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ABSTRACT

High-Zmaterials exhibit a broad range of variation of the charge state in the hot dense regime, and so ionic structures become complexwith increasing
density and temperature owing to ionization. Taking high-Z uranium as example, we study its electronic and ionic structures in the hot dense regime
by combining an average-atommodelwith the hypernetted chain approximation. The electronic structure is described by solving theDirac equation,
taking account of relativistic effects, including broadening of the energy levels, and the effect of other ions via correlation functions. On the basis of the
electronic distribution around a nucleus, the ion pair potential is constructed using the modified Gordon–Kim model in the frame of temperature-
dependent density functional theory. Because of the presence of ion–ion strong coupling, the bridge function is included in the hypernetted chain
approximation,which is used to calculate the correlation functions. To take accountof the influenceon transportpropertiesof the strong correlationof
electrons with highly charged ions, we perform both classical and Langevin molecular dynamics simulations to determine ion self-diffusion co-
efficients and the shear viscosity, using the Green–Kubo relation and an ion–ion pair potential with good convergence.We show that the influence of
electron–ion collisions on transport properties becomes more important as the free electron density increases owing to thermal ionization.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0024409

I. INTRODUCTION

The hot dense plasma region covers densities ranging from a few
hundredths to hundreds of times solid density and temperatures from
several tens of electronvolts (eV) up to the keV region. In this regime, the
electrons of an atom are ionized owing to thermal and pressure ioni-
zation. Such conditions are relevant to inertial confinement fusion (ICF)
capsules,1 compact astrophysical objects such as white dwarfs,2–4 and
laboratory experiments reaching high energy densities.5–8 Tomodel, for
example, the interaction of high-power lasers with solid targets to
generate hot dense plasmas (HDPs), hydrodynamic simulations are
performed, for which accurate physical properties such as the equation
of state,9–11 ionic transport properties,12–16 electronic thermal and
electrical conductivities,17–23 opacity,24–27 and stopping power28,29 are
needed. In particular, electronic and ionic transport properties are very
important formodeling the generationof fast electronbeamsandenergy
deposition. However, the available experimental data are sparse, and the
calculation of the properties ofHDPs is also difficult owing to strong ion

coupling and electron degeneracy in this regime. In particular, for high-
Z materials such as uranium (U), which are often used for radiation
shielding materials, the ion charge state can vary over a broad range,
depending on density and temperature. The strong electric field pro-
vided by highly ionized states alsomakes this a situation ofmatter under
extreme conditions. With an increase in the ionization degree, the
greater fractionof free electronswill enhanceCoulomb screening effects,
but ion–ion interactions will also become stronger. The competition
between ion–ion interactions and screening effects leads to an almost
constant but large ion–ion coupling parameter in a wide range of
temperatures and densities,30–32 and so modeling HDPs poses a
challenge for quantum-statistical approaches.

Density functional theory (DFT) was extended to finite
temperatures by Mermin,33 who took electron degeneracy into
account by averaging the set of single-electron wave functions with a
Fermi–Dirac distribution function at given temperatures for the
element under consideration. By solving Newton’s equation to
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describe the ion motion, quantum molecular dynamics (QMD)34–38

has become a powerful tool for computing the properties of warm and
hot dense matter on the basis of pseudopotentials. Although some
modified approaches have been developed to treat high-temperature
plasmas as well,39–41 these calculations are very expensive owing to
the large number of single-electron wave functions that are required
for the results to converge. Alternatively, the Thomas–Fermi ap-
proximation can be applied to replace the single-electron wave
function, and orbital-free molecular dynamics (OFMD) simu-
lations42–49 have been developed for HDPs. If the ion–ion pair po-
tential is obtained consistently from the electronic structure
calculations, then the hypernetted chain (HNC) approximation can
also be used to describe the ionic structure through solution of the
Ornstein–Zernike (OZ) equation.50–54 However, it is difficult to
define the ionization state and its interactions, which are closely
related to ionic transport properties,13,55 especially for high-Z ele-
ments, where many charge states occur simultaneously. By consid-
ering the correlations of other ions and of free electrons, we have
combined the average-atom (AA) model56,57 with the HNC ap-
proximation in the AAHNCmethod to calculate the mean ionization
degree, the x-ray Thomson scattering spectrum,58 and nonequilib-
rium states59 of aluminum in the warm dense matter regime, where
the ionic structure is determined in the HNC approximation and the
ion–ion pair potential is obtained from the electron distribution
around the nucleus.60

