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ABSTRACT

High-energy positrons and bright g-ray sources are of great importance both in fundamental research and for practical ap-
plications. However, collimated GeV electron–positron pair jets and g-ray flashes are still rarely produced in the laboratory.
Here, we demonstrate that by irradiating a near-critical-density plasma channel with two 10 PW-scale laser pulses, highly
directional GeV electron–positron pairs and bright g-ray beams can be efficiently generated. Three-dimensional particle-in-
cell simulations show the formation of GeV positron jets with high density (8 × 1021= cm3), attosecond duration (400 as), and a
divergence angle of 14°. Additionally, ultrabright ½2 × 1025 photons s21 mm22 mrad22 ð0:1%bandwidthÞ21� collimated attosecond
(370 as) g-ray flashes with a laser energy conversion efficiency of 5.6% are emitted. These features show the significant
advantage of using a plasma channel as compared with a uniform plasma and thus open up new possibilities for a wide variety of
applications.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5083914

I. INTRODUCTION

Since the discovery of the positron,1 much attention has
been devoted to the study of positron sources and their ap-
plications in various areas,2,3 including fundamental physics,
medicine, and industry. Compared with conventional positron
sources, laser-driven sources have many potential advantages,
such as the ability to produce ultrashort bunches, at high en-
ergy, high density, and high yield. At present, by using
high-power intense lasers, multi-MeV positrons can easily be
produced in the laboratory.4–7 However, more energetic (i.e., in
the GeV and TeV ranges) positron jets with extremely high
density are still out of experimental reach and occur only in
energetic astrophysical environments,2,8,9 such as g-ray bursts,
pulsars, and black holes. It would be very difficult to achieve

such positron sources on earth with current laser technologies
or traditional methods.

On the other hand, several laser facilities that are currently
under development10–13 will deliver laser pulses with ultrahigh
intensity of order 1023–1024 W/cm2 and power in the range
10–200 PW. This should open up a new realm of possibilities
for light–matter interactions in the radiation and quantum-
dominated regimes.14–17 For these proposed schemes, it has
been shown that when the laser intensity is above 1023 W/cm2,
there will be significant production of dense high-energy
positron sources via the multiphoton Breit–Wheeler (BW)
process18 from various media, such as plasmas19–25 and rela-
tivistic electron beams.26–28 However, the dense positron jets
and bright g-ray flashes that have been produced so far often
exhibit large divergences.
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In this paper, we present a practical approach to generate
collimated GeV positron beams and bright g-ray flashes at an
achievable laser intensity of ;1022 W/cm2 by using a plasma
channel. Compared with the case of a uniform plasma slab,
there is a significant improvement in collimation. It is also
shown that the positron beams and g-ray flashes all have du-
rations of a few hundred attoseconds. Such atto-beams of
relativistic particles and X/g rays are of interest in diverse
scientific and technological applications.29–32

II. NUMERICAL SIMULATION RESULTS

Figure 1(a) shows a sketch of our scenario. Two 10 PW
laser pulses are incident on a near-critical-density (NCD)
plasma channel from two sides and propagate along the x
direction [see Fig. 1(b)], where the channel density profile is
radially symmetric. During the laser propagation, the pulse
intensity is greatly enhanced in the plasma channel.Meanwhile,
dense attosecond electrons are trapped by the intense pulse
and accelerated to multi-GeV energies, so that energetic
attosecondg rays are efficiently emitted via nonlinearCompton
scattering (NCS).32,33 The dense GeV atto-beams of electrons
and g rays then collide with the second probe pulse from the
right side, and amultiphoton BWprocess is triggered, resulting
in abundant dense GeV positrons with atto-scale beam dura-
tion. As a comparison, we also consider a plasmawith a uniform
density distribution, as shown in Fig. 1(c).

Three-dimensional (3D) particle-in-cell (PIC) simula-
tions are performed using the code EPOCH,34 with both QED
and collective plasma effects incorporated.35,36 In the sim-
ulations, two 10 PW-scale high-power linearly polarized
Gaussian laser pulses (drive laser and probe laser) are incident
with a time delay of 55T0 from the left and right sides of
the box, respectively. The temporal profiles of both laser

pulses are trapezoidal with durations of 12T0 (1T0–10T0–1T0)
for the drive pulse and 5T0 (1T0–3T0–1T0) for the probe
pulse. The normalized amplitude of both lasers is
a0 ¼ eE0=mecv0 ¼ 150, corresponding to an intensity of
3 × 1022 W/cm2, which is currently approachable in the lab-
oratory,37 with a focus spot of s0 ¼ 4l0. Here e is the unit
charge, me is the electron mass, v0 is the laser oscillation
frequency, l0 ¼ T0c ¼ 1mm is the laser wavelength, and c is
the speed of light in vacuum. The NCD plasma has a trans-
verse density profile ne ¼ n0 1Dnðr2=s2

