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ABSTRACT

The development of a self-sustained quantum electrodynamical (QED) cascade in a single strong laser pulse is studied analytically and nu-
merically. A hydrodynamical approach is used to construct an analytical model of cascade evolution, which includes the key features of the
cascade observed in 3D QED particle-in-cell (QED-PIC) simulations, such as the magnetic field dominance in the cascade plasma and laser
energy absorption. The equations of themodel are derived in closed form and solved numerically. Direct comparison between the solutions of the
model equations and 3DQED-PIC simulations shows that our model is able to describe the complex nonlinear process of cascade development
qualitatively well. Various regimes of the interaction based on the intensity of the laser pulse are revealed in both the solutions of the model
equations and the results of the QED-PIC simulations.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0035347

I. INTRODUCTION

There is strong evidence that the development of quantum elec-
trodynamical (QED) cascades is an inherent feature of the interaction of
extremely strong electromagnetic fields with matter in the majority of
cases where such interactions occur.1–11 The essence of these cascades is
emission of high-energy photons by ultrarelativistic particles (nonlinear
Compton scattering) and the subsequent decay of these photons into
electron–positron pairs (the Breit–Wheeler process), which leads to
multiplication of particles. These processes are believed to play an
important role in many astrophysical phenomena, such as cosmic ray
showers,12 processes in pulsar magnetospheres,1,2,13 and gamma-ray
bursts.14 The variety and complexity of the e+e− plasma structures
produced in QED cascadingmakes it clear that there is no simple way to
tackle the problem. One of the reasons behind this complexity is that the
emission of photons by the electrons and positrons greatly alters the
dynamics of the latter—an effect known as radiation reaction. Obtaining
anaccuratedescriptionof radiation reaction is a longstandingproblem in
both classical and quantum electrodynamics.15–18

With the upcoming multi-petawatt laser facilities such as ELI19

and Apollon,20 these processes are expected to be observed in light–
matter interaction experiments in the laboratory. An extensive search
for the optimal configuration for such experiments is currently being
conducted.21–27 As already mentioned, the significantly nonlinear
nature of the QED cascade complicates its analytical study, and while

particle-in-cell (PIC) simulations serve as a starting point for most
theoretical research and can give valuable insight into the nature of the
processes involved, even the derivation of phenomenological de-
scriptions or scaling laws can be extremely time-consuming because of
the need in most cases for a scan over the multidimensional map of
parameters. These dependences, however, are crucial for the design of
experiments to be carried out on the next generation of laser facilities.
Various schemes have been proposed to lower the threshold of QED
cascading.8,24,25,28–34One such scheme involves theuse ofmultiple laser
pulses with small numbers of seed particles, while another takes ad-
vantage of laser–beam interaction. The key reason why these config-
urations are optimal is that the governing parameter of the QED
processes, χ, which is the ratio of the transverse component of the
effective electric field experienced by the relativistic particle in the rest
frame to the critical Sauter–Schwinger field,35 is maximized in these
scenarios. There is a crucial difference, though, between these two
approaches: in the first case, the cascade gains its energy from the
electromagnetic field and is called an A-type cascade, while in the
second case, the cascade energy ismostly limited by the initial energy of
the seed in what is called an S-type cascade.36

Exploration of these schemes lies beyond the scope of this paper.
Instead, we further investigate a specific configuration of QED cas-
cade development that occurs in a single extremely intense laser pulse
and that can be initiated during interaction with a motionless seed.
This type of cascade has been recently explored by three-dimensional
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(3D)QED-PIC simulations inRef. 37. The peculiarmechanismof this
cascade development makes it difficult to assign it as either an A-type
or S-type cascade. For the sake of convenience, we will briefly describe
the core mechanism of the discussed cascade (see Fig. 1 for a sche-
matic of the process). The main feature that allows the cascade to
sustain itself is the fact that the collective motion of the electrons and
positrons alters the laser field so that its magnetic component be-
comes larger than its electric component while they remain nearly
mutually perpendicular. In such fields, particles drift along the di-
rection of laser propagation with the drift velocity and rotate in the
plane perpendicular to the direction of themagnetic field, and so their
trajectories are helical (see the supplementary material). The particles
radiate gamma quanta along the direction of the instantaneous
tangent to the trajectory. Occasionally, that directionmay be opposite
to the direction of laser propagation. Such gamma quanta eventually
leave the electron–positron plasma and reach the vacuum, where a
strong laser field is present and where they are highly likely to
photoproduce new electron–positron pairs. The newly created pairs
are then accelerated by the laser pulse and pushed toward the plasma
region, and the process repeats. As a result, the QED cascade con-
tinuously expands toward the laser pulse, building a pair plasma
“cushion.” This process is similar to the propagation of the ionization
front in the microwave gas discharge.38 It is important to stress the
major difference between the vacuum and plasma regions: in the
former, the electromagnetic energy is transferred to the cascade
particles, while in the latter, the particles are not accelerated but
release the gained energy in the form of gamma radiation. Some
portion of this radiation returns to the vacuum region and provides
the positive feedback that is essential for the cascade to be able to
sustain itself.

Models describing the electrodynamics of the cushion
plasma37,39 and QED cascade evolution37 have been proposed.
However thesemodels are not self-consistent. Themodel proposed in
Ref. 39 does not take into account particle multiplication due to

cascading, while themodel in Ref. 37 neglects laser field depletion due
to absorption in the cascade plasma. In this paper, we construct a self-
consistent model that describes the spatiotemporal evolution of both
the laser field and the cascade plasma. The goal of the paper is twofold.
First, we develop a reduced model that requires much less in the way
of computational resources than are needed for 3D QED-PIC sim-
ulations. Second, the model development and its verification allow us
to understand and evaluate the roles of the different physical pro-
cesses underlying QED cascading in a single laser pulse.

The remainder of the paper is organized as follows. In Sec. II, we
formulate the problem and start from the kinetic equations, including
QED processes. Next, we propose a set of general simplifications that
allow a great reduction in the complexity of the equations. On the
basis of these simplifications, self-consistent hydrodynamical equa-
tions are derived. In Sec. III, the method of numerical solution of the
derived equations is discussed, and the results of this solution are
compared with those of QED-PIC simulations. The obtained results
are summarized and discussed in Sec. IV. In Appendix A, we examine
the problem of single-electron acceleration in a plane wave, and in
Appendix B, we derive the electrodynamical properties of a dense
electron–positron plasma. The results for both these problems are
used in the derivation of the model equations.

