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Abstract

Reliable simulations of laser—target interaction on the macroscopic scale are burdened by the fact that the energy transport is very often non-
local. This means that the mean-free-path of the transported species is larger than the local gradient scale lengths and transport can be no longer
considered diffusive. Kinetic simulations are not a feasible option due to tremendous computational demands, limited validity of the collisional
operators and inaccurate treatment of thermal radiation. This is the point where hydrodynamic codes with non-local radiation and electron heat
transport based on first principles emerge. The simulation code PETE (Plasma Euler and Transport Equations) combines both of them with a
laser absorption method based on the Helmholtz equation and a radiation diffusion scheme presented in this article. In the case of
modelling ablation processes it can be observed that both, thermal and radiative, transport processes are strongly non-local for laser intensities of
10" W/cm? and above. In this paper simulations for various laser intensities and different ablator materials are presented, where the non-local
and diffusive treatments of radiation transport are compared. Significant discrepancies are observed, supporting importance of non-local
transport for inertial confinement fusion related studies as well as for pre-pulse generated plasma in ultra-high intensity laser—target interaction.
© 2018 Science and Technology Information Center, China Academy of Engineering Physics. Publishing services by Elsevier B.V. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

High-intensity laser (>10'"® W/cm?) interaction with a
solid target has been studied extensively in the last decades,
experimentally and numerically. Even though the parameters
of the main pulse can be finely adjusted, less attention is paid
to accurate predictive analysis of the pre-pulses appearing in
these experiments. In general, pre-pulses are inevitable pre-
cursors of high-intensity main laser pulses, where especially
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amplified spontaneous emission (ASE) contributes signifi-
cantly. As a consequence, a pre-plasma is created in front of
the target, which may affect the interaction of the main laser
pulse by itself or by means of the caused disruption or
deformation of the target. These effects have been observed
and proved their significance in proton acceleration by irra-
diation of thin foils [1—3], fast-ignition schemes [4,5] and also
interaction of fs-pulses with high-Z targets [6,7]. Moreover, a
recent paper investigates the pre-pulse effect on a 10> W /cm?
peak intensity main pulse interaction [8].

This article focuses solely on the pre-pulse interaction with
a solid target. A comparison is made as far as the material is
concerned, where moderate-Z materials are represented by
Aluminium and high-Z ones by Copper. Simulations for laser
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intensities of 10" W/cm?, 10" W/cm? and 10" W/cm?
were performed. The hydrodynamic code PETE [9,10] is used
for this purpose, which includes a state-of-art non-local radi-
ation and electron heat transport model [11,12]. Even though
the classical diffusion approximation is invalid for such high
laser intensities, this fact is normally disregarded in simulation
codes. Here, a direct comparison of simulations with the non-
local radiation transport and radiation diffusion is presented,
where 12 different simulations were made in total. The effects
on formation of the pre-plasma then becomes evident espe-
cially in the regime of tightly coupled radiation and matter.
The rest of the paper is organized as follows. The following
section, Sec. 2, briefly discusses the physics issues of non-local
transport in the context of laser—target interaction. Sec. 3 de-
scribes applied numerical methods and newly developed
schemes. Sec. 4 is dedicated to the virtual experiments of
laser—target interaction and pre-plasma creation. Finally, dis-
cussion of the results and conclusions are given in Sec. 5 and
broad outlook for upcoming research in this field is made in Sec. 6.

2. Physics of non-local radiation hydrodynamics
2.1. Spatial non-locality of transport processes

The diffusion approximation of energy transport has been
prevalent numerical method due to its simplicity and numer-
ical stability for many years. Even nowadays, it is still not
uncommon to employ flux limiter models which limit the
conduction flux g, = —«.VT, to a fraction f. of the free-
streaming flux g = nemev%e, where T, and n. stand for the
electron temperature and density, m. electron mass and v, is

the electron thermal velocity vr. = \/kgTe/m. with kg being
the Boltzmann constant. Typically, the conductivity is modi-
fied by using the formula:

—1

Ke [1 + b—] . (1)
Ksh eqf

Here kg, is the Spitzer-Harm conductivity and «, the suppos-
edly corrected one. This approach to handle non-locality
makes no sense as it depends on the local temperature scale
length T./|VT.| whereas it is the global temperature scale
length k~! (with k being the spatial frequency) which de-
termines the heat flux. A reduction of the heat-flow for large
kAe, where A. is the electron mean free path, can therefore
never be modelled by a flux-limiter approach.

A detailed kinetic analysis of the phenomenon of non-local
transport [13] shows that the bulk collisional electrons are
responsible for absorption and increase in electron temperature
but contribute little to the heat flux whereas the hot colli-
sionless electrons hardly affect the electron temperature but
dominate the heat flux. If no distinction is made between cold
and hot then non-locality and flux inhibition arise if the real
heat flux is represented on a macroscopic level as a conduc-
tivity times a temperature gradient. Non-local transport is a
consequence of macroscopic models not taking account of the
specific form of the distribution function.

Non-locality in the transport coefficient can compensate for
the loss of detailed information of the underlying kinetics as
single-temperature fluid-type models do not distinguish be-
tween cold bulk electrons and hot tail electrons. The original
approach to non-locality was to present the heat flux as a
convolution over space in the form:

ge(x) = — / Ke(x — X )VT,(x)dx, (2)

with a certain appropriate kernel for the conductivity
[14—16]. This accounts for the strong variation of the con-
ductivity as function of space. However, this integral approach
is in general an ill-posed and intrinsically unstable problem
[17], although these problems can be overcome with a corre-
sponding overhead as far as the numerics is concerned [18].
The impossibility to extend the convolution models to more
dimensions was overcome later in [19], where a linear trans-
port equation was found for the problem. However, a direct
physical reasoning behind the models remained still elusive.
An answer to this principal question was later given by re-
naissance of Krook-type operators [20].

A more detailed analysis can be found in our recent paper
[12], which was dedicated to the problem of non-local electron
heat transport, formulation of a model based on a Krook-type
operator and development of an efficient numerical method for
this purpose. However, the problem of non-locality is not
inherently connected only with electrons, but with any kind of
particle in principle, provided that it can be delocalized suf-
ficiently to escape local potential values. In such case, clas-
sical perturbation theory is not applicable and the
Chapman—Enskog method [21] underlying the diffusion
approximation cannot be used for expansion of the distribution
function.

This situation also occurs in radiation transport, which is
the main topic of this paper. Diffusive approximation is
broadly applied in this area too [22,23], where radiation flux
limiters are introduced into the diffusion operator in a fashion
similar to (1), i.e. modifying the diffusion operator:

c
=—f—V 3
qr f?)KR €R, ( )

where f = f(Kng) is the radiation flux limiter and c is the
speed of light in vacuum, kg Rosseland opacity and Kng = |V
€r|/(krer) the radiation Knudsen number for the densities of
radiation energy eg. In principle, all flux limiters satisfy the
diffusion limit f(Kng) =1 for Knp<1 and the non-local limit
f(Knr)=3/Kng for Kng>>>1, where the resulting flux ap-
proaches the free streaming value |gg| = cer with eg being the
radiation energy density. The similarity with the heat con-
duction is apparent here, since the flux ratio |gg|/(cer) ~ Kng.
However, the flux limiters are still dependent on the local
profiles of temperature, which can be irrelevant in many cases
as manifested in the test from Sec. 3.3.2.

From the physical point of view, it can be proved that flux
limiters are related to the variable Eddington factor (VEF)
[24]. This connects the flux limited diffusion (FLD) with the
Eddington approximation that poses another popular approach
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in the field. An expansion of the radiation transport equation
into angular moments is made, where the first two moments
are typically considered to be sufficient [25]. Termination of
the expansion at the energy equation is achieved by con-
struction of an appropriate closure independent of the higher
moments. Using only the isotropic moments for construction
of the closure, the VEF method is obtained, as originally
proposed in [26]. Later, the method was improved by taking
the radiation fluxes into account as suggested in [27]. Several
examples of flux limiters directly corresponding to the clo-
sures are given in Sec. 3.3.1.