To obtain the ionic structures and transport properties of matter
under extreme conditions, the bridge function has been incorporated
into theAAHNCmethod, and this AAHNC+Bridgemethod has been
applied to study the high-Z element U in the HDP region. Because of
the wider variation of the ionization degree of U, there is a tem-
perature regionwhere the average charge is proportional to the square
root of the temperature and where the ion coupling parameter Γii
remains almost constant with increasing temperature. This feature of
an almost constant Γii is similar to the behavior of the pair distribution
function: the location of its first peak is also almost constant over a
wide temperature range. Based on the effective pair potentials derived
from the convergent electronic structure calculations, molecular
dynamics simulations are performed to calculate the ionic self-
diffusion coefficient and the shear viscosity from the autocorrela-
tion function61 according to the Green–Kubo relation. Because of the
large number of free electrons that are present in a hot dense U
plasma, we consider the effect of dynamic electron–ion collisions on
transport properties by a Langevin molecular dynamics simulation.
By comparing the results with those of classical molecular dynamics
simulations, we show that the impact of dynamic collisions on
transport properties becomesmore importantwith increasing ionization
degree. Unless otherwise specified, we use atomic units throughout this
paper, i.e., we take Z �me� e� 1, so that distances aremeasured in units
of the bohr radiusaB� 0.529 177 Å� 5.291 773 10−11m, and energies in
units of hartree, with 1 hartree � 27.211 386 eV.

II. THEORETICAL METHODS

A. Combining the average-atom model
with the hypernetted chain approximation

For accurate calculation of electronic structure, the correlation
functions of electrons and ions are needed. In addition, effective pair
potentials between ions and electrons are based on the electron and

ion density distributions, and so the electronic and ionic structures
have to be calculated self-consistently.58 The AA model is a sta-
tistical approach used to calculate the electronic structures of atoms
and ions in an average ion sphere for HDPs. The Wigner–Seitz ion-
sphere radius is determined from the ion number density ni as
RWS � 3/( 4πni)1/3. The single-electron wave function is obtained by
solving the Dirac equation:

dPnκ(r)
dr

+ κ

r
Pnκ(r) � 1

c
[ϵnκ + c2 −V(r)]Qnκ(r), (1)

dQnκ(r)
dr

−
κ

r
Qnκ(r) � −

1
c
[ϵnκ − c2 −V(r)]Pnκ(r), (2)

where Pnκ(r) and Qnκ(r) are respectively the large and small com-
ponents of the wave function of relativistic orbital nκ, and c is the
speed of light. In the normal AA model, the central symmetric po-
tential V(r) is often divided into three parts, namely, the interaction
potential of the nucleus, the interaction potential of the electrons, and
the exchange correlation, as shown in the first line of the following
equation, which are self-consistently determined by the electron
distribution in the ion sphere:

V(r) � −
Z

r
+ ∫ ρb(r′)

r− r′
∣∣∣∣ ∣∣∣∣ d3r′ + Vxc ρb(r) + ρ0e( )−Vxc(ρ0e)

−
ρ0e
β
∫Cee( r− r′

∣∣∣∣ ∣∣∣∣)hie(r′) d3r′
−
ρ0i
β
∫Cie( r− r′

∣∣∣∣ ∣∣∣∣)hii(r′) d3r′. (3)

To take account of the influence of free electrons and other ions, their
statistical distributions are described by the correlation functions of ions
and electrons, as shown in the second and third lines of the above
equation.58,62 In Eq. (3), β � 1/kBT is the inverse temperature, and ρ0i and
ρ0e are the uniform densities of ions and electrons, respectively. If
the correlation functions are known, then Eqs. (1)–(3) can be solved
through the self-consistentmethod to obtain the wave functions. In local
thermodynamic equilibrium, to ensure that the electron density is the
same at the boundaries of all ion spheres, the potential at the ion-sphere
boundary is usually chosen as the energy reference point. In this way, we
define electrons with energies larger than zero as free and those
with negative energies as bound. The bound-state contribution to the
density is

