 (red) or ωzτn = 0 (black), and the dotted lines are calculated from Eq. (9) with ωzτn = 0.05 (red)
or ωzτn = 0 (black), where the instantaneous density and temperature profiles obtained from the VFP simulations are employed. Note that Qy = 0 in the case Bz = 0.

transport becomes significant for both the unmagnetized and mag-
netized plasmas. More importantly, the nonlocal thermal transport
in this case occurs not only along the temperature gradient (Qx)

but also along the transverse direction (Qy) with Bz ≠ 0. The ther-
mal transport along the y direction exhibits a stronger nonlocality
than that along the x direction. Usually, the so-called heat flux lim-
iter ∣QVFP/menev3

te∣ can be used to estimate the degree of nonlinearity
of the transport, and a flux limiter of 0.15 is often used in MHD fluid
codes.43,44 The limiter is around 0.7 for the longitudinal heat flux in
Fig. 3(c), while for the Righi–Leduc heat flux in Fig. 3(d) it is about
0.18. That is to say, the VFP simulations show that the heat flux
limiter for the transverse (Righi–Leduc) heat flux is much smaller
than that for the standard component of the longitudinal heat
flux.

We now consider the case in which the DC magnetic field has
nonzero components along both the transverse (z) and longitudi-
nal (x) directions: B = Bxex + Bzez . The thermal flux Qz along the
z direction is now no longer zero, since the magnetic field Bx along
the x direction can divert the heat flux Qy along the y direction
to the z direction. According to the local heat transport theory,
the transport parallel to the magnetic field will not be affected
by the applied magnetic field. Taking the scalar product of both
sides of Eq. (3) with B gives B ⋅ [v∇ f0 − (eE/me)∇v f0 + νei f1] = 0.
Therefore, without loss of generality, it can be assumed that the mag-
netic field is perpendicular to the heat flux, i.e., f1 ⋅ ω = 0. In the
nonlocal transport regime, however, the isotropic part of the elec-
tron distribution can be far from Maxwellian, and its evolution is

associated with all the components of f1. Furthermore, the first-
order expansion is no longer sufficiently accurate in the nonlocal
transport regime. Actually, high-order spherical harmonic terms
play an important role in the transport process, and the first-order
harmonic f1 is strongly coupled with those high-order terms, as
shown in the following.

Figure 4 compares the heat fluxes along different directions
with a large temperature gradient λe/LT ≈ 0.05 under a magnetic
field B = Bxex + Bzez . We truncate the spherical harmonic expan-
sion at order ℓ = 8 here. Figure 4(a) shows that in comparison with
the case of a purely transverse magnetic field B = Bzez , the heat flux
Qx along the temperature gradient can be slightly enhanced by the
x component of the magnetic field B = Bxex + Bzez , and the Bra-
ginskii theory significantly overestimates Qx. By contrast, Fig. 4(b)
shows that the heat flux Qy along the cross direction will be signif-
icantly reduced by the Bx component of the magnetic field. This is
because Bx will deflect the heat flux Qy partially into the heat flux
Qz . As another consequence, a nonzero Qz is induced, as shown in
Fig. 4(c). As can be seen from Figs. 4(b) and 4(c), the Braginskii
theory significantly overestimates Qy as well as Qz .

In Fig. 5, we plot the time-averaged ratio ∣QVFP/QBrag∣ of the
heat flux obtained from the VFP simulation to that estimated by the
Braginskii theory under different magnetic fields at xmax/2. When
the magnetic field is perpendicular to the temperature gradient
(ωxτn = 0), the transverse magnetic field Bz inhibits the nonlocal
effect, and the heat flux in the x direction is almost local when
ωzτn ≥ 0.1. The heat flux Qy in the y direction from the VFP
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FIG. 4. Heat flux distributions with a purely transverse magnetic field Bz or a magnetic field B = Bxex + Bzez at t = 20τn. (a)–(c) Heat flux components Qx , Qy , and Qz ,
respectively, for a temperature gradient λe/LT ≈ 0.05. The green lines are for ωxτn = 0.1 and ωzτn = 0.1, and the red lines are for ωxτn = 0 and ωzτn = 0.1, with the solid
lines being from the simulation and the dotted lines from the Braginskii theory.