Another widely applied approach is the discrete ordinates
(Sy) method, where the quantities are discretized in the
angular space. Following then the technique of short-charac-
teristics, the radiation transport is solved on the level of energy
exchange between adjacent computational cells. This method
was originally developed by Carlson [28] and become widely
known thanks to Pomraning [29]. It brings in essentially the
true notion of non-locality of the energy transport.

Sometimes, a combination of diffusion with a Sy method
can be encountered in astrophysical codes [30], where the
latter model covers only the free streaming limit of the
transport. However, in the context of laser—target interaction,
radiation transport occupies the space between the two limits
parametrically as was observed in Sec. 4.2 and a single
numerically effective method with correct limits is necessary.
We presented such a method in [11] and its brief description is
given in Sec. 3.3.

The main aim of this text is then to show the discrepancies
between the diffusive and non-local transport models in real
scenarios involving interaction of high-intensity lasers with a
solid target. An intensity scan is made as well as a scan in the
material of the target, because all of these parameters strongly
affect the results. Moreover, the role of non-local energy
transport and its interplay with the hydrodynamics is also
discussed. In order to clarify that the principally correct
description including non-locality of the transport and self-
consistency of the laser absorption must be applied, some
trade-off in overall realism of the simulations was made to
keep the simulations illustratively simple, but still covering
important phenomena.

2.2. Context of the simulation work

Detailed radiation-hydrodynamic simulations of the abla-
tion process is of fundamental importance for inertial
confinement fusion (ICF) as well as pre-pulse characterization
of high-power laser—matter interaction. In particular, the
following issues require more detailed understanding:

e extend and profile of the sub-critical plasma corona in
front of the target,

e location of the critical density layer n, =%
Ao the laser wavelength in vacuum, 0

e velocity and position of the created shock wave.

cm™3, with

3. Numerical methods
3.1. The equations of non-local radiation hydrodynamics

The macroscopic, single-fluid, two-temperature equations
of radiation hydrodynamics governing laser—plasma interac-
tion in the Lagrangian frame of reference take the following
form [9,10,12]:

dp

-z __y. 4
PR AR (4)
du

—=-V i e)s 5
Py =—V(pi+p.) (5)
de;

p g =—PVu—G(T,~T.) - Vg, (6)
de, der

R = pV-u+G(T, —T.

TR PVt Gl ) (7)

~V-(qe +qr +4q1);

where p is the mass density, u single fluid velocity, p., p; are
electron and ion pressures respectively, e, ¢ represent the
specific internal energies, 7., T; temperatures of the species, e
stands for the density of radiation energy and G is the energy
exchange coefficient. Finally, q.,q;,qr,q; are energy/heat
fluxes of electrons, ions, radiation and laser field (i.e. the
Poynting vector). Note that the electron and radiation heat
fluxes ¢q.,qr represent both, the non-linear heat/radiation
diffusion fluxes or the non-local heat/radiation fluxes respec-
tively, depending on the configuration. The radiation transport
models are detailed in Sec. 3.3. The ion heat flux g; is obtained
only from the diffusion approximation (g; = —«;V7; with «;
being the ion heat conduction coefficient), since the ion
Knudsen numbers Kn; = A;|VT;|/T; with the ion mean free path
J; are typically very small (Kn; <1073 in our simulations) and
diffusive approximation is then sufficient. However, the
formulation of the energy equations (6) and (7) is only formal,
because both closure models (non-local radiation/heat transport
and heat diffusion) implicitly solve the isochoric heating of the
electrons through these equations. The compression parts of (6)
and (7) are explicitly calculated together with the rest of the
hydrodynamic equations (4) and (5) by the compatible hydro-
dynamic scheme on a staggered computational mesh [31].

Full details of the non-local electron models are out of
scope of this text and can be found in [9,12], but some of the
key features must be highlighted. The model is based on the
first principles, where no arbitrarily chosen function enters the
model as it is common for the convolution models mentioned
in Sec. 2.1. It is essentially built on the Bhatnagar—-
Gross—Krook type collision operator [32]. Its applicability in
the context of the non-local transport for macroscopic models
was widely analysed in [33]. Moreover, angular distribution of
transported species is retained without any limiting assump-
tion on anisotropy of the distributions. Furthermore, the
formulation itself allows construction of discretization fully
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satisfying energy conservation, since it naturally uses energy
intensities in a very similar way to the radiation transport
model described in Sec. 3.3. Finally, the energy exchange term
G(T; — T) is implicitly included to provide proper coupling of
the electron and ion equations (6) and (7).

3.2. Laser absorption model

The laser absorption model determines the laser energy
deposition, which appears as the explicit source term V-g; on
the right-hand-side of the equation of energy conservation (7).
In order to solve the laser propagation in an inhomogeneous
medium, the algorithm based on stationary Maxwell's equa-
tions is employed. It was originally introduced in [34] and
later extended and successfully applied in [35,36], but never
detailed thoroughly. In this text, a complete description of the
method is presented, including a brief inference of the
numerically solved equations. The main advantage of the
model can be seen in its full self-consistency, where only an
appropriate closure model for the collision frequency must be
supplied as described in Sec. 3.2.2, but no empirical or ad hoc
reflectivity coefficients of the critical plane are needed.

The method originates from the Helmholtz equation for
transverse component of the electric field Ey in 1D (or more
precisely the phasor of the harmonic field in time with angular
frequency w) that takes the form:

62EL_ (L)2
022 2

ek, (8)

where c is the speed of light in vacuum. Note that polarizations
of the waves are not distuinguished here, since only normal
incidence of a lineraly polarised laser wave is assumed. The
relative complex permittivity e reads [37]:

(1)2

M7 (9)

e=1-—
where wpe = +/€ne/(eome) stands for the electron plasma
frequency with e the elementary charge and g, the permittivity
of vacuum. The electron collision frequency v, determines the
efficiency of inverse-bremsstrahlung laser absorption and the
closure model for it is given in Sec. 3.2.2.

In order to proceed, it must be taken into account that the
numerical method uses staggered spatial discretization, where &
is approximated by a piece-wise constant function on the
computational cells. The solution in the interior of the cells then

consists of a superposition of the inward P = Pyexp (—i e Ve z)

and the outward R = Rpexp (1(E NG z) propagating plane waves

(EL. = R+ P). The reflection coefficient of the waves is defined
as'V =R/P. This allows to cast (8) into an equivalent system of
first-order equations for Vand P [34]:

ov

‘ (10)
or .

—+1ikP =0,

0z

where k = /e = ko\/e is the wave number.

However, a full solution of (10) in terms of the electric field
EL = P(V + 1) is not needed, since the point of interest is
only the time-averaged Poynting vector gq;. Consequently,
information about the phase of P can be removed completely,
avoiding ad hoc determination of the phase in the boundary
condition for P completely. Following this idea, the coefficient

A= %’PF is introduced. These two coefficients, V and A, are

then chosen as the primary variables and the system (10) is
transformed into:

ov

5.~ 2ikv =0,
¢ (11)
0A
— — 2koxA =0,
0z

where y =Im /e is the imaginary part of the complex
refractive index. It must be stressed at this point that (11) is no
longer equivalent to (10) and to the original Helmholtz
equation (8) consequently. The irreversibility of the trans-
formation is implied by the definition of the second order
quantity A. Hence, the resulting equation for A is real and (11)
is composed of only two linear first-order ordinary differential
equations (one complex and one real).