II. DERIVATION OF MODEL OF QED CASCADE
DEVELOPMENT

Similarly to Refs. 28 and 40, we start our analysis from the kinetic
equations for electrons, positrons, and gamma quanta, assuming that
theQED cascade is in its self-sustaining stage and so the seed particles
(e.g., the electrons and the ions of the target) do not contribute to it.
The kinetic equations and Maxwell’s equations can be written as
follows:

zfe±

zt
+ ve ± · ∇fe ± ± [E + (ve ± 3 B)] · zfe ±

zp

� ∫fγ(p′)wpair(p′, p) dp′
+∫fe ± (p′)wrad(p′, p) dp′
−∫fe ± (p)wrad(p, p′) dp′, (1)

zfγ
zt

+ vγ · ∇fγ � ∫fe ± (p′)wrad(p′, p′ − p) dp′

−∫fγ(p)wpair(p, p′) dp′, (2)

∇3 E � −
zB
zt
, (3)

∇3B � zE
zt

+ ∫fe+ve+ dp− ∫fe−ve− dp, (4)

where fe ± ,γ(t, r, p) are the distribution functions of the electrons,
positrons, and gamma quanta, respectively, v is the particle velocity
(which is equal top/

�����
1 + p2

√
for electrons and positrons and top/p for

gamma quanta), wrad(p′, p) dp′ is the probability per unit time for an
electron or positron with momentum p′ to emit a gamma quantum

FIG. 1. Core mechanism of cascade self-sustenance. (a), (f), and (g) Emission of a
gamma quantum in the plasma region or the involved gamma quantum. (b) Decay of
the involved gamma quantum in the vacuum region. (c) Positron and electron
acceleration in the plane wave. (d) Emission of the gamma quantum in the vacuum
region or the decoupled gamma quantum. (e) Helical motion of the positron in the
plasma region.
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withmomentum p′ − p, andwpair(p′, p) dp′ is the probability per unit
time for a gamma quantum with momentum p′ to photoproduce an
electronwithmomentum p and a positronwithmomentum p′ − p.We
use the common relativistic normalization in which the electric and
magnetic fields are normalized to the value of mecωL/e (whereme and
e > 0 are the mass and charge of the electron, c is the speed of light, and
ωL is the characteristic frequency of the external field), the particle
number densities are normalized to the critical density
ncr � meω2

L/4πe2, the energies and momenta are normalized to mec
2

andmec, respectively, and the coordinates and time arenormalized to c/
ωL and 1/ωL, respectively (and thus the velocities are normalized to c).

A. Model assumptions

We adopt several assumptions to simplify the model. First of all,
as we are investigating interaction with a plane electromagnetic wave,
the problem can be considered to be spatially one-dimensional. If we
also restrict ourselves to circularly polarized laser pulses, then the
symmetry with respect to rotation about the axis of pulse propagation
(the x axis hereinafter) can also be utilized. These simplifications lead
to the distribution functions becoming dependent on three variables
(excluding time) rather than six: f (t; r, p) � f (t; x, p, θ)/2π, where p is
the momentum of the particle and θ is the angle between the mo-
mentum and the x axis.

Second, we will assume all distribution functions to be locally
monoenergetic, i.e., f} δ(p−p(x))/p2, where p(x) is the mean
value of themomentum of the particles located in a small vicinity of x.
We denote the mean energy of gamma quanta by εγ and the mean
energy of pairs by εp, assuming that particles are ultrarelativistic and
thus ε2p � 1 + p2

p ≈ p2
p. While the monoenergetic approximation is

quite strong, we suppose that the mechanism of cascade development
explained in Sec. I does not rely on any particular feature of the
particles’ energy spectra. Therefore, we argue that taking account of
the evolution of energy spectra in our model will lead to only
quantitative changes rather than qualitative ones, while greatly
complicating the equations. It will be discussed later how this as-
sumption is valid for the pairs that enter the plasma region with
approximately equal energies. For the gamma quanta, we actually
use a two-stream approximation, i.e., we separate gamma quanta into
those that are emitted in the vacuum region and propagate mostly
along the direction of laser pulse propagation and thus do not
contribute to the cascade (we designate them as decoupled gamma
quanta) and those that are emitted in the plasma region in many
different directions and provide the positive feedback needed for
cascade development (we designate them as either involved gamma
quanta or simply gamma quanta). As Fig. 2 shows, the energy
spectrum of the gamma quanta is broad, while if we exclude the
decoupled gamma quanta, then the width of the spectrum decreases
significantly, which justifies our assumption. As the decoupled gamma
quanta affect the cascade development only by taking away some
portion of the total energy, their spatial distribution is irrelevant for
the cascade, but it will be calculated to allowmore explicit comparison
with the results of the QED-PIC simulations.

To omit integration over energies and the azimuth angle φ, we
redefine f as follows:

f(x, ε, θ,φ)→ ∫∞

0
∫2π

0
f(x, ε, θ,φ)2πε2 dφ dε � n(x)Φ(θ). (5)

where n(x) is the particle density distribution andΦ(θ) is the particle
angular momentum distribution, which are such that∫+∞

−∞
n(x) dx � N, (6)

∫π

0
Φ(θ)sin θ dθ � 1, (7)

where N is the total number of particles. The assumption of a
monoenergetic distribution suggests that we can use a hydrody-
namical approach by calculating the moments of the distribution
functions from Eqs. (1) and (2). The following quantities can be
introduced:

Wpair(χγ, εγ) � ∫wpair(p, p′) dp′, (8)

Wrad(χp, εp) � ∫wrad(p, p′) dp′, (9)

Irad(χp) � ∫wrad(p, p′)(εp − ε ′
p) dp′, (10)

where Wpair and Wrad are the total probabilities of pair photopro-
duction and of gamma-quanta emission, respectively, and Irad is the
intensity of gamma radiation.18 Note that these quantities depend on
the Lorentz-invariant QED parameter χ, which is given by

χ � ε

ES

�������������������
(E + v3B)2 − (v · E)2

√
, (11)

where ε is the particle energy,ES � eES/mecωL � mec2/ZωL, andES �
me

2c3/Ze is the critical Sauter–Schwinger field.35

Generally the hydrodynamical equations have the form of a
continuity equation, i.e.,

zDα
zt

+ zFα
zx

��
β

S[α, β], (12)

whereDα and Fα are the density and flux of some quantity α, and S[α,
β] is the source responsible for changes in α in the process β. Note that

FIG. 2. Mean energy ϵγ of gamma quanta located in the vicinity of the x coordinate
calculated from all the particles (red line) and from the particles with velocity along
the x axis less than 0.5, which supposedly include only the involved gamma quanta
(green line). The error bars depict the standard deviation. The data are taken from
the results of the PIC simulation for the time instant ct/λ � 18. The simulation
parameters are discussed in Sec. III. The initial conditions are the same as in Fig. 6.