ρb(r) �
1

4πr2
�
j
∫ϵ+Δϵ

ϵ−Δϵ
bj(ϵ)[P2

j(r) + Q2
j(r)] dϵ, (4)

where pressure broadening effects are taken into account by
energy level broadening,56,57 Δϵ is determined by two different
boundary conditions in solving the Dirac equations (1) and (2), and
bj(ϵ) is the density of the occupation number of state j expressed in
termsof the Fermi–Dirac distribution. For hot plasmas, there are a large
number of free electrons owing to thermal and pressure ionization, and
we can use a semiclassical statistical approach, the Thomas–Fermi
approximation, to compute the distribution of free electrons:

ρf(r) �
1
π2

∫∞

k0(r)
k2 dk

exp{β[ ��������
k2c2 + c4

√
− c2 −V(r)− μ]} + 1

, (5)
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where k0(r) � [2V(r)c2 + V(r)2]1/2/c and μ is the chemical potential,
which is determined by the condition of electrical neutrality in the ion
sphere.

For calculation of the central symmetric potential V(r), the
electron–electron, electron–ion, and ion–ion correlation functions of
ions and electrons are needed.Here, theHNCapproximationwith the
Ornstein–Zernike closure relation is used to calculate electron–
electron and ion–ion correlation functions based on the pair po-
tential. In principle, the ionic interactions depend on the spatial
distribution of nuclei and the electron density around the nuclei. In
HDPs, in particular for high-Z U, owing to the static Coulomb
screening effect of free electrons, only interactions of nearest-
neighbor ions are important. Therefore, we consider only the pair
potential and apply the modified Gordon–Kim (GK) model;60 details
of the calculation method are given in the Appendix. Considering the
ionic strong coupling, a bridge function is included in the HNC
approximation to calculate the correlations:

hii(r) � exp[−βVii(r) + hii(r)−Cii(r) + Bii(r)]− 1, (6)

where Vii represents the interactions of ion i and Bii(r) is the bridge
function. Bii(r) has a well-defined diagrammatic representation, but it
is impossible to compute this infinite series, and so different ap-
proximations are applied to describe the bridge function. Here, we use
the bridge function of a one-component plasma (OCP)63,64 to modify
the HNC approximation (this is the HNC+Bridge model):

Bii(r) � −αΓβ exp −
b1
b0
r2( ), (7)

where

b0 � 0.258− 0.0612 lnΓ + 0.0123(lnΓ)2 − 1/Γ,
b1 � 0.0269 + 0.0318 lnΓ + 0.008 14(lnΓ)2, (8)

and α and β are constants determined from the results of molecular
dynamics simulations. Because the pair distribution function (PDF)
reflects the interaction of ions,65we calculate the PDFat a temperature
of 100 eV and different densities (1.893 g/cm3, 9.465 g/cm3,
18.93 g/cm3, and 94.65 g/cm3) using the AAHNC+Bridge and
Langevinmolecular dynamics (LMD)methods to obtain the values of
α and β. The best-fitting results are α � 0.026 and β � 1.3, which are
then used for the bridge function (7). All the results are shown in
Fig. 1. The difference between the AAHNC and AAHNC+Bridge
results increases with increasing density, but the agreement is still
reasonable. We conclude that the effects of the bridge function become
more pronounced in the regime of strong ionic coupling, as expected.

For the free electrons, we use the Deutsch pair potential50,66

VDeutsch
ee (r) � 1

r
1− exp −

r

λee
( )[ ]

+ kBT ln 2 exp −
ln 2
π

r

λee
( )2⎡⎣ ⎤⎦,

(9)

with λee � 1/
����
kBT

√
. The first term in Eq. (9) arises from quantum

effects such as the uncertainty principle. The second term is due to the
exchange interaction, which yields a repulsion if electrons have
parallel spin; here, the spin-average result is used. The Deutsch pair
potential gives Coulomb-like behavior at long distances and a finite
value at r � 0. It has been proved to give a reasonable description for

high temperatures kBT ≥ 0.5 Hartree as considered here and λee ≪ rs,
where rs is the effective electron radius.

67 Because the electron density
distribution around the nucleus has been derived from the self-
consistent calculation in the ion sphere, the ion–electron pair cor-
relation function can be defined via the excess free electron density:

hie(r) �
ρf(r)
ρ0e

− 1, (10)

where ρ0e is the uniform electron density given by ρ0e � ρ(rb).