The differential equations (11) are integrated inside the cells
and interface relations are applied at the computational nodes,
which represent optical step interfaces in the given discretiza-
tion. Hence, the left and right values of the quantities relative to
the interface are distinguished and denoted with a — and +
subscript respectively. After some algebra, one may derive from
the interface conditions for electric field P~ + R_ = Py + R,
and magnetic field \/e_(R_ — P_) = /e[ (R — P) the ex-
pressions for Vand A in the form:

= Ve e +V (14+/e /er)

; (12)

S e e v (1 e e )
A= +;&%Re(m). (13)

In order to solve the resulting global system of equations,
two boundary conditions are set. The first one is based on the
assumption that V vanishes behind the critical density plane z.
(i.e. the point, where w = wpe) and sets V(zmin) = 0. The
position of the point zp;, is given by the requirement
JZ xdz> C,,, Ao, where the constant C,, is typically 2—4.

Zmin Zmin min

The other boundary condition originates from the fact that A
coincides with the definition of Poynting vector in vacuum and
it states A(zmax) = I, where I, is the intensity of the incoming
laser beam.

Finally, the solution is numerically obtained for V using
(12) at the interfaces and the analytic solution of (11) in the
form V ~ exp(2ikz) in the interiors of the cells, starting from
the boundary zyi,. Then, the solution of A can be constructed
from the opposite boundary zy.x utilizing the Eq. (13) at the
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interfaces and the solution A ~ exp(2koxz) within the cells.
After the solution is found for A and V, the Poynting vector ¢q; ,
which is of the main interest here, is obtained in the form:

g | =A[n(|V]?—1) —2xIm V], (14)

where n = Re /¢ is the real refractive index. Finally, the
resulting Poynting vector g; of the laser field is substituted
into (7), satisfying the power conservation of the laser field
and absorbed power in the plasma this way.

Viability of the method was verified by a test given in
Appendix A. The numerical solution is compared to the ana-
lytic one for a simplified problem resembling the typical
configuration of absorption in vicinity of the critical plane.

3.2.1. Numerical enhancement of the laser absorption
algorithm

The previous section described the basic model of laser
absorption, but several relevant issues occurring in the
resulting numerical method have not been mentioned. Their
appearance can be seen as a direct consequence of the made
physical approximations. First of all, the wave nature of the
Helmholtz equation (8) and consequently the complex equa-
tion for V (11) requires spatial resolution of the mesh com-
parable to the wavelength of the laser wave. In particular, we
obtain from the Nyquist—Shannon sampling theorem [38] the
requirement Ax < 27/[2Re (k)] = jAo/n, where Ax is the
spatial step and A is the vacuum wavelength of the laser. In
practice, the resolution needs to be even better to attain a good
accuracy of the solution. An additional limit comes from the
fact that the piece-wise constant approximation of ¢ is applied,
which implies the condition Ax<|k|/|Vk| ~ |¢|/|Ve|. There-
fore, it is not feasible to construct the main Lagrangian
computational mesh with typically sub-micron spatial step that
must be guaranteed throughout the whole simulation, despite
the fact that the plasma corona can reach even centimetre
scale. Hence, an adaptive mesh refinement is performed
instead within each time step, where the main mesh is refined
to satisfy both mentioned requirements. In each computational
cell, linear reconstruction of the hydrodynamic quantities is
performed and the Barth—Jespersen limiter is then applied to
avoid creation of new local extremes [39]. However, it must be
stressed that the method maintains conservation of the quan-
tities and this property becomes essential for steep gradients
especially. Moreover, local linear regression over one wave-
length is applied instead of point-wise projection to remove
the periodic component of the solution in the case the main
mesh does not satisfy the given requirements any more. This
procedure prevents occurrence of aliasing effects in turn.

An additional level of refinement is provided by mapping of
the temperature finite elements used within the high-order
DG-FEM scheme for non-local electron heat and radiation
transport (see Sec. 3.3). However, a full description of the
method is out of scope in this text and can be found in [10]. It
is a possible topic of future research to develop a higher
order laser absorption algorithm in order to increase the

computational efficiency and partially ease the requirements
on the spatial resolution.

3.2.2. Collision frequency model

For purposes of laser absorption, we use the global model
of the electron collision frequency v, proposed in [40], which
covers a wide range of temperatures and densities during the
pre-plasma formation. This point is essential in early times of
the simulation, when the laser irradiates a solid target and a
dense plasma is being formed in front of the surface. The
effects of this abrupt evolution should be included in accurate
simulations of laser—target interaction in order to properly
capture timing of the shock wave launching [41].

In the case of a hot plasma the model is identical with the
classical Spitzer-Harm formula [42]:

4 Z e*m,n,

Vei = 5

T ——>.
3 (m.ksT,)"*
The Coulomb logarithm A is approximated by the

(15)

expression A = max(2,1ny/1 + (bmax/bmin)z) [43], where

\ ke Te/me 7 e Sy -
bmax = ﬁ%rz) and b, = max <fB—“Te, ﬁ) with Z being
the mean ionization and % the reduced Planck constant. In
contrast, electrons are degenerated in the solid state limit and
dependency on T, vanishes. Scattering of electrons by phonons
must be taken into account [44] and the collision frequency is
approximated in this case by [40]:

€2kBTi
hZVF ’

Here, v denotes the Fermi velocity vg = hiv/312n, /m,. and
ks is an empirical constant used for adapting the model to
experimental results. Both frequencies, (15) and (16), are then
interpolated by the harmonic mean v;' = v+ v ! phonon-
This formula satisfies both limiting cases, but it strongly
overestimates collision frequencies for intermediate tempera-
tures near the Fermi temperature, where none of the previous
formulas (15) and (16) hold [45]. A reasonable criterion is
then added to avoid the cases, when the mean free path is
shorter than a characteristic inter-ion distance [40]:

3 1/3
Ve <Ve (Znni) , (17)

where the characteristic electron velocity v, is approximated
by ve = /V& + v&, to satisfy both limits of a hot plasma and a
cold solid.

The presented collision frequency models are compared in
Fig. 1 for Copper. The value of ks was determined by the
procedure described in [40] based on reflectance of the ma-
terial. It has value R=0.41 for the parameters used in the plot
[46], which yields ks =396. All dependencies are artificially
prolonged outside the area of validity to show their limit
behaviour. The limitation of the collision frequency in the
intermediate regime given by (17) is significant. However, the

(16)

Vel—phonon = 2ks
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Fig. 1. Various electron—ion collision frequencies as function of the single
temperature (7, = T;) for a solid copper with mass density p = 8.94 g/cm?,
mean ionization Z = 4.4. The models are explained in Sec. 3.2.2 and the laser
wavelength was set 4o = 0.35 um in correspondence with Sec. 4.1.

effects on evolution of the simulated system are minimal in
real scenarios, since the system stays outside this region most
of the time due to simultaneous expansion and heating of the
matter.

3.3. Radiation transport

Radiation transport has an essential role in the interaction
of high intensity lasers with a solid target, especially for high-
7Z materials. In the context of the current work, we limit
ourselves to only gray body approximation with opacity
scaling laws taken from [47], where the average ion model
was used to calculate the LTE electronic levels occupancies.
The reason for these simplifications is that we want to clearly
show the effects of non-locality without additional consider-
ations about the spectral distribution. However, it is evident
that full physical realism can be achieved only with proper
treatment of the spectra independently of the followed (non-)
local approach [48].