simulation is significantly smaller than that estimated by the
Braginskii theory, and the radio ∣QVFP/QBrag∣ is always smaller than
0.4 for ωzτn ≤ 0.125. This indicates that the transverse magnetic
field Bz can localize the heat flux Qx along the temperature gra-
dient with ωxτn ≥ 0.1 (the corresponding rL/LT ≤ 0.05). However,
this transverse magnetic field will induce a nonzero heat flux Qy in
the y direction, and the classical Braginskii theory will overestimate
the value of Qy. The heat fluxes Qy and Qz in the two transverse
directions can be localized by an increase in the magnetic field com-
ponent Bx along the temperature gradient, as shown in Figs. 5(b)
and 5(c), since electron transverse motion will be suppressed by
the longitudinal magnetic field Bx, thereby reducing the effective
electron mean free path in the transverse directions.34 However,
Fig. 5(a) shows that the Braginskii theory overestimates the heat flux
Qx more with increasing Bx, and the heat transport along the tem-
perature gradient exhibits a stronger nonlocality. With the increase
of the longitudinal magnetic field Bx, the electrons will be guided
along the x direction and the transverse electron motion will be sup-
pressed. Consequently, the heat flux Qx is enhanced, while the heat
fluxes Qy and Qz in the transverse directions are localized. Therefore,
with increasing Bx, the heat transport along the x direction exhibits
a stronger nonlocality with a smaller Qx,VFP/Qx,Brag, as shown in

Fig. 5(a). In the NIF, the typical LT is about 5 mm,45,46 and so mag-
netic fields of the order of several tesla are high enough to affect
the transport process. The experiment also shows that an external
field along the hohlraum results in a significant increase in plasma
temperature.47

As shown in Fig. 4(c), a nonzero Qz will be induced owing
to the rotation of Qy by the Bx component of the magnetic field.
Figure 5(c) further shows that the Qz obtained from the VFP sim-
ulations is always much lower than that estimated by the classical
Braginskii theory (∣Qz,VFP/Qz,Brag∣ ≤ 0.1). That is to say, the nonlo-
cality of the heat flux component Qz is more significant, and hence
Qz should be treated more carefully.

In our simulations, the initial electron distribution function is
assumed to be Maxwellian, and therefore a certain response time
is required to generate the heat flux. In the local transport theory,
the Braginskii transport is a quasistatic state. When the tempera-
ture gradient is steep, however, we find that the heat flux cannot
reach a quasistatic value before the temperature profile changes sig-
nificantly. For an initial steep temperature gradient λe/LT ≈ 0.05,
Fig. 6 shows that the growth rates of the heat flux components along
different directions are significantly different. The heat flux Qx in
the x direction increases most rapidly at the beginning, reaching

FIG. 5. Dependence of the time-averaged ratio ∣QVFP/QBrag∣ of the heat flux obtained from the VFP simulation to that estimated by the Braginskii theory within the first 100
collision cycles at xmax/2, where λe/LT ≈ 0.05 and the distribution function is calculated up to harmonic order ℓ = 8. Different lines correspond to different strengths of the
transverse magnetic field component Bz , and the dotted line in (a) corresponds to the heat flux in the absence of a magnetic field.
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FIG. 6. Time evolution of the heat flux components Qx , Qy , and Qz and the
instantaneous scale length of the temperature gradient LT at the point xmax/2.
The initial scale length of the temperature gradient and the applied magnetic field
B = Bxex + Bzez are the same as the parameters in Fig. 4. The solid lines show
the heat flux in the x (black), y (red), and z (green) directions, while the dotted
line represents the instantaneous scale length of the temperature gradient. The
simulation is carried out with a spherical harmonic expansion up to order ℓ = 8.

a peak at t ∼ 5τn. It then decays rapidly during 5τn ≤ t ≤ 20τn and
slowly after t ∼ 30τn. In comparison, the growth rates of the heat
flux components in the y and z directions are slower. The heat flux
Qx is due mainly to the temperature gradient along the x direc-
tion, while the heat flux components Qy and Qz in the directions
perpendicular to the temperature gradient come from deflection
by the magnetic field, which naturally lags behind the growth of
Qx. The result is that the nonlocal heat flux depends not only
on the current temperature profile, but also on the history of the
temperature profile. This could be one reason why some nonlocal
heat flux models fail, since they only consider the Te profile at the
current time.

B. Effects of harmonic expansion order
In the local transport theory, the diffusion approximation

is usually adopted, with only the first-order spherical harmonic
being considered. However, the situation is much more compli-
cated in the nonlocal transport regime, particularly in magnetized

plasmas, where transverse thermal transport is induced as well.
Figure 7 shows the ratios of the higher-order spherical harmonic
terms f 0

1, f 0
2, f 0

3, and f 0
4 to the zeroth-order (isotropic) term f 0

0
of the EDF in velocity space at the points x = xmax/3, xmax/2,
and 2xmax/3 in the nonlocal regime. For a relatively large tem-
perature gradient, it can be seen that the first-order term f 0

1
can be greater than the isotropic term f 0

0 in the high-energy
region around v ≈ 3.7vn that makes the greatest contribution to
the heat flux. Also, the high-order terms appear to be more
important in the spatial region around x = 2xmax/3 where the
relatively cold plasma is preheated by the electrons at the tail
of the electron distribution function. By contrast, the high-order
terms are not so important at the top of the temperature profile
(x ≤ xmax/3). In particular, the high-order spherical harmonic terms
can become comparable to or even larger than the zeroth-order
term f 0

0 in the high-energy velocity region. Therefore, linear per-
turbation theory is no longer valid, and the contributions of those
high-order terms must be considered precisely in the nonlocal
transport model.