B. Molecular dynamics simulation and calculation
of transport properties

Based on the results of the self-consistent calculations of the
electronic and ionic structures using the AAHNC+Bridge method, we
have obtained an ion pair potential for hot dense U plasmas that
exhibits good convergence. Molecular dynamics simulations can now
be performed to compute ionic transport properties. Note that all
calculations are based on the Born–Oppenheimer approximation, with
electron–ion screening included in the ion–ion interactions. However,
owing to ionic motion, the screening cloud around the ion will deform,
which leads to an additional electron–ion force known as the
Debye–Onsager relaxation effect.68The force producedby electron–ion
collisions hinders the motion of the ions, which has not been treated in
the simulations. In particular, with increasing temperature and density,
more and more electrons become free owing to thermal and pressure
ionization, and thus there is a higher frequency of electron–ion col-
lisions. An efficient way to account for nonadiabatic effects is to use
LMD39,40,59 simulations, which consider the motion of ions in a dense
electron gas as the motion of Brownian particles, with random elec-
tronic collisions leading to a frictional force:

FIG. 1. Pair distribution functions as calculated with the AAHNC (red dashed lines),
AAHNC+B (black solid lines), and LMD (blue dot-dashed lines with circles) methods
as functions of the ion–ion distance for U at a temperature of 100 eVand densities of
1.893 g/cm3, 9.465 g/cm3, 18.93 g/cm3, and 94.65 g/cm3.
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mi
d2ri(t)
dt2

� F− γmi
dri(t)
dt

+Ni, (11)

wheremi, r, and F are the ionicmass, position, and force, respectively.
The ion–ion force is derived from the convergent pair potential.Ni is
the Gaussian random noise corresponding to the Langevin friction
coefficient γ. Quantifying this extra friction in Langevin mechanics
is a complex and difficult procedure. For light elements, some
efforts have been made to compare LMD results with those
obtained using time-dependent DFT (TDDFT), and it has been found
that the friction coefficient has a significant influence on the
dynamic transport properties in LMD simulations.69 In hot dense high-
Z plasmas, there are an increased number of free electrons, and so the
influence of electron–ion collisions on dynamical properties become
more important. To consider the effects of the friction on ionic transport
properties, we estimate γ using the Rayleigh model:70

γ � 2π
Z*

RWSmi

����
kBT

√
, (12)

where Z* is the average ionization degree. Although the Rayleigh
model considers only binary elastic collisions and assumes that these
are short-ranged with a negligible collision time in a rarefied gas, the
model can be extended to study the effects of nonequilibrium fluc-
tuations and of dynamic electron–ion collisions, and the predictions
of this more general model can be compared with the results of the
original model. As examples here, ionic transport properties are
calculated by performing both Langevin and classical molecular
dynamics simulations.

According to the Green–Kubo relation, the ionic self-
diffusion coefficient D is obtained from the velocity autocorrela-
tion functions:13,61

D � 1
3N

∫∞

0
〈�

N

i�1
vi(t) · vi(0)〉dt, (13)

where vi(t) is the velocity of ion i at time t, N is the number of
simulation particles, and Æ·〉 denotes the statistical ensemble average.
The shear viscosity is computed from the autocorrelation function of
the off-diagonal components of the stress tensor:61

η � V

kBT
∫∞

0
ÆP12(0)P12(t)〉dt, (14)

where V is the volume of the simulation box. P12(t) represents
the five independent off-diagonal components Pxy(t), Pyz(t), Pzx(t),
[Pxx(t)−Pyy(t)]/2, and [Pyy(t)−Pzz(t)]/2 at time t, which are calculated as

P12(t) � 1
V
�
i
mivi1(t)vi2(t) +�

i
�
j> i

rij1(t)Fij2(t)⎡⎣ ⎤⎦. (15)

The Stokes–Einstein relation provides a connection between the
self-diffusion coefficient and the shear viscosity through the expression

FSE[D, η] � Dη

kBTn
1/3
i

� CSE, (16)

where CSE is a constant, often taken in the range from 1/6π to 1/4π,
depending on the limits of the slip coefficient from infinity (stick) to
zero (slip), respectively.