As it is customary, radiation transport is described by the
mean radiation intensity Ix = Ir(¢, x, n), depending on the
time ¢, spatial coordinate x and the transport direction unit
vector n. The classical gray-body radiation transport equation
with linear scattering reads [29]:

101 -

——+n-Vi=j+aol— (k+0,)l, (18)
c ot

where j = j(t,x,n) represents the mean emissivity, kK = k(z,x)
is the average opacity (see below) and o, = o,(t,x,n) stands
for the mean scattering coefficient. The symbol [ is the angular

average of the intensity, i.e. I = 1/(47) [Idn. Finally, it must
41

be noted that the convection term for intensity is meant in the
“physical” sense, so it is defined as the directional derivative
n+VI =0I/0n in order to be applicable in all coordinate
systems [49].

Numerically, the Eq. (18) is solved by a generalization of
the discrete ordinates method (typically denoted as Sy) using

the high-order Discontinuous Galerkin Finite Element Method
(DG-FEM). The finite element method is applied in both, the
spatial dimension and the angular dimension [50]. Details
about the discretization and construction of the numerical
method can be found in [9,11]. At this point, we would like to
stress that the method includes an implicit coupling of the
radiation and the matter, that means inclusion of the isochoric
part of the electron energy equation (7) into the radiation
transport equation (18). This feature is not usually seen in
numerical codes and we find it important for establishing ac-
curate radiation wave profiles and stability of the simulation.
Finally, the intensities are integrated over all solid angles to
obtain the resulting radiation energy fluxes as gz = [Indn,
47

which are then substituted into the electron energy equation
(7). We will refer to this model as the non-local radiation
transport, since it inherently includes non-locality in the
description. A concurrent option is to compute the radiation
energy fluxes g from radiation diffusion instead, as described
in the dedicated Sec. 3.3.1. However, both methods are vali-
dated to approach the very same limit in the diffusive regime,
see Sec. 3.3.2. Even from the numerical point of view, the non-
local transport scheme converges very well for the 3rd order
polynomial approximation of the radiation intensities in space
and polar angle (split in forward and backward direction) used
solely in this text, as it was partially shown in [11]. Details of
the numerical features will be presented in more detail in
subsequent papers.

The physical scenario of the laser target interaction allows
to apply additional simplification as far as the radiation
transport equation (18) is concerned. The mean emissivity is
set equal to j = ka/ ’TCT: , where ¢ is the Stefan—Boltzmann
constant, and the scattering is neglected completely [51].
Finally, the notion of the average opacity must be explained.
When Planck spectrum is assumed, it is widely known that the
mean opacities in the gray-body approximation approach the
Rosseland mean opacity kg in the diffusive limit (see Sec.
3.3.1). On the other hand, in the non-local limit the Planck
mean opacities kp are more appropriate in this case [49]. The
regime in between is very complicated from the point of view
of modelling and a multi-group treatment is more adequate.
However, an interpolation must be made between the two
limits in the gray body approximation. Such an ad hoc inter-
polation was proposed in [48] and its good performance was
verified on problems of radiative shocks. The average opacity
k then reads:

1

T e BR-1/2) 11’ (19)

K= (1 — O(fR)KR+afRKP, O,

where f is the reduced radiation flux fx = |qg|/(cer). Since
this factor has the limiting values fr —0 for the diffusive
regime and fg — | in the free-streaming limit, it presents a very
natural choice for parametrization and is equivalent to the
radiation Knudsen number Kng = |Ver|/(keg) for radiation
diffusion in fact. A test problem dedicated to validation of the
model was performed in Sec. 3.3.2. However, the model is
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only empirical without any direct physical justification. Hence,
we propose this problem as a topic of our future research.

3.3.1. Radiation diffusion

The equation of radiation transport (18) can be simplified
even further by taking into account the assumptions mentioned
in the preceding paragraphs and present only a small deviation
from the isotropic local distribution. Moreover, the given
medium is optically thick or the gradients are small, i.e. the
radiation Knudsen number Kng is small. Then truncation after
the first two terms of spherical harmonics expansion and sta-
tionarity of the fluxes yield the non-equilibrium diffusion
approximation [29]:

Oe ¢

57 () ol 2
0T,

pCy—— = CKp (SR - aTé), (21)

ot

where ¢y = (0e./0T¢), is the specific heat of electrons and
a =4a/c presents the radiation constant. As customary for
diffusion models, an appropriate flux limiter f = f(Kng) must
be applied in cases when the requirement on smallness of Kng
is not fully met.

The flux limiters must respect the diffusive limit f(Kng) —
1 for Kng —0 and the free streaming limit f(KnR)—3/Kng
for Kng — 0. Although the limits are known, the most
important regime in the context of laser plasma is about unity
as can be deduced from the simulations in Sec. 4. In this re-
gion, the flux limiters may differ as shown in Sec. 3.3.2.
Several flux limiters based on Kng have been implemented in
the simulation code PETE. Simpliest one is the flux limiter
denoted as “sum”, which is defined as fym = 1/(1+ Kng/3).
Another choice presents so-called Larsen limiter [25]:
[+ (Kne/3)') ", (22)

f Larsen —

where n =2 was chosen for the simulations in Sec. 3.3.2
corresponding to the optically thick limit. For purposes of
the virtual experiments in Sec. 4, we use the limiter developed
by Levermore and Pomraning [52]:

o 2 + KnR
2+ Kng +Knk /3
Another popular choice is the limiter developed by Min-

erbo [53], that is based on anisotropy considerations, and
reads:

Jip (23)

2
Kng <3/2

4
14 /1 +-Kn}
30 : (24)

3
Kng>3/2
|+ Kng +/1+2Kng  © /

The list of the flux limiters is certainly not complete and
many different formulas can be found in the literature, espe-
cially for astrophysical problems (see e.g. [23] and references

f Minerbo =

therein). However, we have not observed any significant dif-
ferences for our physical scenario, but all flux limiters are
compared theoretically in Sec. 3.3.2.

Regarding the system (20 and 21), egr in the radiation
diffusion equations can be replaced by the radiation temper-
ature, that is defined by er = an{. It fully characterizes the
diffusion description and the system is then typically denoted
as 2-T (two-temperature) or 3-T (three-temperature) including
the ion energy equation (6). However, Tr serves only as an
auxiliary parameter in the case of the non-local radiation
transport.

Numerically, the system of equations (20 and 21) is solved
by a scheme based on the method of mimetic operators [54].
The full inference of the scheme is out of scope of this text,
only a brief description is given. First of all, the quantity § =
aT;‘ is introduced. Then temporal discretization with backward
Euler method in (20) is performed with the fixed opacities kg,
kp and specific heats cy at the time level n giving rise to the
semi-discretized implicit system:

nt+l __ €l

€R X R _ V‘dVE]’;H _ u(0n+1 o E;;H), (25)
o 1,
a:;(éR-H —0), (26)

where u = ckp is a relaxation parameter, the symbol 7 = pcy/
(4ap)(T") " is the characteristic time of relaxation, the
diffusion coefficient is defined as d = fc/(3kr) and At is the
time step size.

The linear ordinary differential equation (26) can be inte-
grated numerically or analytically with parametric dependence
on sﬁ“. In both cases, the solution can be written in the form
0"t = B0" + (1 — B)es™ [22]. The fully implicit time dif-
ferencing gives the value of the parameter Bgg = 1/(1+
At/7). In contrast, the analytic solution yields (., = exp(—
At/7). Both coefficients give exactly the same limit behaviour
B=1—At/T+ O(Ar/7) for Ar/T7<] corresponding to the
forward differencing provided that eg is constant. The coeffi-
cient B, is more suitable for larger ratios of Az/7, in
particular when 7 is nearly constant especially. However, the
former coefficient Bgg preserves symmetry of the equations
(20) and (21) discretized in time and symmetry of the relax-
ation consequently. In the context of this work, we chose the
coefficient 8gr, because we have not observed any significant
differences for our physical settings and reliability was
preferred over speed of computation. In any way, the method
requires that A7 <7 holds. Therefore, the hydrodynamic time
step is divided into smaller time steps proportional to 7 and
opacities are updated in each sub-step.

