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Abstract: Recently, microfiber-optic sensors with high sensitivity, fast response times, and a 
compact size have become an area of interest that integrates fiber optics and nanotechnology. 
Distinct advantages of optical microfiber, such as large accessible evanescent fields and convenient 
configurability, provide attractive benefits for micro- and nano-scale optical sensing. Here, we 
review the basic principles of microfiber-optic sensors based on a broad range of microstructures, 
nanostructures, and functional materials. We also introduce the recent progress and state-of-the-art in 
this field and discuss the limitations and opportunities for future development. 
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1. Introduction 

Since the emergence of the optical fiber 

endoscope in the first half of the 20th century [1–3], 

fiber-optic sensors have enabled significant progress 

in the field of optical sensing [4]. A wide variety of 

sensor types and applications were demonstrated, 

which revolutionized optical sensing technology [4]. 

Current fiber-optic sensors are primarily based on 

extremely low-loss optical fibers, which were 

developed from the late 1960s [5, 6]. Optical fibers 

offer appealing characteristics for sensing 

applications, including lightweight, large operation 

bandwidth, immunity to electromagnetic 

interference, distributing and multiplexing 

capabilities, biocompatibility, and endurance in 

harsh environment [4]. Owing to these 

implementational advantages, fiber-optic sensors, 

such as fiber-optic gyroscopes [7], fiber-optic 

hydrophones [8], fiber Fabry-Perot interferometers 

[9], and fiber gratings [10], have been widely 

employed in both commercial and military systems 

[4, 11]. 

Recently, emerging applications in 

nanotechnology and biology have imposed 

increasing demands for compact sensors with a 

smaller footprint, higher sensitivity, faster response, 

better resolution, and lower power consumption [12, 

13]. To meet these imperative requirements, optical 

microfiber-based sensors have been exploited in the 

past decades [14–16]. Optical microfiber is a rapidly 

developing miniaturized waveguide with diameters 

ranging from tens of nanometers to several 

micrometers [14, 17]. Compared with standard 

optical fiber, it provides stronger confinement for 

guided light while maintaining a low insertion loss 

[18, 19]. When the diameter is as low as a 

subwavelength scale, a significant fraction of light 
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can propagate in the evanescent field outside the 

physical boundary of the microfiber, which enables 

strong interactions between the microfiber and its 

surroundings [19]. These intriguing features make 

optical microfiber an ideal platform for optical 

sensing [14, 16, 20–22], near-field coupling [23, 24], 

atom/particle manipulation [25, 26], nonlinear 

interactions [27–34], and quantum optics [35, 36]. 

Thus far, a spate of microfiber-optic sensors 

have been demonstrated for various physical, 

chemical, and biological parameters (refractive 

index, temperature, humidity, magnetic field, etc.) 

[16, 22, 37–42]. This review intends to summarize 

the recent progress in this field. In Section 2, we 

review typical microfiber structures that can be 

utilized for optical sensing. Then, we describe the 

implementations of microfiber-optic sensors based 

on different operating mechanisms in Section 3. 

Finally, in Section 4, we discuss the remaining 

limitations in the field and conclude with 

perspectives for the further development of more 

practical microfiber-optic sensors. 

2. Typical microfiber structures 

2.1 Optical microfiber 

Optical microfiber typically refers to fiber-optic 

microwires and nanowires with diameters close to, 

or below, the wavelength of guided light. The 

constituent materials of the microfiber can be silica, 

polymer, and other transparent dielectric media, 

such as chalcogenide glass [13, 14, 38, 43–48]. This 

review primarily focuses on silica-based microfiber 

and its sensing applications. A summary of polymer 

microfiber sensors can be found in other review 

articles [49, 50]. 