III. RESULTS AND DISCUSSION

A. Ionic structures based on the AAHNC+Bridge model

For the high-Z element U, there is a wide region of ionic charge
states in the HDP regime. We first calculate the average charge of U
using the AAHNC+Bridge model and compare the results with those
of the INFERNO model16 as functions of temperature for the solid
density ρ0 � 18.93 g/cm3 and for 5 3 ρ0 � 94.65 g/cm3, as shown in
Fig. 2. In a very wide temperature range, from 50 eV to 5000 eV, the
resulting average ionization degree is in good agreement with the
INFERNO model for these two densities, although small differences
occur for temperature in the middle of that range. The INFERNO
model also calculates the electronic structure by solving the Dirac
equation in a self-consistent-field approach and assumes an all-
electron distribution in the ion sphere that is determined by the
plasma density. The correlations of electrons and other ions have been
included in our calculations of the electron structures, and so slight
differences occur in the temperature range from 100 eV to 1000 eV. In
Fig. 2, we also give average charges at other densities: 0.13 ρ0 � 1.893
g/cm3 and 0.5 3 ρ0 � 9.465 g/cm3. At lower temperatures, the
resulting average ionization degree for 5 3 ρ0 is higher than for the
other densities because of pressure ionization. Thermal ionization
becomes important at high temperatures and makes the average
ionization degree at lower densities stronger. In the inset of Fig. 2, the
results are shown on a log–log plot, along with the curve of the square
root of temperature,

����
kBT

√
. Except for the results for 5 3 ρ0, the

behavior of the average charge is very similar to the
����
kBT

√
behavior for

temperatures lower than 600 eV.

FIG. 2. Average charge of U as a function of temperature at solid density ρ0 � 18.93
g/cm3 (circles), 0.1 3 ρ0 � 1.893 g/cm3 (triangles up), 0.5 3 ρ0 � 9.465 g/cm3

(triangles down), and 5 3 ρ0 � 94.65 g/cm3 (squares). Solid lines with different
symbols represent the results for the different densities calculated using the
AAHNC+Bridge model. The blue dashed lines with circles (18.93 g/cm3) and
squares (94.65 g/cm3) are calculated using the INFERNOmodel.16 The inset shows
a log–log plot along with the

����
kBT

√
behavior (brown dot-dashed line).
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As shown in Fig. 2, the average ionization degree becomes larger
and larger with increasing electron temperature, and so the ion–ion
interactions become stronger. Simultaneously, the greater fraction of
ionized electrons strengthens the interionic shielding. To study the
variations in the ion–ion interactions, the ionic coupling parameter Γii
is computed as

Γii � Z*2

RWSkBT
. (17)

Normally, Γii decreases with isochoric heating according to Eq. (17).
However, a region of almost constant Γii has been reported in Refs.
30–32 for tungsten plasmas at densities of 19.2 g/cm3, 40 g/cm3, and
100 g/cm3. The average charge is proportional to the square root of the
temperature, Z*}

����
kBT

√
, and so the influence of temperature cancels

in Eq. (17). This feature becomes more obvious for a hot U plasma
because of the wider variation of the average ionization degree. In
Fig. 3, we show the coupling parameter Γii as a function of temperature
at densities from 0.1 to 5.0 times solid density. We also find a region
with an almost constant coupling parameter. In particular, for the
solid density ρ0, the results do not change up to very high temper-
atures T ≥ 1000 eV. For the lowest density, 0.13 ρ0, Γii first increases
with temperature from about 20 eV owing to the rapid increase in the
average charge, as shown in Fig. 2, i.e., Z* increases more rapidly than����
kBT

√
. At temperatures T ≥ 600 eV, the rate of increase of Z* becomes

slower than that of
����
kBT

√
, and Γii begins to decrease. However, for the

high density of 5 3 ρ0, Γii decreases with increasing temperature,
because the ionization degree increases only slightly, as shown in
Fig. 2. To compare with the results of Arnault et al.31 and Clérouin
et al.,32 we also calculate the reduced density ρ* � ρ/AZ, whereA is the
mass of the element. The reduced density of solid-density U, ρ∗0 , is
0.000 87 mol/cm3, and thus 53 ρ∗0 � 0.0043 mol/cm3. According to
Refs. 31 and 32, a critical density ρ∗0 � 0.0045 mol/cm3 exists above
which the coupling parameter decreases monotonically with

increasing temperature, while there is a plateau below the critical
density. The present results are in agreement with those earlier
findings. These results also show impressively that the coupling
parameter Γii of high-Z plasmas does not depend linearly on tem-
perature but also on details of the ionization process that depend on
temperature and density.