Matter Radiat. Extremes 6, 034401 (2021); doi: 10.1063/5.0035347 6, 034401-3

©Author(s) 2021

Matter and
Radiation at Extremes RESEARCH ARTICLE scitation.org/journal/mre

https://doi.org/10.1063/5.0035347
https://scitation.org/journal/mre


despite the fact that we have specified the energy distribution of the
particles, to calculate the sources S[α, β] we also need to know the
angular distribution of the particles, which will be discussed below.
We suppose that the following set of equations can quantitatively
describe the cascade development:

z

zt
np + z

zx
(vxnp) � S[n, pp], (13)

z

zt
(εpnp) + z

zx
(vxεpnp) � S[ε, pp] + S[ε, acc]ψvac

−S[ε, radi]ψpl − S[ε, radd]ψvac, (14)

z

zt
nγ + z

zx
vγ∥nγ( ) � −S[n, pp] + 2S[n, radi]ψpl, (15)

z

zt
vγ∥nγ( ) + z

zx
v2γ∥nγ( ) � −S[v, pp] + 2S[v, radi]ψpl, (16)

z

zt
εγnγ( ) + z

zx
vγ∥εγnγ( ) � −S[ε, pp] + 2S[ε, radi]ψpl, (17)

z

zt

E2 + B2

2
( ) + z

zx
(E3B)x � −2S[ε, acc]ψvac ≡ −j · E, (18)

zΣγ
zt

� 2∫∞

0
S[ε, radd]ψvacdx, (19)

where np � ne+ � ne− is half the density of the electron–positron
plasma under the assumption that the cascade plasma is quasineutral,
vx is the mean longitudinal velocity of the pairs, which is calculated in
Sec. II E, and vγ∥ and v2γ∥ are the mean longitudinal velocity andmean
square longitudinal velocity of the gamma quanta, which are cal-
culated from their angular distribution as follows:

vγ∥ � ∫π

0
Φ(θ)cos θ sin θ dθ, (20)

v2γ∥ � ∫π

0
Φ(θ)cos2 θ sin θ dθ. (21)

Equation (18) is Poynting’s theorem, which is essentially the conti-
nuity equation for the electromagnetic energy density. The sources S
[n, β], S[v, β], and S[ε, β] correspond to the changes in particle density,
longitudinal velocity, and energy, respectively, and the sources S[α,
pp], S[α, acc], S[α, radi], and S[α, radd] correspond to the processes of
pair photoproduction, pair acceleration in the electromagnetic field,
involved gamma-quanta emission by pairs in the plasma region, and
decoupled gamma-quanta emission by pairs in the vacuum region,
respectively [labeled (b), (c), (d), and (f), respectively in Fig. 1]. Σγ is
the total energy of the decoupled gamma quanta. The factor ψvac

(respectively ψpl) is equal to 1 in the vacuum (respectively plasma)
region and to 0 in the plasma (respectively vacuum) region. These
factors will be specified below. Note that ψvac + ψpl � 1. For the sake of
convenience, these factors will be omitted where it is clear what region
is being discussed.

B. Electromagnetic field configuration

According to the results of 3DQED-PIC simulations, the electric
and the magnetic fields inside the plasma region remain almost
mutually perpendicular and the magnitude of the magnetic field is
everywhere larger than that of the electric field (B > E). The spatial
distribution of the electromagnetic field has a characteristic scale of λ
in both regions. In such a field configuration, a charged particle drifts
perpendicularly to both the electric and magnetic fields with velocity
vd � E3B/B2. Under the assumption that the laser pulse propagates
along the x axis and thus the fields lie in the yz plane, this velocity is
directed along the x axis. Assuming that the fields are mutually
perpendicular, we get

vx ≈ E/B. (22)

In the vacuum region, the fields are close to those of a plane wave,
i.e., the electric and magnetic fields are approximately equal in
magnitude (E ≈ B) and are nearly mutually perpendicular (E ·B ≈ 0).
If the initial energy of the particle ε is smaller than the field amplitude
E, then on timescales much shorter than the laser period, the lon-
gitudinal velocity of the particle tends to the speed of light, i.e., vx≈ 1�
E/B (see Appendix A). So, we assume that Eq. (22) is valid in both the
vacuum and plasma regions.

We do not account for reflected waves in our model, for several
reasons. First of all, no significant reflection during the cascade de-
velopment during the stage of its self-sustenance is observed in 3D
QED-PIC simulations. Second, the reflection that occurs during the
initial stage of laser interaction with a thin solid target quickly de-
creases according to the theory of relativity, since particles are being
accelerated in the direction of laser pulse propagation, and thus it
becomes insignificant during the later stages of cascade development.
Our model is not suitable for describing an electron–ion plasma,
though, so we investigate the interaction of the laser pulse with a seed
in the form of a counter-propagating gamma bunch where no re-
flection occurs even during the initial stage of the interaction (see
Sec. III). Moreover, reflection would insignificantly alter the process
of pair photoproduction owing to the fact that gammaquantawith the
highest probability of decay counter-propagate with respect to the
incident laser pulse, i.e., co-propagate with respect to the reflected
radiation. However, the fields of the co-propagating wave do not alter
the governing QED parameter χ of the gamma quanta. Lastly, in the
vacuum region, where the laser field is strongest, it is mostly ultra-
relativistic electrons and positrons that are being born, because
higher-energy photons have a higher probability of pair photopro-
duction. Scattering of a relativistically strong laser field (a0 ≫ 1) on
ultrarelativistic electrons and positrons (γ ≫ 1) occurs in both a
nonlinear and quantum regime. Because of this, and the fact that the
particles’ initial coordinates are uncorrelated, their resulting radiation
is incoherent and its frequency is highly upshifted. Such radiation is
best described in terms of individual photons. The portion of these
photons counter-propagating with respect to the laser pulse can
indeed be considered as reflection. While such photons can enhance
the total yield of electron–positron pairs and gamma quanta through
QED processes of higher order, they are significantly less probable
than nonlinear Compton scattering and the Breit–Wheeler process
and thus are not taken into account in either QED-PIC simulations or
in our model. Note, though, that the energy loss due to incoherent
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gamma radiation in both the vacuumand plasma regions is accounted
for in our model.

C. Involved gamma-quanta distribution function

As discussed in Sec. I, the involved gamma quanta are emitted by
pairs during their motion along helical trajectories in the plasma
region (see the pair tracks in the supplementary material). Because of
this, the angular distribution of the gamma quanta is quite wide. We
will assume that it is smooth and can be described by a single pa-
rameter. This parameter is the velocity v of the instantaneous ref-
erence frame K′ in which the angular distribution of the particles
located in the vicinity of the x coordinate is uniform, i.e.,

Φ′(θ′) ≡ dN′
d cos θ′

� 1
2
, (23)

where dN′ � dN is the number of particles with longitudinal velocities
in the range [cos θ′, cos θ′ + d cos θ′] and

cos θ′ � cos θ − v
1− v cos θ

. (24)

In the laboratory reference frame, this transforms into41

Φ(θ, v) � dN

d cos θ
� dN′
d cos θ′

d cos θ′
d cos θ

� 1− v2

2(1− v cos θ)2. (25)

So, the total distribution function of the involved gamma quanta has
the form

fγ(t;x, θ) � Φ θ, vγ∥(x, t)( )nγ(x, t). (26)

The mean velocity vγ∥ and the mean square velocity v2γ∥ are

vγ∥ � ∫π

0
Φ(θ, v)cos θ sin θ dθ � 1

vγ∥
−
1− v2γ∥
v2γ∥

artanh(vγ∥), (27)

v2γ∥ � ∫π

0
Φ(θ, v)cos2 θ sin θ dθ � 2vγ∥

vγ∥
− 1. (28)

Note that owing to Lorentz transformation, the mean longitudinal
velocity of the gamma quanta, vγ∥, differs from the velocity vγ∥ of the
reference frame inwhich their distribution is uniform.The results of the
QED-PIC simulations show that Eq. (25) is a good approximation for
the angular distribution of the involved gamma quanta [see Figs. 3(a)
and 3(b)].