To fabricate low-loss silica microfibers with 

excellent uniformity and smoothness, a variety of 

fabrication methods have been proposed [18, 23, 44, 

51–56]. Among the reported methods, the 

heat-and-pull technique is most frequently adopted 

because it can fabricate the longest and most 

uniform microfibers. The technique has been 

previously used for the manufacture of fiber tapers 

and fiber couplers [14, 57, 58]. It typically employs 

a hydrogen flame, which heats and brushes the 

standard optical fiber that is being stretched. Owing 

to the pulling force applied by translation stages, the 

heated part of the fiber elongates, and the diameter 

gradually reduces. This forms a structure consisting 

of a stretched waist (the so-called microfiber), two 

unstretched standard fiber pigtails, and biconical 

transition sections that link the waist to the pigtails, 

as shown in Fig. 1. This structure provides ease of 

measurement because pigtailed ends enable 

ultralow-loss splicing to standard fiber components 

(insertion losses < 0.1 dB), and the biconical 

transitions enable highly efficient coupling in and 

out of the microfiber waist [14]. The length and 

diameter of the waist and the shape of the transition 

regions can be precisely defined by controlling the 

flame movement and stretching parameters. 

Alternatively, the heating source in a heat-and-pull 

rig can be replaced by a microheater [44, 56] or a 

sapphire capillary tube heated by a CO2 laser beam 

[52] to avoid random flame turbulence; this offers a 

safer fabrication solution without explosive gases. 

The typical optical loss of a silica microfiber 

manufactured by the heat-and-pull technique is as 

low as ~0.01 dB/mm [51], owing to the low 

roughness and high homogeneity.  

Transition Transition 

Waist 

Pigtail Pigtail

 
Fig. 1 Typical microfiber structure fabricated from standard 

optical fiber using the heat-and-pull technique. 

Figure 2 shows the ratio of the power 

propagating in the air to that propagating in the fiber 

as a function of the microfiber diameter. The ratio 

increases with a decreasing diameter, indicating a 

larger fraction of power in the evanescent field for 

thinner microfibers. When the diameter reaches  

0.5 μm, nearly 94% of the total light energy is 

outside the microfiber, i.e., in the surrounding 

environment. Additional to the properties of large 
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evanescent fields, strong optical confinement, and 

tailorable waveguide dispersion, optical microfiber 

also provides excellent mechanical strength and 

flexibility [59]. Bending radii of a few micrometers 

have been achieved with low induced bending losses 

[60, 61]. The robustness and configurability of 

optical microfibers enable various compact 

microfiber structures, e.g., loops [52, 62, 63], knots 

[18, 64, 65], coils [66–70], couplers [71–76], and 

interferometers [77–86]. Moreover, gratings [21, 

87–89] and functional materials [13, 38] can also be 

integrated with microfibers to enhance the 

functionalities of the platform. These structures will 

be discussed in the following sections. 
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Fig. 2 Ratio of evanescent field penetrating into surrounding 

air to the field propagating in the fiber as a function of the fiber 
diameter at a wavelength of 1550 nm. The upper and lower 
insets are the power flow distributions of 0.5-μm-diameter and 
4-μm-diameter silica microfibers, respectively. Dimensions of 
the insets are not to scale. 

2.2 Microfiber coupler 

A fiber coupler is a basic fiber optics device, 

which has been intensively studied [73, 90, 91]. 

Recently, it has attracted renewed attention, owing 

to the development of optical microfiber [74]. A 

microfiber coupler (MFC) is based on evanescent 

coupling between two adjacent microfibers. Its 

typical structure is shown in Fig. 3. For an MFC with 

a large index-contrast and two waveguides in 

physical contact, conventional perturbation theory 

cannot be applied. Thus, the supermode theory is 

employed to describe the MFC [92]. As shown in 

Fig. 3, if light is launched into Port 1, the output 

powers from Ports 3 and 4 are given by 

Port 1

(a)

Port 2

(b)

(c)

Port 3

Port 4

MFC tip 

Sagnac 
loop 

 
Fig. 3 Schematic of optical microfiber coupler (MFC) 

structures: (a) typical structure of MFC, (b) MFC probe, 
manufactured by cleaving the waist, and (c) Sagnac loop mirror, 
manufactured by fusing the MFC. 
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where i indicates transverse electric (transverse 

magnetic) polarization, 1
iP  is the input power, L is 

the coupling length, eff
in  is the effective refractive 

index (RI) difference between ,even
eff
in  for the even 

supermode and ,odd
eff
in  for the odd supermode, and 

  is the optical wavelength. From the formulas, 

one can observe that the MFC outputs are strongly 

dependent on the variation of eff
in , which is 

caused by changes in the physical parameters of its 

surroundings, such as temperature and strain. 