From Fig. 3, we also find that the ionic coupling parameter Γii is
still very large owing to the highly ionized charge of U in hot plasmas,
even at low densities 0.1 3 ρ0, which indicates that ionic correlation
effects are very strong. This effect can be illustrated by the ion–ion
PDF derived from the AAHNC+Bridge model, which is shown in
Fig. 4 over the whole temperature range from 40 eV to 4000 eV for (a)
0.13 ρ0, (b) ρ0, and (c) 53 ρ0. From the results for solid density ρ0 in
Fig. 4(b), it can be seen that from 200 eV to 1500 eV, there is almost no
change in the PDF, and the height of the first peak does not decrease
with increasing temperature up to 1500 eV. This behavior is very
similar to that of Γii, which is almost constant in that temperature
range at solid density. This correlation between the ionic coupling
parameter and the PDF is evenmore obvious for the density 0.13 ρ0,
as can be seen in Fig. 4(a). As the temperature increases from 40 eV
to 600 eV, the first peak of the PDF becomes sharper and sharper. For
T ≥ 800 eV, the first peak begins to decrease, which is similar to the
trend exhibited by the ionic coupling parameter as shown in Fig. 3:
first increasing and then dropping down at 800 eV. For dilute plasmas,
for example at 0.1 3 ρ0, the ionic ionization increases faster than
linearly with temperature. Simultaneously, the screening effects of
free electrons increase slowly, but the ion–ion interaction is very
strong owing to the rate of increase of the ionic charge. For solid
density, the competition between ionic interactions and electron
screening tends to balance, which leads to an almost constant Γii for a
wide range of temperature. At higher density, 5 3 ρ0, owing to the
limited space between ions, the static screening effects of free electrons
becomemore important, which causes Γii and thefirst peak of the PDF
to fall for all temperatures, which is in good agreement with the
conclusions of Refs. 31 and 32.

B. Transport properties using Langevin molecular
dynamics simulations

On the basis of the pair potentials obtained from the self-
consistent calculations within the AAHNC+Bridge method, molec-
ular dynamics simulations can be performed to compute ionic
transport properties. The discussion of the ionic coupling parameter
and the pair distribution function of the high-Z elementU in Sec. III A
has shown that electron screening effects are very important with
increasing ionization degree at high densities, and these have been
included in the calculation of the pair potentials. The Born–
Oppenheimer approximation has been used to separate the inter-
action between ions and electrons. However, with increasing free
electron density, dynamic random collisions between electrons and
ions become important, although these are neglected in classical
molecular dynamics (CMD) simulations. Therefore, we consider the
effect of dynamic electron–ion collisions by introducing a friction
coefficient γ in the LMD simulations. In both CMD and LMD
simulations, we use 13 500 ions in a cubic boxwith theNVT ensemble
(constant N, V, and T), and apply periodic boundary conditions to
simulate the positions and velocities of particles at the boundary. The
time step of ionicmotion, δt, is determined by the plasma temperature

FIG. 3. Ionic coupling parameter Γii for a hot dense U plasma as a function of
temperature for densities in the range (0.1–5.0) 3 ρ0.
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and density: δt ∼ RWS/T
1/2
i . All ions are initially are put in an ideal

face-centered cubic lattice, and their velocities are set according to a
Maxwellian velocity distribution. Based on the molecular dynamics
simulations, we calculate the ionic self-diffusion coefficients and the
shear viscosity via the velocity autocorrelation function according to
the Green–Kubo relation.