Following the terminology of [54], the Eq. (25) is rewritten
using abstract operators:

Dql;{-%-l 4 QG?{H — F”_H, (27)

g — Gt =0, (28)
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where the abstract operators and function of the right hand
side are defined on the computational domain V as:

Ge=—dVe inV, (29)
_J Vg iV
Dg = { —q-ny at 0V’ (30)
1 .
O — E—i—uﬁ e inV (1)
Ye at oV
n+l __ :uﬁan inV
= {x//e:’):tl atov’ (32)

This formulation unifies the equations inside the domain
and at its boundary and allows further construction of mimetic
operators. Newton boundary conditions in the form
qrny = Y(er — €on) are applied, where my is the outer
normal of V and ¥ and €,, are given functions at V. The
inference of the mimetic operators and full discretization of
the system (27 and 28) follows the reference [54]. At this
point, it must be noted that the presented modifications
compared to the original paper do not violate the necessary
properties of the operators for construction of the scheme.
Namely, the operator @ remains positive for ¥ >0 and its
discrete analogue has a diagonal matrix. Finally, an equation
for the fluxes gy is obtained and solved numerically. However,
it should be stressed that the scheme satisfies conservation of
er + pcyTe, when the subsequent update of 7. is made by the
expression:

peyT! ! = pey Tl + € — AtV -t — et (33)

that follows from summing of the discretized equations
(20) and (21). Still, one may argue that the conservation of &
is slightly violated, because of the temporal variation of cy due
to weak temperature dependency. This problem is addressed
by the method known as Symmetric Semi-Implicit (SSI) [55].
Picard iterations are then performed until convergence of the
non-linear system in er is reached. Even though the scheme
may be less efficient than the solvers based on
Newton—Krylov method for example [56,57], we find it
highly reliable and robust for the reasons given in the pre-
ceding text and positive properties of the mimetic operators
mentioned in [54].

3.3.2. Non-locality evaluation of radiation transport models

In order to verify the non-locality of the radiation transport
and evaluate it quantitatively, a very simplistic problem is
proposed. It is inspired by the test problem well-known in non-
local electron transport [58]. The initial periodic equilibrium
temperature (TR = 7,.) perturbation 67cos(kz) from the base
temperature Ty = 1 keV decays by the action of a given ra-
diation transport model. The asymptotic ratio ’qR’ / ’qdR’ (with
g% being the radiation diffusion flux) is then evaluated for
0T<Ty, where we chose 67 = 5+1072 T,. The non-locality of
the transport is set by an appropriate choice of the wave

number k, while the the opacities are kept constant
kp=100.8 cm~' kg =13.9 cm™~! (corresponding to Copper
with the density chosen as p = 1g/cm®). A uniform
computational mesh on the domain (Zmin, Zmax) With 5000 cells
was constructed. The size of the computational domain was set
proportionally to k as |Zmax — Zmin|k = 270+50 in order to retain
constant number of the waves inside. The boundary conditions
for the radiation diffusion were placed at local maximum and
minimum of the waves, implying zero flux boundary condition
there. In the case of the non-local transport, reflective
boundary conditions were set due to the symmetry of the
problem.

The results of the problem are plotted in Fig. 2, where the
Planck opacity «p is used as well as the average opacity «
introduced in Sec. 3.3. In addition, the results obtained by the
radiation diffusion are shown. The dependency on the radia-
tion Knudsen number Knr ~ k/kp reveals significant
disagreement of the radiation diffusion and the non-local ra-
diation transport model for the Planck opacity in the diffusive
regime (Kng<<l), where the fluxes are underestimated by a
factor of =7.26, that is essentially equal to the ratio of kp/kg,
because both models depend linearly on the inverse of the
opacity. This result shows the necessity to use Rosseland
opacity in this regime and justifies the construction of the
average opacity, which then recovers precisely the diffusive
limit. In the free-streaming limit (Kng >>1), the flux ratio
declines showing inappropriateness of the diffusion approxi-
mation. The limit behaviour can be found in the form
lar|/|ag| ~ (k/kp) 2 as can be deduced from the linear ra-
diation transport equation (18) by a Fourier analysis similar to
[17].

The radiation diffusion model with various flux limiters
described in Sec. 3.3.1 gives closely grouped curves with
minor differences for each of the limiters. However, the limit
behaviour for the diffusion model is identical in all cases, that
is the dependency of the flux ratio ~ Kng!', since the flux

100 +— - -—v \
L ——————— b
101,
T
T 107{
T
T
—4— Nonloc.-Planck
Nonloc.-average
1024 |—— Diff.-sum
—e— Diff.-Larsen
== Diff.-L&P
—=+= Diff.-Minerbo
104 T T -
1072 101 10° 10t 102

k/kp

Fig. 2. Comparative plot of the non-local and diffusion radiation flux ratio as
function of k/k, ~ Kng. In order, the curves for the radiation non-local
transport model with the Planck opacity «kp and the average opacity k are
shown along the radiation diffusion with the “sum” limiter fy,n, the Larsen
limiter fi arsen, the Levermore & Pomraning limiter fip and the Minerbo limiter
f Minerbo -
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approaches the constant value ceg in the free streaming limit
Kng >>1 as described in Sec. 3.3.1. Unfortunately, this implies
that the flux is dependent on the base temperature 7} in this
test, that is independent of 67 for the perturbations. Conse-
quently, the position of the resulting curves for all flux limiters
is absolutely arbitrary in the sense that it depends on the ratio
0T /Ty independently of k/kp. This shows the non-feasibility
of the flux limited diffusion model, where any flux limiter
based only on local knowledge of the profiles (like on Kng
most typically) cannot correct the values of radiation fluxes. In
principle, only knowledge of global profiles or global Fourier
space is sufficient for description of fully non-local behaviour.
In turn, this fact then justifies construction of a non-local
transport model, where the flux ratios are absolutely inde-
pendent of the 6T/T, ratio as we verified for the presented
model.

3.4. Closure models of the hydrodynamics equipped with
non-local energy transport

The equation of state (EOS) data are taken from the SES-
AME tables [59,60] to properly close the equations of non-
local radiation hydrodynamics (4—7). Discrete values of
pressure and internal energy are bilinearly interpolated on the
original grid provided by the SESAME tables. This approach
is robust and guarantees that the interpolated data are
consistent with the original data.

The momentum loss collision frequencies taken from
[61] are used for calculation of the heat diffusion co-
efficients k., k; and the energy exchange coefficients G =
p(0ee/0Te) vg;, where vg stands for the energy loss colli-

sion frequency. It is worth to note that the common prob-
lem of electron and ion heat exchange -coefficients
symmetry arises, because a general EOS does not provide
the specific heats that could satisfy (dee/97e),/(9ei/0T;), =

v, /ve, = Z, where the last equality relies on elasticity of
the collisions and the quasi-neutrality condition n, = Zn;,
that is assumed to hold in the hydrodynamic description.
We solved this problem by using ideal gas specific heats at
this place, where the symmetry relation is clearly satisfied
and a single heat exchange coefficient for electrons and
ions is obtained.

The closure model for mean free paths of delocalized
electrons is built on the collision frequencies taken from [61].
The formula for collision frequency has a form similar to (15)
and holds with a good accuracy in hot plasma. However, the
situation changes in colder pre-plasma, where the classical
Coulomb logarithm A = In(bmax/bmin) approaches Aq; =1 as
scattering on larger angles becomes more frequent. The usage
of / defined in Sec. 3.2 gives at least physically relevant
values of the electron mean free paths in cold material of the

order of magnitude ~ 1A [62], but the results with non-local
transport in this regime must be taken with a grain of salt
and the improvement of the models in this area is left for a
future work.