The χ parameter of the gamma quanta propagating in crossed
electric and magnetic fields, which is the case for both the plasma and
vacuum regions, can be calculated as follows:

χγ �
εγ|B−E cos θ|

ES
� εγE

ES

1− vx cos θ
vx

, (29)

where we have used Eq. (22).
Having specified the distribution function of the gamma quanta

completely, it is possible to calculate the sources S[α, pp] that cor-
respond to the process of pair photoproduction:

FIG. 3. Validation of the approximation used for describing angular distribution of the particles. (a) and (c) Angular distributions of gamma quanta (a) and pairs (c) located in the
vicinity of the coordinate x (color map) and the mean longitudinal velocity calculated from the distribution (black line) computed from the results of the QED-PIC simulation. (b) and
(d) Angular distributions of gamma quanta (b) and pairs (d) calculated from the mean velocity using the expression (25).

Matter Radiat. Extremes 6, 034401 (2021); doi: 10.1063/5.0035347 6, 034401-5

©Author(s) 2021

Matter and
Radiation at Extremes RESEARCH ARTICLE scitation.org/journal/mre

https://www.scitation.org/doi/suppl/10.1063/5.0035347
https://doi.org/10.1063/5.0035347
https://scitation.org/journal/mre


S[n, pp] � nγ ∫π

0
Φ(θ, vγ∥)Wpair(χγ, εγ)sin θ dθ ≡ Wpairnγ, (30)

S[ε, pp] � εγnγ ∫π

0
Φ(θ, vγ∥)Wpair(χγ, εγ)sin θ dθ ≡ Wpairεγnγ, (31)

S[v, pp] � nγ ∫π

0
Φ(θ, vγ∥)Wpair(χγ, εγ)cos θ sin θ dθ ≡ Vpairnγ. (32)

D. Pair dynamics in the vacuum region

Let us examine the electrons andpositrons located in the vacuum
region, where the number of particles is small and so collective plasma
effects can be neglected. Thus, the electromagnetic field in that region
coincides with the field of the incident radiation. In our case, those
electrons and positrons that are born in the vacuum region move in
the field of a plane electromagnetic wave. The dynamics of a single
particle in a plane wave is discussed in Appendix A. Computing the
sources S[α, β] on the right-hand sides of Eqs. (13)–(18) requires
knowledge of the particle distribution function. Although approxi-
mate particle trajectories can be found analytically, deriving an ex-
plicit expression for the distribution function is not feasible in practice
owing to the fact that particles are being born at different time instants
with varying initial conditions. However, a few observations will allow
us to estimate S[α, β] using a different approach. The first observation
is that a strong electromagnetic plane wave pushes particles in the
direction of its propagation, i.e., the x axis. Therefore, after some time
interval, independently on its initial direction, the particle momenta
are oriented almost parallel to the x axis, and so vx≈ 1 [see Fig. 1(c) and
Eq. (A37)]. We neglect the duration of this momentum orientation,
which allows us to approximate the fluxes of particle density and
energy density by simply multiplying these densities by the velocity
vx ≈ 1.

The purpose of the continuity equations in the vacuum region is
essentially to provide the values of the particle densities and energies
and themagnitude of the electricfield at the plasma–vacuum interface
(which we will occasionally call the cascade front). Thus, we are
interested in the total contribution to these values from each particle
during its motion from the moment of its birth in the vacuum region
up to themoment atwhich it reaches the plasmaboundary.Wedo this
by defining the sources S[ε, β] in the following way:

S[ε, β] � ∫π

0
fγ(x, θ)Wpair(χγ, εγ)Δεβ sin θ dθ, (33)

where Δεβ is the total change in energy due to the process β of a single
particle born at the point in space with coordinate x at time instant t
while the particle stays in the vacuum region.

The energy gained by a single particle in the plane wave can be
evaluated as

Δεacc � μ21/3E2/3ε1/30 (1− cos θ)1/3, (34)

where ε0 is the initial particle energy and μ is a parameter determining
the time the particle spends in the vacuum region (see Appendix A).
This parameter depends on the time of particle birth and the time at
which the particle crosses the plasma boundary. Finding the latter
requires either constructing an independent model of cascade front
propagation or finding some heuristics, both of which lie outside the
scope of this paper. Instead, we suppose that μ is constant during
the whole cascade development and that its value can be estimated by

comparing the results of the model with the results of QED-PIC
simulations, and thus μ is the first fitting parameter of our
model. Noting that when pairs are born from gamma quanta their
average initial energy is approximately equal to half the energy of
the parent gamma quanta εγ, we derive the following expression for
S[ε, acc]:

S[ε, acc] � E2/3ε1/3γ μnγ ∫π

0
Φ(θ, vγ∥)Wpair(χγ, εγ)

3 (1− cos θ)1/3 sin θ dθ
≡ E2/3ε1/3γ μGradnγ. (35)

Validation of this approximate expression is shown in Fig. 4(a). Note
that absorption is large in the vacuum region, where the pair density is
small, and is almost negligible in the dense plasma region, as discussed
in Sec. I. Also note that the approximate value is shifted along the x
axis, which corresponds to the fact that we compute j ·E as if the
particle absorbed all the energy at the moment of its birth, whereas
actually j ·E is gained during all the time the particle spends in the
vacuum region [see Eq. (A30)].

The total energy loss due to photon emission of a single particle
can be calculated as follows (see Appendix A):

Δεrad � ∫ ����
4μ3/9

√

0
Irad(χ) dt, (36)

with

dχ

dt
� −

χ0

ε0 + 9
2E

2ε0t2(1− cos θ)[ ]1/3Irad(χ), (37)

χ0 �
1
2
χγ, ε0 � 1

2
εγ. (38)

Therefore, the source term S[εp, rad] takes the form

S[εp, rad] � nγ ∫π

0
Φ(θ, vγ∥)Wpair(χγ, εγ)Δεrad sin θ dθ ≡ Ivacnγ. (39)

E. Pair dynamics in the plasma region

In the plasma region, at each point in space, there exists an
instantaneous reference frame K′moving with velocity vx(x, t) ≈ E/B
in which only a magnetic field is present. It is convenient to obtain
some results in that reference frame. In the frame K′, electrons and
positrons move along themagnetic field with velocity vB′ and rotate in
the plane perpendicular to it with velocity v⊥′ (see Fig. 5). We will
assume that the particles remain ultrarelativistic in that reference
frame, and so v ′

⊥
2 + v ′

B
2 ≈ 1. Motion along the magnetic field results

in a nonzero average current, which has to be taken into account in
Maxwell’s equations, while rotation in the magnetic field gives zero
average current but is responsible for producing gamma quanta. In
particular, the Lorentz-invariant QED parameter χ for pairs can be
written as

χp � v ′
⊥ε ′

pB′
ES

. (40)

We express the primed values through the values in the laboratory

reference frame as B′ � B
���������
1− (E/B)2

√
and ε ′

p � εp

���������
1− (E/B)2

√
,

where we have used the facts that the average particle momentum
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along the x axis is equal to γvx and that vx � E/B. The final form of the
expression for χ is

χe �
v ′
⊥εpE

ES

1− v2x
vx

. (41)