We have used this approach previously to treat a two-
temperature aluminum plasma59 and have discussed the influence
of the charge state on the ionic dynamic structure and the transport
properties at a given ion temperature. For high-Z plasmas, there are
more complex charge states and ionic structures with increasing
temperature, as shown in Figs. 2 and 3. At the same time, the in-
creasing fraction of free electrons makes the effect of electron–ion
dynamic collisions on the ionic motion more important. Here, we
discuss the electron–ion collision effect via the friction coefficient,
which is determined by the average ionization charge and the electron
temperature as in Eq. (12); it increases more rapidly than the charge
state with temperature. If the Born–Oppenheimer approximation is
assumed when calculating the electron structure, the nonadiabatic
dynamic effect is neglected. However, in dense plasmas, with in-
creasing temperature, both pressure and thermal ionization produce
more andmore free electrons, and the ionsmove in a free-electron gas
in a manner similar to Brownian motion. Therefore, nonadiabatic
dynamic effects will influence the transport properties,69 and this
becomes more obvious in the results for hot dense U plasmas, as can
be seen in Fig. 5, where the self-diffusion coefficient and shear vis-
cosity are shown as functions of temperature at three densities of
1.893 g/cm3, 18.93 g/cm3, and 94.65 g/cm3. All the results are obtained
from LMD and CMD simulations with an effective pair potential
derived from the AAHNC+Bridge model. We find that the difference
between the LMD and CMD results becomes bigger and bigger with

increasing temperature owing to the inclusion of the friction coef-
ficient in the LMD simulations.More electrons of the U atom become
ionized at high temperatures, and the effect of electron–ion dynamic
collisions becomes more and more important with this increasing
ionization degree. This effect is most obvious at the lowest density of
1.893 g/cm3, because of the higher ionization degree compared with
that at higher densities (see Fig. 2).We also find that the self-diffusion
coefficients and shear viscosities from the LMD simulations are all
smaller than those from the CMD simulations. Electron–ion dynamic
collisions increase the effective collision cross section and weaken the
interaction between ions.

In Fig. 5, we compare our results with those of OFMD and the
R–OCP model. Here, R–OCP refers to the classical one-component
plasma model with effective charge determined by the INFERNO
model.16 The LMD and CMD results are in good agreement with
those of the R–OCP model, because their average charges agree very
well (see Fig. 2). However, only the shear viscosity fromOFMDagrees
with the results of the other models, and big differences occur for the
self-diffusion coefficient. In the OFMD model, the Thomas–Fermi
approximation is applied to describe the electronic structure, which
gives different ionic charges compared with the present model and
R–OCP, which influences the self-diffusion coefficient strongly.16,55

We also check the Stokes–Einstein relation according to Eq. (16)
against the data for the self-diffusion coefficient and the shear vis-
cosity. In Fig. 6, the quantity FSE is shown as a function of temperature
at densities 1.893 g/cm3, 9.465 g/cm3, 18.93 g/cm3, and 94.65 g/cm3.
For the highest densities and with increasing temperature, FSE is
almost constant and independent of temperature and density except
at the highest temperatures. The values computed from the LMD
results, represented by filled circles, are larger than the stick value,
1/6π, and smaller than that for slip, 1/4π. This means that the

FIG. 4. Pair distribution functions as derived from the AAHNC+Bridge method are shown as functions of the ion–ion distance for U at densities 1.893 g/cm3 (left), 18.93 g/cm3

(middle), and 94.65 g/cm3 (right) for different temperatures.
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Stokes–Einstein relation is also valid for hot dense high-Z plasmas,
and that ions move in the dense free-electron gas very similarly to
Brownian motion. However, the values of the ionic transport coef-
ficients derived from CMD simulations, represented by open circles,
which are similar to those from the INFERNO-OCPmodel in Ref. 16,
are higher than those from the LMD simulations and always larger
than the slip values. Therefore, it is necessary to consider the influence
of the dense free-electron gas on the ionic motion. For the lowest
density, 1.893 g/cm3, the values of FSE comply with the Stokes–

Einstein relation only in the intermediate temperature region. The
other values deviate from the stick and slip values, and so these
plasmas cannot be considered as simple fluids, owing to the presence
of pressure and thermal ionization, which makes the effective ion-
sphere radius very large.