4. Simulations
4.1. Simulation setup in 1D

The present comparative study considers two materials:
aluminium (Al, Z = 13, p, = 2.7 g/cm?, Ty = 0.03 eV) and
copper (Cu, Z = 29, p, = 8.96 g/cm?, Ty = 0.03 eV), where
Z is the proton number, p, initial (solid) density and T initial
temperature. The ablation of planar solid targets made of these
materials is considered for laser intensities 10'3 W/cmz,
10" W/cm? and 10" W/cm?. Whereas the electron heat
transport is non-local for all simulations, the transport of ra-
diation is computed using the non-local as well as the non-
equilibrium diffusive approach for comparison (see Sec. 3.3
for details).

The laser pulses are modelled as flat with total length of
10 ns with a small Gaussian ramp with both, the temporal
FWHM and offset of the intensity plateau, equal to 1.2 ns. The
main reason for this configuration is that the pulses roughly
approximate pre-pulses of high-intensity main pulses on laser
facilities like ELI Beamlines (Extreme Light Infrastructure)
for example [63—65]. The wavelength of the laser is taken as
Ao = 0.35 um corresponding to the third harmonic frequency
of Nd:glass laser systems, such as the L4 laser system at ELI
Beamlines [66].

In order to attain maximal comparability of the numerical
experiments, the identical computational mesh design was
used in all cases. The simulation domain extends to the depth
of 1500 um into the target. The mesh was composed of two
parts, where the thin surface layer was only 1072 um thick and
contained N, = 10 computational cells geometrically spaced
with geometrical factor C; = 0.94:

Vo
5 =20+ (2n, — 20) C§’

1 JjE{1,....,N, — 1}. (34)

Importance of this area is mainly for the initial phase of
laser absorption, where the laser with intensity far beyond the
ablation threshold of the given material interacts with the cold
target and the surface material is very rapidly ablated. The
evanescent wave penetrating the surface delocalizes the ab-
sorption provided that the mesh resolution is sufficiently high.
The rest of the target has N, = 1100 computational cells
spaced with geometrical factor C; = 0.992.

4.2. Parametric scan in laser intensity and material of
the target

The scan of intensities is presented in Fig. 3 for two ma-
terials, aluminium and copper, at the final time 10 ns in order
to show the increasing importance of non-locality. The results
for intensity 10'* W /cm? were omitted for brevity, since they
scale in a mostly predictable way between the two shown
extremes. Spatial profiles of the electron density n. normalized
to the critical density n. together with the temperatures of
electrons 7., ions 7; and radiation Tr are presented.
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Fig. 3. In the first and second row from top (a—d), the simulations with Aluminium at intensities (left to right) 10'> W /cm? and 10'> W /em? are plotted at the final
time 10 ns. The simulations with the radiation diffusion are placed in the first row (a,b) and ones with the non-local radiation transport are in the second row (c,d).
The third and forth row (e—h) contain the simulations with Copper identically ordered as the previous two rows. The electron, ion and radiation temperatures as
well as the electron density and the Boltzmann number, the Knudsen numbers for electron heat and radiation transport are displayed.
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The Knudsen numbers of electrons Kn, = A.|VT.|/T. and
radiation defined as Kngr = 1/k|Ver|/er = 4/k|VTR|/Tr are
also shown, where A, is the electron mean free path. In addi-

J(oT2) is

included. The corresponding energy fluxes including the hy-
drodynamic flux gy = pu and the laser absorption rate, i.e.
negative divergence of the Poynting vector (for details see Sec.
3.2), are plotted in the Fig. 4.

The plots are divided into several parts to distinguish
different regimes of laser—target interaction. The leftmost area
denoted by 0 corresponds to a cold solid target unperturbed by
any shock waves or non-linear heat waves. The transition
between the area 0 and I is strictly given by the position of the
propagating shock wave into the target and I then comprises
the shock wave plateau. The area II then starts at the head of
the rarefaction wave and ends at the place where the laser gets
absorbed. From the physical point of view, the conduction
zone spans over this area and various energy transfer mecha-
nisms are competing here, forming specific profiles of quan-
tities in the process as discussed below. Finally, the area III
extends over the laser absorption zone and is composed of
mostly very rarefied coronal plasma expanding into vacuum.

The results show typical plasma profiles for laser—target
interaction, that are composed of a laser absorption wave in
the area III, an ablation wave in II and a shock wave in the
area I. However, it can be recognized from the plot of n. that
the head of the laser absorption wave does not coincide with
the position of z.-(ne(z.) = n.). This phenomenon is not
normally observed in classical simulations without radiation
transport (and we have also not observed this effect when the
radiation transport was inactive). It can be identified as a
consequence of strong radiation-matter coupling associated
with the well-known structure called double ablation front
(DAF) in the ICF community that forms in the plasma [67]. It
basically arises from the balance of the hydrodynamic fluxes,
radiation fluxes and electron heat fluxes. Following the ter-
minology of the reference [67], the electron ablation wave
forms in the vicinity of the maximal laser absorption point due
to the collective effect of radiation and electron transport.
However, this area is very small as can be noticed from the
electron fluxes and roughly corresponds to A, <1 um. In
contrast, photons can penetrate much deeper into the con-
duction zone, since their mean free path Ag = k! is of the
order of millimetres. Due to high radiation fluxes in area II, the
energy is effectively transported from the so called transition
layer, where the radiation flux changes its sign, to the radia-
tion ablation wave that removes material from the shock wave
in zone I. The balance between the radiation, electron and
hydrodynamic transport mechanisms leads to the creation of
the so called density plateau between the fronts (which is not
totally flat in logarithmic plot in fact, indicating continuous
expansion of the matter). Matter and radiation are nearly
equilibrated in this area as manifested by nearly identical
electron and radiation temperatures. However, the transport is
strongly dominated by radiation as can be deduced from the

tion, the Boltzmann number Bo = % (pe +pi)|u

ratio of the fluxes or the Boltzmann number Bo, that becomes
Bo<l1 in this case. Steady state solutions can be derived for
this problem using radiation and heat diffusion [67], giving an
expression for the length of the plateau ~ Bo~! 2. Our results
approximately agree with this scaling, since the Boltzmann
number is about ~ 107! for the intensities 10'> W/cm? and
Ar ~ 1 cm at the right edge of II (as assumed in the reference),
giving the scale length of a few millimetres. Hence, the
ablation fronts are tightly coupled and evolution in densities
affects both of them. Progressive enlarging of the shock wave
plateau in / is followed by a natural relaxation of the ablative
pressure and decrease of the radiation ablation head densities.
Consequently, the electron ablation wave head density de-
creases gradually and crosses the critical density at a certain
point. The larger separation that can be observed in the figures
is then due to the very long intense laser pulses, where the
DAF structure has evolved fully and shifted the maximum
laser absorption region to the underdense plasma. A relatively
sharp edge of the absorption region remains, resembling the
classical scenario with absorption at the critical density, since
the complex permittivity given by (9) strongly depends on the
temperature and density, which exhibit a rapid change there.
The laser absorption then affects these profiles again and the
resulting profiles are given by a balance of the self-consistent
laser absorption and the transport mechanisms. The radiation
transport dominates at this place and it can be noticed that
there exists a region, where the radiation flux gy exceeds in
absolute value the Poynting vector ¢;. More importantly, the
profiles of gr and g; are almost parallel in the vicinity of the
maximal laser absorption point, indicating nearly identical
divergences preventing the matter to heat up significantly. The
plasma then evolves in the strong inverse bremsstrahlung
regime following the terminology of [68], where the laser is
absorbed before reaching the critical density. This assertion is
also indicated by nearly full absorption in all simulations, that
is characteristic for this regime. As qualitatively predicted by
the models of self-regulating rarefaction wave, the separation
increases with decreasing laser intensity [68,69]. The critical
density n. loses its predictive value for estimation of the
maximum laser absorption point, which is then located further
out in the underdense plasma. However, unchanged 7. is used
in this paper for normative purposes in the figures, but the
coronal plasma area III is distinguished correctly, indepen-
dently of the value of n..