0Þ in the plasma
channel located between 3 and 53l0, where nc ¼ mev

2
0=4pe

2

is the critical density, n0 ¼ 1nc, Dn ¼ 0:1a0n0=s
2
0 ðmm2Þ, and

r ¼ y2 1 z2 is the radial distance from the channel axis. For
the case of a uniform plasma, the density is ne ¼ 3:9nc, to
keep the total number of plasma electrons unchanged. The
simulation box is x × y × z ¼ 60× 20× 20l30, with a cell of
Dx×Dy ×Dz ¼ l0=30× l0=12 × l0=12 and 16 macroparticles in
each cell. To save computing resources, a moving window is
employed at t ¼ 63T0.

Figure 2(a) shows the energy spectra and the distributions
of the electron energy density. It can be seen that electrons in
the plasma channel can be accelerated to much higher energy
than those in the uniform plasma. This can be attributed to the
coupling effects of high-intensity laser interaction with NCD
plasmas,38,39 where the plasma channel acts as a optical lens to
enhance the intensity of a laser pulse significantly, as shown in
Fig. 2(b). Since a large number of electrons are confined in the
high-intensity region of the laser pulse, they consume themost
laser energy by emitting high-energy g rays during their rapid
acceleration. It is interesting to note that the laser intensity is
still enhanced fourfold within the plasma channel. The beam
energy density of the accelerated electrons is as high as
3 × 1019 J=m3, with a high energy of 2.5 GeV and an ultrashort
beam duration of several hundreds of attoseconds, which is
more than eightfold higher than the threshold (;1011 J=m3) for
high-energy-density physics (HEDP).40 The interaction of such
energetic electrons with the extremely intense laser fields
results in h >0:1, where h ¼ ðge=EsÞjE’ 1 v ×Bj is the critical
parameter determining the importance of quantum-dominated
radiation emission,24,36,41 as shown in Figs. 2(c) and 2(d). Here, ge
is the electron Lorentz factor, E’ is the electric field perpen-
dicular to the electron velocity v, and Es ¼ m2

ec
3=eZ is the

Schwinger field. During this process, the self-generated strong
magnetic field plays an important role in enhancing h. Finally,
most of the drive laser pulse energy is absorbed by the plasma,
and the electrons are accelerated to GeV energies, together
with bright g-ray emission. Such dense GeV atto-beams may
open up new possibilities for a number of applications, pro-
vidingultrahigh-time-resolution studieswith attosecond-scale
resolution in various areas, such as high-energy physics, plasma
physics, and astrophysics.

Since the critical parameter h in the case of a plasma
channel ismuch larger than in the caseof auniformplasma,GeV
g rays are efficiently emittedwith a high photon energy density,
as shown in Fig. 3(a). Here, the attosecond g rays radiated have a
smaller divergence angle at high photon energies than in the

FIG. 1. (a) Schematic of the generation of collimated GeV positron jets by the
interaction of two 10 PW laser pulses with a plasma channel filled with NCD plasma.
The drive pulse (laser #1) and probe pulse (laser #2) are incident from the left and
right sides, respectively. Two cases are considered: (b) a plasma channel with a
radially symmetric density profile and (c) a uniform plasma slab.
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case of a uniform plasma slab, as can be seen in Figs. 3(b) and
3(c).With theplasmachannel, theg-ray beamhas a total photon
yield of 2:5 × 1011 at 25MeV, a fullwidth at halfmaximum (FWHM)
cross section of ;1:5mm2, a FWHM divergence of 0:1 × 0:1 rad2,
and a total pulse duration of ;900 as at FWHM. The results
indicate that GeV g rays are obtained with a peak brightness of
;2 × 1025photons s2 1 mm2 2 mrad22ð0:1%bandwidthÞ2 1, which

is several orders of magnitude higher than what is presently
achievable in the laboratory42–45 and is also much brighter than
the level obtained in other simulations.46–48 Meanwhile, the
g-ray beam is characterized by a desirable ultrashort duration
of <370 as per pulse.

The greatly strengthened laser pulse accelerates the
electrons to multi-GeV energies. During this process, ex-
tremely energetic g-ray flashes are emitted via NCS in the NCD
plasma. These accelerated electrons and emitted g photons
with GeV energies then collide with the probe laser pulse
incident from the right side, triggering a multiphoton BW
process. This can be described by the quantum parameter
x ¼ ðZv=2mec2ÞjE’ 1 k̂ × cBj=Es, where Zv and k̂ are the energy
and unit vector of the emitted photons.24,36,41 As a result, high-
yield well-collimated GeV positron jets are effectively gener-
ated with an overdense density profile and attosecond-scale
beamduration. Figure 4 shows the results of a 3DPIC simulation
of positron generationby aplasmachannel andby aplasma slab.
It is clear that the jets can be significantly enhanced in the case
of a plasma channel. The collimated GeV positron jets obtained
have a high density of 7nc, with a small divergence angle of 14°
and anultrashort beamdurationof 400 as at FWHM.Theenergy
density of these positrons is about 1018 J=m3, which is 107-fold
higher than theHEDP threshold. This offers anexcitingnewtool
for positron-based research, potentially pushing such studies
into the attosecond regime.