Owing to the rotation of the particles around the direction of the
magnetic field, we can assume that their angular distribution in the
reference frame K′ is close to uniform. Applying a Lorentz trans-
formation,we derive the following distribution function of pairs in the
laboratory reference frame:

fp(t, x, θ) � Φ θ, vx(x, t)( )np(x, t), (42)

where Φ is defined the same way as in Eq. (25):

Φ(θ, v) � 1− v2

2(1− v cos θ)2. (43)

Similarly to the gamma quanta, the results of the QED-PIC simu-
lations demonstrate that Eq. (42) is a good approximation for the
angular distribution of the pairs [see Figs. 3(c) and 3(d)].Wewill show
below that the velocity vx can be calculated from the local values of the
electric field and plasma density. That is why we do not include a
continuity equation for the density of the longitudinal velocity of the
pairs similar to Eq. (16). Also, in the case of the pairs, we choose to
neglect the difference between the velocity v of the reference frame in
which the particle angular distribution is uniform and the actualmean

velocity v calculated from that distribution, the maximum difference
between which is less than 0.2, according to Eq. (27).

Because χp does not depend on θ, we calculate the sources S[α,
radi] as follows:

S[n, radi] � np ∫π

0
Φ(θ, vx)Wrad(χp, εp)sin θ dθ � Wrad(χp, εp)np

≡ Wplnp, (44)

S[ε, radi] � np ∫π

0
Φ(θ, vx)Irad(χp)sin θ dθ � Irad(χp)np ≡ Iplnp,

(45)

S[n, radi] � np ∫π

0
Φ(θ, vx)cos θWrad(χp, εp)sin θ dθ

� Wrad(χp, γ)vxnp ≡ Wplvxnp. (46)

The total current density of the particles averaged over the
characteristic period of Larmor oscillations, τB � εp/B, is

j � 2np
B
B
vB

�����
1− v2x

√
, (47)

with

vB � v ′
B

2
π
arccos vx

�����
1− v2x

√( )�����������
1− v2x(1− v2x)

√ ∼ v ′
B. (48)

The factor 2 here arises from the fact that the electron and positron
currents are co-directional. This comes from the observation that in
the laboratory reference frame, the electric and magnetic fields are

FIG. 4. Validation of the approximations used in themodel. (a) Value of the product j ·E computed fromEq. (35) and computed directly from the results of the QED-PIC simulations.
(b) Mean longitudinal velocity of pairs computed from Eq. (49) and computed directly from the results of the QED-PIC simulations. (c) Distributions of electric field, magnetic field,
and plasma density. Each plot is computed from the data averaged over a ±2λ vicinity around the laser pulse axis in the yz plane.
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actually not exactly perpendicular, which means that in the refer-
ence frame K′, there exists a small electric field directed along or
opposite to the magnetic field (depending on the sign of the product
E ·B). Consequently, the average electron velocity is in the opposite
direction to that small electric field, and the average positron ve-
locity is in the same direction as the field. This is not the case for the
longitudinal motion of the pairs, which does not depend on the sign
of the charge, and so the electron and positron currents cancel each
other along the x axis but add together in the yz plane. This also
suggests that the electron–positron plasma is actually a conducting
media, and so some absorption of electromagnetic energy also
occurs in that region, although it is significantly smaller than the
absorption in the vacuum region that is seen in the QED-PIC
simulations [see Fig. 4(a)], and therefore we do not take it into
account in our model.

The value of vB averaged over the particles, which we denote by
], is the second fitting parameter of our model. We can roughly
estimate it by noting that for a single particle the value of vB′ cannot
exceed its initial value during particlemotion. The particles enter the
plasma region after being accelerated by the laser pulse with pre-
dominantly longitudinal velocity, i.e., velocity along the x axis, and
so the initial projection of the particle velocity onto the magnetic
field, which lies in the yz plane, is small. Therefore, we expect our
model to give valid results with values of ] closer to zero rather than
to unity.

The electrodynamical behavior of themedium in response to the
plane electromagnetic wave, involving the induction of a current
along the magnetic field, is examined in Appendix B, and the main
conclusion is that the ratio between the electric and magnetic fields in
the medium can be expressed in terms of its density and the electric
field amplitude as follows:

E

B
� vx �

�����������������
2

1 +
������������
1 + (4npν/E)2√√√

. (49)

The validity of this expression is verified by direct comparison against
the mean values of the longitudinal velocity of the particles computed
in the PIC simulation, as shown in Fig. 4(b).

III. MODEL FORMULATION AND COMPARISON
WITH QED-PIC SIMULATIONS

The last remaining undefined terms are ψvac and ψpl, which de-
termine the vacuum and plasma regions, respectively, in space.We note
that the longitudinal velocity vx defined in Eq. (49) actually demarcates
these regions: vx ≈ 1 in the vacuum region, and vx < 1 in the plasma
region. We therefore choose ψvac and ψpl in the following way:

ψvac � vMx , (50)

ψpl � 1− vMx , (51)

where M ∼ 10 is a constant. We choose the exact value of this pa-
rameter by defining the upper threshold for vx abovewhichwe assume
the plasma to be rarefied enough not to cause any collective effects.
Therefore, we choose this threshold value to be 0.7 and M � 8.

The final set of cascade model equations is as follows:

z

zt
np + z

zx
(vxnp) � Wpairnγ, (52)

z

zt
(εpnp) + z

zx
(vpεpnp) � Wpairnγ

εγ
2
+ μE2/3ε1/3γ Grad − Ivac( )nγψvac

− Iplnpψpl, (53)

z

zt
nγ + z

zx
vγ∥nγ( ) � −Wpairnγ + 2Wradnpψpl, (54)

z

zt
vγ∥nγ( ) + z

zx
v2γ∥nγ( ) � −Vpairnγ + 2Vradnpψpl, (55)

z

zt
(εγnγ) + z

zx
vγ∥εγnγ( ) � −Wpairnγεγ + 2Iplnpψpl, (56)

z

zt

E2 + E2/v2x
2

( ) + z

zx

E2

vx
( ) � −2μE2/3ε1/3γ Gradnγψvac, (57)

z

zt
Σγ � Ivacnγψvac. (58)

It is important to note that energy is conserved in the model, i.e.,

∫ 2npεp + nγεγ + E2 + B2

2
( )dx + Σγ � const. (59)

Equations (52)–(57) were solved numerically using the method of
lines (MOL): partial derivatives z/zx were approximated with finite
differences to derive a system of ODEs that was solved using the
explicit Runge–Kutta method. This scheme is not internally con-
servative, and therefore the energy conservationwas donemanually at
each integration step by clipping the derivative znγ/zt so that the total
energy did not grow. The relative error arising from this procedure
turned out to be acceptably small. Fitting parameters were estimated
manually by comparing the solution with the results of 3D QED-PIC

FIG. 5. Relation between the velocity vector and the magnetic field vector in the
reference frame K′ moving along the x axis with velocity vx � E/B.
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simulations based on two macroscopic properties, namely, the ve-
locity of the cascade front and the energy balance. After testing the
reduced model, it was found that there is a positive correlation be-
tween the parameter ] and the velocity of cascade front propagation.
The parameter μmostly determines the energy transfer from the laser
to the cascade particles, and so the characteristic time of the laser
energy depletion can be controlled by tweaking this parameter. Note
that the estimated values of the fitting parameters are almost equal to
each other for different initial conditions (see Figs. 6–8).