Important differences can be found between the radiation
diffusion and the non-local radiation transport (see Sec. 3.3).
The main effect can be seen in different length, slope and
magnitude of the density and temperature profiles in the
conduction zone (area II). This comes from the fact that the
Kny easily approaches values of the order of magnitude about
unity. The diffusion approximation becomes absolutely
insufficient in such cases and considerable differences with
respect to the non-local transport were observed in Sec. 3.3.2.
However, the true nature of non-locality resides in transport of
energy on scales comparable with Agr in presence of steep
plasma profile gradients. In this case, most of the radiation is
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Fig. 4. In the first and second row from top (a—d), the simulations with Aluminium at intensities (left to right) 10'> W /cm? and 10'> W /em? are plotted at the final
time 10 ns. The simulations with the radiation diffusion are placed in the first row (a,b) and ones with the non-local radiation transport are in the second row (c,d).
The third and forth row (e—h) contain the simulations with Copper identically ordered as the previous two rows. The electron, hydrodynamic, radiation and laser
energy fluxes as well as the electron density and the the laser absorption rate are plotted.
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produced in the vicinity of the critical plane [70]. The radia-
tion then propagates deep into the conduction zone, where it is
absorbed and partially re-radiated. The radiation mean-free-
path Az ~ 1 mm agrees with the spatial extent of the area II.
The diffusion approximation can barely capture this effect of
non-locality, which increases continuously the ablative pres-
sure and densities while lowering the temperatures in II. This
leads to a slight increase of the Boltzmann number in case of
diffusion, which is more than compensated by a decrease of
the opacities giving longer double ablation front structure.
Moreover, non-locality is also manifested by a slightly stron-
ger separation of the radiation and electron temperatures there,
because the strong radiation originating from the high tem-
perature gradient is not fully equilibrated there. On the other
side, the coronal plasma is totally transparent for the thermal
radiation, that escapes then the plasma freely, because Ag is
normally several times larger than the dimensions of the whole
plasma corona. Consequently, Tr stays almost constant and
independent of 7. and T, but this effect is reproduced by the
diffusive model too, since a non-equilibrium description is
used (see Sec. 3.3.1). The electron temperatures are signifi-
cantly higher in the simulations with the non-local radiation
transport. This effect can be attributed to the higher radiation
fluxes in II and III (i.e. radiative cooling) for the radiation
diffusion, which can be considered overestimated for the given
values of Kng, since the medium is far from the diffusive limit
(see Sec. 3.3.2).

Non-local transport of electron heat is less effective than
radiation transport for both, aluminium and copper, in terms of
magnitude of the energy fluxes. Its significance increases with
increasing intensity and considerable fluxes can be seen only
for aluminium target and the intensity of 10'> W/cm? espe-
cially. However, the effect of non-local electron heat transport
is significantly differs from the radiation transport. The elec-
tron Knudsen numbers are at least two orders of magnitude
lower in area III and four orders in II. This indicates more
localized transport that acts mainly in the vicinity of the
critical plane, where it disperses the laser absorption area and
forms the electron ablation wave. However, it must be stressed
that most of the electron heat is transported by super-thermal
electrons with the velocity v=3.7vy. in reality [71], which
have significantly longer (=200) mean free paths due to v*
dependency in (15). Since only single-group approximation is
used, these spectral effects may be underestimated here, since
these high-velocity electrons do not travel along whole tra-
jectory during the transport. However, this non-linearity of the
transport is taken into account by a local approximation [12].
The one-group electron mean free path is considerably shorter
in II than in III and only a small pre-heating appears there
compared to the dimensions of the area. However, electrons
penetrate much deeper into the coronal plasma participating in
the formation of the spatial electron temperature profile. The
corona then undergoes non-isothermal expansion into the
vacuum as indicated by the decreasing temperature in the right
part of III. Unlike the heat diffusion approximation, where
temperature saturation may occur, the flux inhibition effect of

non-local models does not make this behaviour possible for
the given conditions [72,73].

The intensity scaling has a mostly predictable behaviour, as
the electron temperatures and the shock wave heights and
velocities increase with the intensity. Gradually, the ion tem-
peratures depart from the electron ones in the corona. It can be
noticed from the ion energy equation (6) that there are no other
global energy sources than the heat exchange term (except the
mechanical work term — p;Veu, but it causes only energy
losses in an expanding corona). Hence, the ratio of the ion to
electron temperatures is lower for higher intensities, because
the electron—ion collision frequency (15) decreases with
electron temperature. The radiation temperatures are very low
in all cases and only slightly exceed the temperature in II,
because of high transparency of the corona due to high tem-
peratures and low densities of the plasma.

Compared to Aluminium, Copper is a significantly better
radiator and the simulations are completely dominated by ra-
diation transport. Therefore, the coronal temperatures are
decreased by a strong radiation cooling effect. This phenom-
enon partially explains considerably lower coronal tempera-
tures in the simulations with copper target compared to the
simulations with aluminium ones. The maximal electron
temperatures are lower by a factor 2—3. Considering also
higher ionization, the resulting plasma is more collisional (see
Eq. (15)), heat transport is less effective in the corona and the
electron Knudsen numbers are lower even for comparable
spatial profiles. In contrast, Aluminium reaches an approxi-
mately twice as high shock wave velocity compared to Copper.
In particular, they are =12 km/s and =59 km/s for Al and =
6 km/s and =28 km/s for Cu for intensities 10'> W /cm? and
10" W/cm?, respectively. On the other hand, the density
plateau is longer in the case of Copper due to slightly lower
Boltzmann numbers, which are proportional to the ratio be-
tween the hydrodynamic and radiation fluxes.

5. Discussion and conclusion

The importance of non-local radiation and electron trans-
port was verified and several key aspects were identified in a
series of simulations with different materials and laser in-
tensities. In many cases, the radiation and electron heat
diffusion approximation is not sufficient for realistic simula-
tion of the considered effects.

One of the prominent features of the non-local transport
models is self-consistent heat flux inhibition. Heat diffusion
codes must rely on various heat flux limiters like the one
defined by (1) or simply by redefinition of the heat fluxes g, =
min( — k¢ VTe,feqr). Similarly, the radiation diffusion models
use radiation flux limiters as described in Sec. 3.3.1. This
treatment is usually necessary at places, where the usage of
diffusion approximation is not well justified, because radiation
or electron Knudsen number is large (in particular
Kn.>>0.06/ VZ [71]). The transport regime of radiation and
electrons then cannot be considered diffusive and the appli-
cation of diffusion models leads to overestimation of the
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calculated energy fluxes (see Sec. 3.3.2). However, proper
energy flux limitation cannot be self-consistently determined
from local values of T, or T, since large gradients may lie in a
range of a few mean free paths like the laser absorption wave
for example (see Sec. 4.2). Therefore, the radiation fluxes
differed considerably. As a result, formation of the double
ablation front structure was affected, where significantly
shorter and denser structures were observed in the case of the
non-local treatment.

As expected for moderate-Z materials, radiation transport
was weaker for the aluminium target and other energy trans-
port mechanisms like electron heat transfer partially contrib-
uted as well. However, the situation was completely different
for high-Z copper target, where radiation transport absolutely
dominated over the other transport mechanisms. Considerable
amount of absorbed laser power was converted to radiation
and radiated away.