Therefore, it is an attractive structure for highly 

sensitive optical sensing. The sensing parameters 

can be estimated by either monitoring the spectrum 

shift [71, 93] or the transmittance at selected 

wavelengths [94]. In addition, the MFC can operate 

as a microprobe [72, 75, 95], if its waist is cleaved, 

or a Sagnac loop [96–98], if output ports 3 and 4 are 

fused, as shown in Figs. 3(b) and 3(c), respectively. 

The RI sensitivity (S) of the MFC can be defined 
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as [99, 100] 
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where s  is the wavelength of the dip in the MFC 

transmission spectrum, na is the RI of the 

surrounding medium, and 

 eff eff
i i i

sg n n    /   is the group index 

difference between the even and odd supermodes. 

According to this equation, the RI sensitivity 

approaches infinity when 0ig   at the turning 

point, which is an important characteristic that has 

been applied to enhance RI sensing [99, 100]. 

2.3 Microfiber interferometer 

Interferometers are among the most broadly used 

structures for high-sensitivity optical sensing 

[101–103]. Microfiber interferometers (MFIs) have 

been demonstrated recently; these interferometers 

are based on evanescent coupling [77], birefringent 

interference [79, 80], and multimode interference 

[81–85]. Figure 4 shows the basic structures of a 

microfiber Mach-Zehnder interferometer (MZI) and 

modal interferometers. The operating principle of 

MFIs can be explained by dual-beam interference, 

and the transmission intensity is given by [38] 

  1 2 1 22 cosI I I I I               (5) 

    1,eff 1 2,eff 2

2
Ln n L



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where 1I  and 2I  are the intensities of the two 

light beams in respective arms, polarizations, or 

modes, and   is the phase difference between 

them. The interference fringe in a transmission 

spectrum and the sensing parameters can be 

demodulated by a shift in the fringe. Compared with 

conventional waveguide MZIs, microfiber MZIs can 

provide a sensitivity that is one order of magnitude 

higher and a smaller footprint between tens and 

hundreds of micrometers [20]. The microfiber modal 

interferometers fabricated from single-mode fiber 

[81, 84–86, 99, 104, 105], microstructured fiber [83, 

106–108], and multimode fiber [82, 109, 110] also 

provide the advantages of compactness, high 

sensitivity, and simple fabrication. 

(a)

(b)

(c)
Non-adiabatic transition 

Non-adiabatic transition 

 
Fig. 4 Schematic of MFI structures: (a) microfiber 

Mach-Zehnder interferometer (MZI); (b-c) microfiber modal 
interferometers with non-adiabatic transitions. 

2.4 Microfiber grating 

A fiber grating is a periodic structure that 

modulates the effective RI along the optical fiber 

[111]. Since the first successful fabrication in 1978 

[112], it has been widely utilized for optical filtering 

and sensing [10, 113]. A typical fiber Bragg grating 

(FBG) is several millimeters in length and has a 

diameter of approximately 100 µm. Its relatively 

large size limits its applications in RI sensing and 

the detection of ultrasmall objects [21]. Owing to the 

large evanescent field induced by a small diameter 

and high RI contrast, microfiber gratings have 

become a powerful tool to overcome this limitation 

and have received increasing interest in recent years 

[21, 114]. Many microfiber gratings have been 

demonstrated using various techniques, including 

chemical etching [115, 116], laser irradiation/ 

ablation [117–121], focused ion beam milling 

[122–128], lithography [129, 130], and external 

modulations [87, 131–133]. Compared with the 

conventional fiber, the high modulation of the 

effective RI (10–3 – 10–1) in microfibers enables 

ultra-compact gratings with lengths between     
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10 μm and 100 μm [21]. There are primarily two 

types of gratings in microfiber: the microfiber Bragg 

grating (MFBG) and the microfiber long period 

grating (MFLPG). For the MFBG, when the 

forward-propagating mode is coupled with the 

identical backward mode, the first-order diffraction 

can be described by the Bragg resonance condition 

[111]: 

eff2B n Λ               (7) 

where B  is the Bragg wavelength, effn  is the 

effective RI of the guided mode, and   is the 

period of the MFBG. Any changes in the 

surrounding parameters that affect effn  and   

will finally result in a shift in the Bragg wavelength. 