The 3DQED-PIC simulations were performed using the QUILL
code,42 which enables modeling of the QED effects via the Monte
Carlo method. The initial distribution of the electromagnetic fields
has the form of a plane wave with wavelength λ � 2πc/ωL � 1 μm and
an amplitude a0 propagating along the x axis with spatiotemporal
envelope given by

a(x, y, z) � cos2
π
2
x4

σ4x
( )cos2 π

2
(y2 + z2)2

σ4r
[ ]. (60)

The transverse spatial size of the laser pulse is 2σr � 18 μm and the
pulse duration is 60.5 fs (2σx � 18.15 μm). The simulation box size is

30λ3 30λ3 30λ and the grid size is 30003 3003 300. As discussed
in Ref. 37, the final stage of QED cascade development in a single laser
pulse is almost independent of the seed, and so we choose the seed in
the form of a short gamma bunch counter-propagating to the laser
pulse in order not to introduce into the interaction an electron–ion
plasma that is significantly different from the forming electron–
positron plasma. Such an initial seed can be incorporated into our
model by initializing vγ∥(t � 0) ≈ −1. The density distributions in our
model and the PIC simulation coincide and are expressed by the
formula nγ(t � 0) � n0 max{0, 1− (x−x0)2/w2

γ}, where wγ is the
half-width of the bunch and x0 is the position of its center. The initial
energy of the gamma quanta was set to 200mec

2.
Direct comparisons between the solutions of Eqs. (52)–(57) and

the results of the QED-PIC simulations are shown in Figs. 6–8. The
results from our model coincide with those of the full QED-PIC
simulations qualitatively well in terms of the distributions of the
particles and the electromagnetic field, as well as the energy balance.
Also, we can clearly see the different regimes of cascade development
in both cases.

The first regime is observed when a0 of the laser pulse is not big
enough or the gamma bunch is not dense enough. In this case, the

FIG. 6. Comparison between the solution of Eqs. (52)–(57) [(a), (c), and (e)] and the results of the QED-PIC simulations [(b), (d), and (f)] for laser amplitude a0 � 2500 and
nγ,0 � 0.5a0ncr. (a) and (b) Distributions of gamma-quantum density nγ, electromagnetic energy density (E

2 + B2)/2, and plasma density np at different time instants. Note that the
scale of the vertical axis is linear in the range [0, 1] and logarithmic in the range [1, +∞]. (c) and (d) Energy balance: total energy of pairs Σp and of gamma quanta Σγ and
electromagnetic energyΣEM, all normalized to the initial total energy of the systemΣtot. The velocity of the plasma boundary vfr is also plotted. (e) and (f) Distribution of pairs in the xt
plane and the position of the plasma boundary xfr. The numerical values of the fitting parameters used in the model solution are ] � 0.32 and μ � 10.
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density of the produced electron–positron plasma does not reach the
relativistic critical density such that vx ≈ 1, i.e., collective plasma
effects do not occur. In this case, the plasma region is not present at all,
and the newly born particles move in the unaltered field of the laser
pulse, which is close to a plane wave. As discussed in Refs. 7
and 43–45, in this case the χ of the pairs does not grow during their
motion in the plane wave. However, after each act of gamma-
quantum emission, χ splits between the parent and child particles,
and so, after a few generations, the χ of all the particles becomes
negligibly small and therefore cascading ceases. Thus, for small
enough a0, the gamma quanta of the gamma bunch decay into pairs,
leaving a “trail” of electrons and positrons, which are accelerated
forward and co-propagate with the laser pulse. Although the density
of the plasma is small, the total number of pairs can be large enough
that a significant portion of the laser energy is transferred to them [see
Figs. 8(c) and 8(d)]. Because in this regime all the particles propagate
independently from each other, the cascade front propagates with
almost constant velocity vfr ≈ −0.5.

In the second regime, the cascade develops as discussed in Sec. I.
The peak of the pair density propagates toward the laser with a much
slower velocity (relative to the leading edge of the laser pulse) than in
the first regime. Moreover, the density of the plasma grows in time, in
contrast to the first regime, where the plasma density at each point
stays almost the same after the initial gamma bunch passes that point.
In fact, as mentioned in Sec. II E, the dense electron–positron plasma

almost does not absorb the laser field, which is why, although in this
regime the total number of pairs is much larger than in the first
regime, the rates of energy transfer from the electromagnetic field to
the pairs are similar in the two regimes.

If a0 lies in between the values at which either the first or the
second regime is observed, then, during its initial stage, the cascade
resembles an S-type cascade, which is clearly indicated by the negative
value of the velocity of the cascade front [see the gray dashed lines in
Figs. 7(c) and 7(d)]. At some point, the density of pairs becomes large
enough to alter the laser propagation and to shift the cascade dy-
namics to the self-sustained regime. The change between these two
regimes is indicated by an abrupt change in the velocity of the cascade
front. The initial stage (the stage of an S-type cascade) can also be seen
for larger values of a0 (see Fig. 6), although it is much shorter and is
barely noticeable in the results of the QED-PIC simulations.

We have also verified the results of the simplified model
developed by us in Ref. 37, from which a relation between the mean
longitudinal velocity of the cascade particles and the cascade front
velocity was obtained. This model prediction, calculated on the basis
of the mean velocity of the cascade particles, roughly coincides with
the actual velocity observed in the model solution (see Fig. 9) at
the stage of cascade self-sustenance. As this stage never starts for
a0 � 1000, this simplified model cannot be applied in that case.

There are some features that are not captured by our model and
that are worth noting. First, in the PIC simulation, there is a distinct

FIG. 7. Same as Fig. 6, but for a0 � 1500 and nγ,0 � a0ncr. The values of the fitting parameters are ] � 0.35 and μ � 10.
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tail of the gamma-quanta spatial distribution counter-propagating to
the laser pulse. These gamma quanta have relatively low energy and
thus are unable to photoproduce pairs. Our model predicts that the
edges of the plasma and gamma-quanta distributions coincide almost
exactly. The total energy carried away by this sort of gamma quanta is
insignificant, and so this feature is not crucial for cascade develop-
ment. The reasonwhy ourmodel cannot capture this feature is that we
assume the distribution functions to be monoenergetic. Higher ac-
curacy could be obtained if we were to split the gamma quanta into
several groups with different energies and describe them separately,
and this feature would then be present in our solutions. However, as

already mentioned in Sec. II, this modification would greatly com-
plicate the model without leading to significant qualitative changes in
the solutions. Second, both the total number of pairs and the peak
plasma density are larger in the QED-PIC simulation than in our
model solution for smaller values of a0. One of the reasons behind
these discrepancies is that our model is one-dimensional and thus
does not describe laser pulse diffraction. In the 3D-PIC simulations,
the simulation box is always limited, and so a pure plane wave cannot
be achieved in the simulations. As a consequence, the envelope of the
laser pulse evolves such that the magnitude of the laser pulse in the
vacuum region may differ from its initial value a0 [see Fig. 4(c)]. An
increase in effective laser pulse intensity generally leads to an increase
in the probabilities of QED processes and thus tomore abundant pair
photoproduction. The net effect of the inconstancy of the laser pulse
intensity can be partially accounted for by choosing the value of a0 in
the model solution to be larger than the value initially set in the PIC
simulation.