Considering higher-order expansion terms, the components of
f 0

1 and f 1
1 will be coupled together through f m

2 (for m = 0, 1, 2).
Therefore, the magnetic field component Bx along the temperature
gradient will also affect the transport process. Figure 8 shows the
time evolution of the heat flux at the point x = xmax/2 when the
magnetic field is not completely perpendicular to the temperature
gradient. As can be seen, the truncated order of the spherical har-
monic expansion used in the VFP simulation has a relatively weak
effect on the heat flux Qx in the x direction, but a more significant
effect on the heat fluxes Qy and Qz . With the first-order expansion
term only, all the components Qx, Qy, and Qz of the heat flux are
overestimated, while with the first two expansion terms, all the com-
ponents are underestimated. More interestingly, the higher-order
terms have a more significant effect on the heat flux components
Qy and Qz that are perpendicular to the temperature gradient. Gen-
erally, we find that the VFP simulation results converge when the
expansion is taken up to order ℓ = 8, as has been done in the
simulations presented above.

The effect of high-order terms on the distribution of the heat
flux is shown in Fig. 9. It is found that the strong preheating effect
at the heat front of Qy and Qz can be exactly preserved only when

FIG. 7. Ratios of the higher-order spherical harmonic terms f 0
1, f 0

2, f 0
3, and f 0

4 to the zeroth-order (isotropic) term f 0
0 of the EDF at longitudinal positions (a) x = xmax/3, (b)

x = xmax/2, and (c) x = 2xmax/3.
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FIG. 8. (a)–(c) Time evolution of the heat flux components Qx , Qy , and Qz , respectively, at the point x = xmax/2, where the comparison is made for different
orders of the spherical harmonic expansion under a temperature gradient λe/LT ≈ 0.05 and a magnetic field B = Bxex + Bzez , with eBxτn/me = ωxτn = 0.1 and
eBzτn/me = ωzτn = 0.1.

FIG. 9. (a)–(c) Heat flux distributions Qx , Qy , and Qz , respectively, at t = 20τn. The plasma and the magnetic field parameters are as in Fig. 8. The black lines and red lines
are obtained with the first and ℓ = 8 spherical harmonic expansion orders, respectively, and the dotted line is the result from the Braginskii theory.

the high-order spherical harmonic terms are retained, while the
first-order spherical harmonic expansion is already enough to treat
the preheating effect at the heat front of Qx.

V. CONCLUSIONS
The nonlocal thermal transport process in magnetized

plasmas has been studied theoretically and numerically with the VFP
model, in which the magnetic field has nonzero components both
perpendicular to and along the temperature gradient. For this pur-
pose, a VFP code with one-dimensional spatial coordinate and
three-dimensional velocity components has been developed. Gener-
ally, the magnetic field component perpendicular to the temperature
gradient tends to restrain the heat flux along this gradient and
induces a transverse heat flux. When the magnetic field has two com-
ponents along the transverse and longitudinal directions, it is found
that the heat flux along the third direction appears via a coupling
between the longitudinal magnetic field and the transverse heat flux.
Nonlocal heat transport is found in both the longitudinal and trans-
verse directions, provided the temperature gradients are sufficiently
large. For nonlocal transport under a magnetic field along an arbi-
trary direction, the magnetic field will reduce the nonlocality of
the heat transport in the direction perpendicular to the magnetic
field, i.e., the difference between the heat fluxes predicted by the
Braginskii theory and the VFP simulations tends to decrease with

increasing magnetic field strength. In real experiments, transverse
magnetic fields are induced at laser ablation fronts. We note that
external magnetic fields are now being introduced on purpose to
control plasma temperature and density profiles.48–50 Generally, a
transverse heat flux may be beneficial to the formation of a more
uniform ablation front with a higher temperature.51 Furthermore,
a stronger nonlocal effect in the transverse direction can reduce
heat transport and produce plasmas with different geometrical fea-
tures, and so it is important to implement an appropriate thermal
transport model in MHD simulations.

More importantly, the nonlocal heat flux depends not only on
the current but also on the preceding temperature profiles. In the
process of heat flux evolution, the response time of the heat flux
component along the temperature gradient is much shorter than
that of the component perpendicular to the gradient. When the tem-
perature gradient is steep, the contribution of higher-order terms
in the spherical harmonic expansion of the electron distribution
function becomes important even for weakly magnetized plasmas,
especially for the thermal transport in the direction perpendicular to
the temperature gradient.
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