For the MFLPG with a forward-propagating mode 

coupled into higher order modes in the same 

direction, a similar resonance condition can be 

obtained by considering the phase matching between 

coupled modes [111]: 
   eff,1 eff,2 eff( )L n n Λ Λn           (8) 

where eff eff,1 eff,2n nn    is the modal effective RI 

difference. According to (8), the MFLPG has a 

significantly longer period than that of the MFBG; 

thus, its fabrication requirements are lower. 

2.5 Microfiber resonator 

As illustrated in Fig. 5, a variety of resonance 

structures can be implemented using optical 

microfibers, including a loop [52, 62, 63], a knot [18, 

64, 65], coil [66–70], a photonic crystal (PhC) cavity 

[122, 125, 134–137], a ring [138, 139], a 

Fabry-Perot (FP) cavity [140–142], and their 

extended configurations [143–147]. A typical 

microfiber resonator has a quality (Q) factor ranging 

from 102 to 106, depending on the specific structures 

[13, 38]. The high Q factor enables its application in 

sensors, lasers, dynamic filters, optical delay lines, 

and quantum optics [38]. 

Considering a microfiber loop resonator as an 

example, the resonance condition is [148] 

   eff
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(d)
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Fig. 5 Schematic of typical microfiber resonators:        

(a) microfiber loop resonator, (b) microfiber knot resonator,   
(c) microfiber coil resonator, and (d) microfiber PhC cavity. 

where λc is the resonant wavelength, L is the 

circumference of the loop, and m is an integer 

representing the resonance order. According to (9), 

the RI sensitivity, obtained by monitoring the shift 

of the resonant wavelength, can be expressed as 

[148] 
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which only depends on the change in the RI of the 

surrounding medium, regardless of the resonator’s Q 

factor. However, the detection limit, which is an 

important figure of merit for optical sensors, may 

benefit from the high Q factor of microfiber 

resonators [68, 149]. 

2.6 Functional material-integrated microfiber 
devices 

In addition to geometric structures, it is also an 

effective strategy to integrate functional materials 

into microfiber platforms to extend their 

functionalities. Owing to the large evanescent fields 

with high surface intensity, functional 

material-integrated microfiber devices offer strong 

light-matter interactions for sensing applications. 

Various aforementioned microfiber structures have 

been reported for integration with plasmonic 

materials [150–156], polymers [49, 157–160], 
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two-dimensional (2D) materials [161–173], sol-gels 

[174, 175], magnetic fluids [176–178], and 

biomaterials [41]. For example, Fig. 6 shows the 

typical configurations of hybrid graphene-fiber 

structures, including a free-standing microfiber, 

microfiber on a low-RI substrate, and a microfiber 

knot resonator on a low-RI substrate. These 

composite structures of 2D materials and 

microfibers are realized by the wet transfer method 

that is summarized in the review article [179]. The 

extremely high surface-volume ratio and ultrafast 

response of graphene provide useful characteristics 

for chemical molecular sensing and all-optical 

control [180, 181]. 

(a) 

(b) 

(c) 

Low-RI substrate 

Low-RI substrate 

 

Fig. 6 Graphene functionalized optical fiber platform, 
presented as an example. Functional materials can be integrated 
with (a) a free-standing microfiber, (b) a microfiber on a low-RI 
substrate, and (c) a microfiber knot resonator on a low-RI 
substrate. 

3. Microfiber-optic Sensors 

Owing to favorable features, such as compact 

size and high sensitivity, a variety of 

microfiber-based optical sensors have been 

developed. Figure 7 summarizes the basic sensing 

principles of these sensors. According to these 

principles, most microfiber sensors can be classified 

into three categories. First, interference and 

resonance effects of microfiber structures lead to 

phase-based sensors. This type of sensor is 

extremely sensitive to phase changes resulting from 

RI variation induced by surrounding medium 

alteration, thermal-optic or elasto-optic effects, and 

deformation caused by thermal expansion or 

externally applied forces. Information of 

miscellaneous measurands can be easily 

demodulated by monitoring the shift of the 

interference fringe and resonance dip or recording 

the intensity at specific wavelengths. Second, optical 

absorption, leaky radiation, and optical elastic 

scatterings enable loss-based microfiber sensors. 