IV. CONCLUSION

We have developed a self-consistent model of QED cascade
development in an extremely intense laser pulse. The complete de-
scription of that interaction requires solution of Maxwell’s equations
along with the kinetic equations for electrons, positrons, and gamma
photons. This system of equations is too complex for analytical

FIG. 8. Same as Fig. 6, but for a0 � 1000 and nγ,0 � a0ncr. The values of the fitting parameters are ] � 0.35 and μ � 10.

FIG. 9. Velocity of the cascade front observed in the model solution (green line) and
obtained from the simplified model developed in Ref. 37 (red line) calculated from
the mean velocity of the particles located at a depth of 2λ behind the cascade front.
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methods and is usually solved numerically with QED-PIC codes that
consume a lot of computational resources. To derive the reduced
equations for a computationally light model, we adopt some as-
sumptions, the main ones being quasi-one-dimensional
hydrodynamics, a locally quasi-monoenergetic distribution func-
tion for the particles, and a plane wave approximation for the laser
radiation. The simplified system of equations thereby derived is
written in closed form and is solved numerically. Despite the com-
plexity and nonlinearity of the cascade dynamics, it turns out that a
relatively simple one-dimensional model can qualitatively predict
cascade development, for example, the macroscopic spatiotemporal
distribution of particles and the energy balance in the system. This
justifies the analytical reasoning behind the model and hence our
understanding of the phenomena involved. Although there are
several discrepancies between the predictions of our model and the
results of QED-PIC simulations, the reasons behind these have been
identified, and for some the methods by which they can be resolved
have been discussed.

We stress that ourmodel is suitable for a complete description of
QED cascade development in a single laser pulse. For example,
various regimes of the interaction based on the intensity of the laser
pulse are revealed by both full QED-PIC simulations and our model.

We believe that ourmodel can also be adapted to explore regimes
of QED cascades in different environments: laser interaction with
targets, including foils, particle beams, and gamma quanta, beam–
beam interaction, etc. Therefore, further extensive tests of the model
are planned to be carried out in the future.

SUPPLEMENTARY MATERIAL

See the supplementary material for animated visualizations of
positron tracks, cascade development, and the 3D QED-PIC
simulation.
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APPENDIX A: PARTICLE ACCELERATION
IN A PLANEWAVE

Let us consider a single electron moving in the field of a plane
circularly polarized electromagnetic wave.46,47 The vector potential of
the wave is chosen as

A � a0(ey cos ξ + ez sin ξ), (A1)

ξ � t−x. (A2)

The Hamiltonian of the problem is

H �
�����������
1 + (P + A)2

√
, (A3)

where P � p−A is the generalized momentum of the electron with
momentum p. For the equations of motion, we get

dPy

dt
� −

zH

zy
� 0, (A4)

dPz

dt
� −

zH

zz
� 0, (A5)

dPx

dt
� dpx

dt
� −

zH

zx
� zH

zξ
, (A6)

dε

dt
� dH

dt
� zH

zt
+ --------

→[HP] 0 � zH

zξ
. (A7)

From these equations, we find that

py + Ay � const, (A8)

pz + Az � const, (A9)

px − ε � const. (A10)

Let us define the initial conditions for the electron:

px(t � t0) � p0 cos θ, (A11)

py(t � t0) � p0 sin θ, (A12)

pz(t � t0) � 0, (A13)

x(t � t0) � x0, (A14)

ξ(t � t0) ≡ t0 −x0, (A15)

ε0 ≡
�����
1 + p2

0

√
. (A16)

We can then rewrite Eqs. (A8)–(A10) as

py � p0 sin θ + a0(cosξ0 − cos ξ), (A17)

pz � a0(sinξ0 − sin ξ), (A18)

ε � px + ρ0, (A19)

ρ0 � ε0 −p0 cos θ. (A20)

Equation (A3) can be rewritten in the form

ε �
��������������
1 + p2

x + p2
y + p2

z

√
. (A21)

Combining Eqs. (A19)–(A21), we get the following equation for ε:

ε � {ε2 − 1− a20(sin ξ − sin ξ0)2
−[p0 sin θ + a0(cos ξ − cos ξ0)]2}1/2+ ρ0. (A22)

The energy gain Δε � ε − ε0 can be found analytically as

Δε � 2a0p0

ρ0
sin

Δξ
2

a0
p0

sin
Δξ
2
− sin θ sin

ξ + ξ0
2

( ), (A23)

where ξ is the current phase of the electron. If we assume that 1≪ p0
≪ a0, then the second term in parentheses in Eq. (A23) is insignificant
for any ξ and ξ0 compared with the first term, and so we can omit it.
Another reason why we can ignore the second term is the fact that it
depends on the absolute phase of the particle and thus its value
averaged over the wave period is equal to zero. We therefore have
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Δε ≈ 2a20
ρ0

sin2
Δξ
2

( ). (A24)

Next, we calculate Δξ. We have

dξ

dx
� d

dx
(t−x) � 1

vx
− 1 � ε

px
− 1 � ε−px

px
� ρ0
px

(A25)

and

Δxρ0 � ∫ξ0+Δξ

ξ0

px dξ � ∫ξ0+Δξ

ξ0

(Δε + p0 cos θ) dξ � a20
ρ0

(Δξ − sinΔξ)
+p0 cos θΔξ. (A26)

If we assume again that a0 ≫ p0, then Eq. (A26) can be rewritten as

Δξ − sinΔξ � ρ20
a20

Δx. (A27)

Note that ρ0 < p0 ≪ a0 and that Δx is the distance along the x axis
between the initial andfinal positions of the electron. In the case of our
cascade model, the initial position coincides with the position of the
parent gammaquantumdecay, and the final position is the position of
the cascade front. QED-PIC simulations show that the distance Δx
does not exceed several λ, which in dimensionless variables means
that Δx/2π ∼ 1. Therefore, in Eq. (A27), we can assume that Δξ ≪ 1
and leave only the first nonvanishing term in the left-hand side
expansion:

Δξ3
6

≈
ρ20
a20

Δx, (A28)

Δξ ≈ 6Δx ρ20
a20

( )1/3

. (A29)

Substituting this solution into Eq. (A24), we get

Δε ≡ Δεacc ≈
9
2
a20ε0Δx2(1− cos θ)[ ]1/3, (A30)

where we have also assumed that ρ0 ≈ ε0(1 − cos θ). The duration of
particle motion can be also calculated to be

Δξ � Δt−Δx, (A31)

and under the assumption that Δξ ≪ Δx, which follows from the
assumption p0 ≪ a0, we find that Δx ≈ Δt. This is an obvious con-
clusion, because, under our assumptions, the particle can be con-
sidered ultrarelativistic and its velocity along the x axis to be close to
the speed of light.