We have observed that radiation transport also evoked
formation of a double ablation front structure for both mate-
rials, that led to the separation of the maximum laser ab-
sorption point from the critical plane due to moderate intense
and long laser pulse. This interesting phenomenon requires
deeper analysis of all the complex mechanisms involved and
construction of a theoretical model for further explanation
may be beneficial. This topic will be addressed in a future
paper.

A limitation of the simulations is given by usage of scaling
laws for opacities, that may not be sufficient for the descrip-
tion of all regimes and even the gray body approximation is
highly simplifying. Also the single-group electron approxi-
mation may not be sufficient and the dynamics of the double
ablation front can be significantly affected by these applied
simplifications [74]. However, it is evident that proper non-
local radiation transport plays a major role for hydrody-
namic simulations with high intensities, especially with high-Z
materials. In addition, non-local electron heat transport in-
creases its importance for moderate-Z materials and non-local
treatment of both transport mechanisms is necessary.

Finally, an accurate laser absorption method is absolutely
substantial for the non-local transports, since it defines the
gradient of temperature and density in the vicinity of the
critical plane, where most of the non-local photons and elec-
trons is created. A classical WKB is not sufficient for this
purpose, since it is not able to describe this area realistically
and produces a discontinuity in the Poynting vector at the
critical plane essentially. Hence, a self-consistent laser ab-
sorption algorithm based on wave-optics was presented in Sec.
3.2 and several numerical methods were applied to increase its
accuracy. However, a higher order laser absorption algorithm
attaining a better numerical efficiency is a prospect of future
work.

In addition, the topics of future work include improvements
of the physical closure model for the heat and radiation
transport models, that must provide the necessary coefficients
for a wide range of input parameters. Division of energy
spectrum of electrons and photons followed by a separate
transport calculation (so called multi-group transport) is

expected to also increase accuracy of the results, but at the cost
of proportionally higher computational demands. In this text,
only the non-local electron heat transport model was consid-
ered, but a fruitful insight may be also obtained from a com-
parison with the classical heat diffusion model.

6. Outlook

From the global point of view, realistic and predictive
simulations of laser—plasma interaction require at least the
following extension:

e 2D axisymmetric geometry to handle basic interaction
configurations,

e use of a more convenient collision operator rather than an
approximative BGK approach in the non-local electron
heat transport model,

e a better laser absorption model which goes beyond inverse
Bremsstrahlung at the critical surface, i.e. inclusion of
collective absorption processes driven by parametric in-
stabilities in the plasma corona,

e accurate laser absorption method taking into account an
oblique incidence angle and resonance absorption
consequently,

e generation of hot electrons by the two preceding mecha-
nisms and their transport in the plasma,

e self-consistent magnetic field effects which affect the non-
local heat transport and which are not considered in the
present analysis at all,

e the one-energy-group or gray body approximation should
be replaced by a multi-group approach supplied by NLTE
atomic physics models for closure coefficients.

It is clear that accurate radiation hydrodynamic simulations
are mandatory for ICF to fully describe creation of the strong
shock waves [75] and preheating caused by non-local electron
transport [76], but also for future extreme high-field physics
studies using multi-PW laser systems in order to characterize
the plasma originating from the pre-pulse [77].
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Appendix A. Laser absorption test

Verification of the presented laser absorption algorithm (see
Sec. 3.2) was performed by comparison of numerical results with
an analytic solution for a simplified problem. In particular, the
problem was designed as laser absorption on the density step
function, where the left part was overcritical with the electron
density nle = 2n. and the right part was underdense with the
density n = (1 — 107%)n, (n. is the critical density). The elec-
tron temperature has been chosen 7, = 1 eV on the leftand 7! =
1 keV on the right. The material under test was fully ionized
hydrogen and the computational domain spans from O to 40
microns with the interface placed at 10 microns. The computa-
tional mesh is uniform with the number of computational cells
N, The laser wavelength was chosen as Ap = 1 um and only v;
defined in (15) was taken for simplicity. The reasons for this test
scenario are two-fold, because the problem resembles a typical
absorption in vicinity of the critical plane, where large gradients
of the quantities appear and performance of the laser absorption
solver must be validated. Moreover, the piece-wise homoge-
neous medium allows application of the formulas (10) and (11)
for the analytic solution. Finally, it must be noted that the
problem includes also the vacuum—plasma interface at the right
boundary as it is typical for realistic configurations.

Re(E,) (relative units)
|q,| (relative units)

z/Xo

Fig. 5. Laser absorption in the medium with step discontinuity. Analytic
(anal.) and numerical (num.) solutions of the Helmholtz equation are
compared in terms of real part of magnitude of the Poynting vector for
different number of computational cells. The inset plot details the vicinity of
the critical plane. The transverse electric field obtained analytically is visu-
alized too. For the details, see the accompanying text.

Analytic and numerical solutions were compared as shown
in Fig. 5. In total, three procedures were used to obtain the
analytic solution in order to provide a better overview of their
inner working. The first one is the direct solution of the
Helmholtz equation (8) decomposed into the one-sided wave
equations for P and R. The left boundary condition is set to
R =0, because electric field of the reflected wave diverges on
the left. On the opposite side, the incident wave is set P = 1 +
0i at the outer side of the vacuum interface. Application of the
proper interface conditions for electric and magnetic field in
addition to the boundary conditions and the exponential so-
lution for P and R (see Sec. 3.2) yields a 8 x 8 complex

matrix, that must be inverted. On the other hand, the second
analytic solution of the system (10) can be solved directly for
V using the interface condition (12) and then for P in a similar
fashion without involving any matrices at all. However, it is
also worth noting that the solution in terms of the Poynting
vector is independent of the phase provided at the right
boundary condition. Lastly, the solution of the system (11) can
be constructed analytically, but the electric field cannot be
recovered anymore as discussed in Sec. 3.2. This system is
then solved numerically. It has been practically verified that all
the analytic solutions give an identical solution in terms of the
resulting Poynting vector and the electric field eventually.
The results show that the discrete points of the numerical
solution with N, = 40 lie almost exactly at the analytic curve
unlike the rest of the configurations. This effect originates from
the fact that the discontinuity precisely coincides with a
computational node in this case. The error is then given only by
the point projection of the solution. However, the discrete L; error

defined as Z‘(qﬁ)J —(q1); ‘ / Z’(qﬁ)l} for discrete points of the
J J

analytic solution (gf ); and numerical (qf ); gives values on the

level of machine precision and do not change significantly with
increasing N, provided it still lies precisely at a computational
node, i.e. NV, is divisible by 4 (the ratio between size of the domain
and position of the discontinuity). This effect is not repeated in
the other configurations, where the L, error is 0.31 for 38
computational cells, but decreases to 0.18 for 78 and 0.12 for 118
cells (V, is chosen in the way that the remainder after division by
4 is constant). Expanding the series even further the first order
convergence in NV, is attained. This is an inevitable consequence
of the introduced discontinuity and no algorithm can perform
better in this test strictly speaking. This supports the effort to
refine the computational mesh in vicinity of the critical plane as
proposed in Sec. 3.2.1. However, the density profiles cross the
value n, smoothly in realistic configurations and this error is
minimal. The piece-wise analytic solution then gives very ac-
curate and smooth profiles of V+gq; as observed in Sec. 4.2.

To summarize, the numerical solution agrees with all of the
analytic solution reasonably. The piece-wise analytic scheme
gives stable numerical solution almost independently of N,
provided that the permittivity e varies slowly in space. Under
extreme conditions, where ¢ is discontinuous, the first order
convergence is achieved at least. Besides that, the numerical
method is able to recover the evanescent wave behind the
critical plane, that is crucial for the initial phase of
laser—target interaction.
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