III. SCALING WITH LASER INTENSITY AND PLASMA
CHANNEL LENGTH

The present simulations demonstrate a promising and
efficient approach for generating well-collimated, energetic,
dense positron jets with attosecond-scale beam duration from

FIG. 2. (a) Energy spectra of electrons at t ¼ 58T0. (b) Transverse electric fields along the laser propagation axis. The insets in (a) and (b) show the distributions of the trapped
electron energy density and laser transverse electric field, respectively, in the case of a plasma channel (top) and a uniform plasma slab (bottom). (c) and (d) show the distributions
of the parameter h along the x axis in the case of a plasma channel and a uniform plasma slab, respectively.

FIG. 3. (a) Energy spectra of g rays at t ¼ 68T0. The insets show the energy
density distribution of the g-ray emission with a plasma channel (top) and a uniform
plasma slab (bottom). (b) and (c) show the angular energy distributions of the
emitted g rays in the plasma channel and uniform plasma, respectively.
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an NCD plasma channel, driven by 10 PW-scale intense lasers.
To further explore the parametric effects and robustness of
this scheme, a series of 3D PIC simulations are carried out
employing different NCD plasma channels and laser intensities.
First, the effect of laser intensity on the jet generation is in-
vestigated, with all other parameters being kept the same as
before, except for the laser amplitude a0 and the corresponding
plasma density ne. Figure 5(a) shows the simulation results. It
canbe seen that as the laser intensity increases, theefficiencyof
laser production of positrons is enhanced significantly. This is
due to the fact that with increasing laser intensity, it becomes
easier to trigger the multiphoton BW process. Note that the
critical quantum parameter x;ZvjE’j=mec2Es}Zva0. With
forthcoming multi-PW laser facilities, our scheme has the
potential for highly efficient generation of dense GeV positron
jets and bright g-ray flashes with the desirable attosecond-
scale beam property.

Figure 5(b) shows simulation results for plasma channel
lengths L ranging from 40l0 to 70l0. It can be seen that a
longer channel length improves the production of positrons.
Both themaximumenergy and the yield of positrons increase
with L, as does the efficiency of energy conversion from
the laser pulse to the positrons. This is attributed to the
accelerated electrons, which can reach a higher energy
with a longer acceleration distance and efficiently radiate
extremely energetic g rays in NCD plasmas.38,39 However,
further increases in channel length are not always desirable.
For example, the generation of positrons saturates for
L > 60l0, because the drive laser pulse is rapidly depleted in
such a long plasma channel, so that both electron acceler-
ation and g-ray emission become limited and electron–
positron pair production ceases to be enhanced. This effect
could be used to tune and enhance positron jet generation in
future experiments. It has been shown that the use of plasma
and magnet devices49,50 may allow transport and focusing

FIG. 4. (a) Energy spectra of positrons from a plasma channel (red curve) and a uniform plasma slab (black curve), where the inset shows the positron angular divergence. (b)
Evolution of total yield and energy of positrons with the interaction time, where the solid curves are for a plasma channel and the dashed curves are for a uniform plasma slab. (c)
and (d) show the energy density distributions of positrons generated from a plasma channel and from a uniform plasma slab, respectively. The insets present the density profiles of
positrons in the x–y cross section.

FIG. 5. Yield Ne1, energy conversion efficiency re1, and cutoff energy Ee1 of positrons as functions of (a) laser amplitude a0 and (b) plasma channel length L.
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of relativistic positron atto-beams, although the underlying
physics needs further study.

IV. SUMMARY

We have investigated the generation of collimated GeV
attosecond positron beams from the interaction of 10 PW
lasers with an NCD plasma at currently achievable laser in-
tensities of ;1022 W= cm2. We have shown that high-yield,
well-collimated, dense GeV attosecond positron beams are
efficiently produced using a plasma channel. Compared with
the uniform plasma case, the positron yield is greatly en-
hanced owing to strong focusing and subsequent intensity
enhancement of the incident laser pulse in the plasma
channel. The yield, energy conversion efficiency, and cutoff
energy of the positrons obtained increase with increasing
incident laser intensity, and further enhancement can be
achieved by using a longer plasma channel. With the up-
coming next-generation laser facilities (e.g., ELI,10 XCELS,11

Apollon,12 and SULF13), such collimated dense GeV positron
jets and bright g-ray flashes, both with desirable attosecond
duration, may open up new avenues for ultrafast applications.
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