We now estimate the radiative losses during particle motion in a
plane wave. The governing parameter χ in the plane wave is calculated
as follows:

χ � ε

ES

�������������������
(E + v3B)2 − (v · E)2

√
� a0
ES

(ε−px), (A32)

where E � −zA/zt � a0(−ey sin ξ + ez cos ξ) is the electric field and
B�∇3A � a0(−ey cos ξ + ez sin ξ) is themagnetic field. It can be seen
fromEqs. (A10) and (A32) that in the classical approach, χ is constant
during particle motion. If we take account of QED effects, then the
parameter χ changes after each act of gamma-quantum radiation.
Although this process can be considered instantaneous, for the sake of

estimating the energy loss it is convenient to introduce a continuous
force of radiation friction Frr:

dε

dt
� −v · E−Frrv

2, (A33)

dpx

dt
� −(v3B)x −Frrvx, (A34)

dv
dt

� −
1
ε
E− v(v · E) + v3B + Frr

ε2
v[ ]. (A35)

If we assume the particle to be ultrarelativistic, then Eq. (A35) does
not depend explicitly on the radiative losses, since Frr/ε

2 ≪ 1.
Owing to radiative losses, ε changes differently in time compared
with the case in which such losses are absent, but we will assume
that the equality v ·E � (v 3 B)x, which follows from the con-
servation of γ − px, still holds. Then, the equation for χ can be
significantly simplified:

dχ

dt
� a0
ES

dε

dt
−
dpx

dt
( ) ≈ −

a0
ES

(v2 − vx)Frr ≈ −
a0
ES

(1− vx)Frr,

(A36)

with Frr ≡ Irad(χ), where Irad is defined in Eq. (10) and an expression
for it can be found, for example, in Ref. 18. We assume again that the
term vx can be calculated according to the classical approach without
accounting for radiative losses, i.e.,

1− vx � 1−
px

ε
� ε−px

ε
� ρ0

ε
� ρ0

ε0 + 9
2a

2
0ρ0t

2( )1/3. (A37)

So, finally,

dχ

dt
� −

χ0Irad(χ)
ε0 + 9

2a
2
0ρ0t

2( )1/3. (A38)

The total energy loss due to radiation is then calculated as follows:

Δεrad � ∫Δt

0
Irad χ(t)( ) dt ≈ ∫Δx

0
Irad χ(t)( ) dt. (A39)

The values of Δεacc and Δεrad obtained using this approach
overestimate the corresponding values calculated numerically from
the solution of the particle equations of motion taking account of
radiation friction [Eqs. (A33) and (A35)], although the order of
magnitude is estimated correctly. In the cascademodel, the valueΔx is
unknown, because it is the distance along the x axis between the
position of particle birth and the position where the particle crosses
the moving cascade front. This quantity cannot be calculated in our
model. Also, we are interested only in the total energy change during
the time the particle stays in the vacuum region, and so the exact
dependence of particle energy on time is irrelevant. Thus, we calculate
the values Δεacc and Δεrad as follows:

Δεacc � μ21/3a2/30 ε1/30 (1− cos θ)1/3, (A40)

Δεrad � ∫ ����
4μ3/9

√

0
Irad(χ) dt, (A41)
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with

dχ

dt
� −

χ0Irad(χ)
ε0 + 9

2a
2
0ε0t

2(1− cos θ)[ ]1/3, (A42)

where μ is a fitting parameter that determines the characteristic time
spent by the particle in the vacuum region. We set this parameter
equally for all the particles. It turns out that by tuning this parameter,
the values of bothΔεacc andΔεrad can be estimatedwith good accuracy
(see Fig. 10).

APPENDIX B: EFFECTIVE DIELECTRIC PERMITTIVITY
OF THE e+e2 PLASMA

Let us consider the propagation of a circularly polarized plane
electromagnetic wave along the x axis inside a medium that is in-
homogeneous along the x axis, which induces a current j � 2npv.
Maxwell’s equations then take the form

zEz

zx
� zBy

zt
, (B1)

zEy

zx
� −

zBz

zt
, (B2)

zBz

zx
� −

zEy

zt
− 2npvy, (B3)

zBy

zx
� zEz

zt
+ 2npvz. (B4)

It is convenient to introduce the following complex variables:

ϵ � Ey + iEz, (B5)

β � Bz − iBy, (B6)

vy + ivz � ϵ
|ϵ| (vE + ivE⊥), (B7)

where vE and vE⊥ are the plasma velocities along and across the electric
field, respectively. We can also introduce the vector potential a as
follows:

ϵ � −
za

zt
, β � za

zx
. (B8)

As a result, Eqs. (B1)–(B4) can be rewritten in the form

z2 a

zx2
� z2a

zt2
− 2np

za

zt

za

zt

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣−1 vE + ivE⊥( ). (B9)

We seek a solution in the form of a plane monochromatic wave with
variable amplitude:

a � E(x)ei∫xκ(x) dx−it, (B10)

where both E(x) and κ(x) are real functions and E(x) is the amplitude
of the electric field. The final form of the equations is

z2E

zx2
+ E(1− κ2) + 2npvE⊥ � 0, (B11)

E
zκ
zx

+ 2κ zE
zx

− 2npvE � 0. (B12)

If the plasma is slightly inhomogeneous, then we can apply the
WKB approximation to solve the problem. If the plasma density
distribution has the form of an inhomogeneous slab (as in the case of
cascade development), then this approximation is valid inside the
plasma but may be invalid near the edges. Assuming that the scale of
plasma inhomogeneity L is larger than the laser wavelength λ, we can
neglect the term with the second derivative: z2E/zx2 ∼ E/L2 ≪ k2E �
(2π)2E/λ2. So,

E(1− κ2) + 2npvE⊥ � 0. (B13)

Solving this equation, we get

κ ≡
B

E
�

��������
1 + 2npv⊥

E

√
, (B14)

where we have v2⊥ � v2E + v2E⊥ � v2y + v2z. We specify the expression v⊥
as follows [see Eq. (47)]:

v⊥ � ν
�����
1− v2x

√
. (B15)

Note that in the case ] > 0, according to Eq. (B14), B > E, and thus 1/κ
has the meaning of the drift velocity vx, and so

1
vx

�
��������������
1 + 2npν

E

�����
1− v2x

√√
. (B16)

The solution of this equation is37

vx �
����������

2

1 + �����
1 + S2

√
√

, (B17)

FIG. 10. Validation of the approximations used to describe the energy gain due to
acceleration and the energy loss due to gamma-quantum emission by a single
particle in a plane wave for a0 � 2500, p0 � 500, and θ � π. The solid lines
correspond to the numerical solution of Eqs. (A33)–(A35) and the dashed lines to the
approximations (A40) and (A41), where μ � ct/3λ.
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S � 4npν
E

. (B18)

A comparison of this approximate expression with the exact nu-
merical solution of Eqs. (B11) and (B12) is shown in Fig. 11 both for
the case in which the WKB approximation is valid and for the case in
which it is not.

Since v2 � 1 is assumed in the derivation of Eq. (B17), this
equation is valid for any reference frame in which particles are
ultrarelativistic, for example, the laboratory reference frame.
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