IV. CONCLUSIONS

We have extended the AAHNC model to describe high-Z U
plasmas by including the bridge function for the ionic structure
(AAHNC+Bridge). The results for the average ionization degree are
in good agreement with those of the INFERNO model in a wide
temperature and density region. Because the average ionization de-
gree is almost proportional to the square root of the temperature, a
plateau feature of the coupling parameter Γii is observed, consistent
with previous predictions.31,32 We have presented results for the
ion–ion pair distribution function and have found that the first peak
does not change verymuch over awide range of temperature. Even for
the lowest densities, 1.893 g/cm3 and 9.465 g/cm3, the first peak of the
PDF becomes sharper and sharper, which corresponds to an increase
in the ionic coupling parameter with increasing temperature. The
increased average ionization degree produces more and more free
electrons in the plasma. Besides the screening effect of free electrons,
dynamic electron–ion collisions are accounted for by a friction force
in LMD simulations, where the force is estimated by the Rayleigh
model. We have compared the ionic transport properties, the self-
diffusion coefficient, and the shear viscosity as calculated by LMDand
CMD simulations. We have found that although only short-ranged
elastic collisions are considered in the Rayleigh model, the increased
number of free electrons strengthens the electron–ion collisions, and
their influence on transport properties becomes more and more
apparent with increasing temperature.
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APPENDIX: MODEL OF THE ION–ION PAIR POTENTIAL

The GK model71,72 was initially proposed to calculate the in-
teratomic potential in ionic crystals and systems of noble-gas atoms.
The total electron density of two interacting atoms is taken as the sum
of the two separate atomic densities, which are obtained in the single-
center force-field approximation. The total energy of the system
includes the Coulomb interaction between all the charges, the elec-
tronic kinetic energy, the electron exchange effects, and the
correlations:

V(R) � VCoul(R) + Vk(R) + Ve(R) + Vc(R),
where R is the distance between the two nuclei,VCoul(R) is their static
Coulomb interaction,Vk(R) is the kinetic energy, andVe(R) andVc(R)
are the exchange and correlation energies, respectively. The Coulomb
energy is calculated by using the electron densities, while the other
three terms are obtained from the free-electron-gas expressions
according to the density. The interatomic interaction is the total
energy minus the energy of the two separate atoms.

In a hot dense plasma, the density of free electrons is almost
uniformly distributed and does not change very much when the two
ions come closer. Therefore, we can divide the electron density into
two parts: a uniformly distributed free-electron sea ρ(rb) with a
density equal to that of the electrons at the ion-sphere boundary, and a
density of quasilocalized electrons ρloci (r) representing the dramatic
spatial variations of the electronic distribution around the nucleus.
The latter quantity is the total densityminus the uniformly distributed
free-electron density, which is not distorted when the two ions come
closer. The total density is ρ � ρlocA + ρlocB + ρ(rb), where A and B
represent the different ions. To keep the electron neutral, the volume
of the uniformly distributed free electrons becomes the two truncated
spherical volumes when the two ions come closer.60
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42F. Lambert, J. Clérouin, and G. Zérah, “Very-high-temperature molecular
dynamics,” Phys. Rev. E 73, 016403 (2006).
43F. Lambert and V. Recoules, “Plastic ablator and hydrodynamic instabilities: A
first-principles set of microscopic coefficients,” Phys. Rev. E 86, 026405 (2012).
44L. Burakovsky, C. Ticknor, J. D. Kress et al., “Transport properties of lithium
hydride at extreme conditions from orbital-free molecular dynamics,” Phys. Rev. E
87, 023104 (2013).
45T. Sjostrom and J. Daligault, “Fast and accurate quantummolecular dynamics of
dense plasmas across temperature regimes,” Phys. Rev. Lett. 113, 155006 (2014).
46T. Sjostrom and J. Daligault, “Ionic and electronic transport properties in dense
plasmas by orbital-free density functional theory,” Phys. Rev. E 92, 063304 (2015).
47C. E. Starrett, “Thomas-Fermi simulations of dense plasmas without pseudo-
potentials,” Phys. Rev. E 96, 013206 (2017).
48C. E. Starrett and D. Saumon, “Equation of state of dense plasmas with
pseudoatom molecular dynamics,” Phys. Rev. E 93, 063206 (2016).
49C. E. Starrett, J. Daligault, and D. Saumon, “Pseudoatom molecular dynamics,”
Phys. Rev. E 91, 013104 (2015).
50R. Bredow, Th. Bornath, W.-D. Kraeft, and R. Redmer, “Hypernetted chain
calculation fo multi-component and non-equilibrium plasmas,” Contrib. Plasma
Phys. 53, 276 (2013).
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