Such sensors employ absorption spectroscopy, 

optical transmittance measurements, and optical 

microscopy in the analysis and characterization of 

gases, liquids, nanoparticles, and chemical or 

biological molecules. Selective sensing with 

enhanced performance can be realized by the 

integration of appropriate functional materials. Third, 

the newly generated frequency spectral components 

from optical inelastic scatterings, parametric and 

non-parametric nonlinear processes, and 

fluorescence contribute to frequency-based 

microfiber sensors. The strong optical confinement 

and large evanescent fields of the sensors enable 

ultra-sensitive scattering, nonlinear, and 

fluorescence spectroscopies for the investigation of 

various physical, chemical, and biological 

measurands. In the following sections, typical 

microfiber-optic sensors and their recent progress 

will be introduced in terms of the working principle 

classification. 

3.1 Phase-based sensors 

Phase-based microfiber sensors that utilize 

interference and resonance effects have been widely 

studied because they exhibit simplicity and 

convenience in manufacturing and implementation. 

All the aforementioned microfiber structures, 

including couplers, MZIs, modal interferometers, 

gratings, and the various types of resonators, have 

been employed as sensing elements for a range of 

applications. In many cases, the variation in 
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interference and resonance conditions are caused by 

the effective RI change induced by the change of the 

surrounding RI. Thus, an effective sensitivity can be 

defined to describe the performance of phase-based 

microfiber sensors [22]: 

eff
eff

a

n
S

n


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
.            (11) 
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Fig. 7 Basic sensing processes of microfiber-optic sensors. By detecting and analyzing variations in optical phase, intensity, 
frequency, and polarization of the transmitted and reflected light signals from microfiber structures, the surrounding physical, chemical, 
and biological parameters can be demodulated regarding the detailed interaction processes. Diverse microfiber structures provide 
versatile platforms for various physical, chemical, and biological effects with favorable characteristics, such as a small footprint, strong 
optical confinement, and large evanescent fields. The green ellipse represents the typical physical effects that constitute the operating 
principles of microfiber-optic sensors. 

 

The effective sensitivity is correlated to the 

microfiber diameter and the range of the 

surrounding RI. As illustrated in Fig. 8, a 

phase-based sensor exhibits a higher effective 

sensitivity with a decrease in the microfiber 

diameter or an increase in the surrounding RI. This 

feature is caused by the larger evanescent fields in 

smaller dimensions or reduced RI contrast, 

indicating that microfiber sensors with smaller 

diameters would benefit sensing applications. 
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Fig. 8 Effective sensitivity of a phase-based silica microfiber 

sensor as a function of diameter for different surrounding 
refractive indices at a wavelength of 1 550 nm. 

To date, MFCs have been widely demonstrated 

in the sensing of RIs [96, 100, 182], temperature [72, 

75, 183, 184], strain/force [97], current [94], 

magnetic fields [94, 176], humidity [169, 185, 186], 

and other parameters. Most of the reported     

MFC RI sensors exhibited sensitivities in the range 

of 1 000 nm/RIU – 6 000 nm/RIU (RI unit)       

[93, 95, 96, 187, 188]. Ultrahigh sensitivity       

is possible when the MFC operates near        

the turning point [100] or relies on the 

birefringence-induced Vernier effect [182]     

(Fig. 9). Using a Sagnac loop mirror based        

on an MFC, Chen et al. implemented a       

highly sensitive reflective micro-force sensor    

with a maximum sensitivity of ~3754 nm/N [97].  

An MFC sensor was integrated with    

molybdenum disulfide (MoS2) nanosheets      

and implemented for the simultaneous measurement 

of relative humidity (RH) and temperature     

with an RH sensitivity of 115.3 pm/%RH        

in the range of 54.0 %RH–93.2 %RH and a 

temperature sensitivity of –104.8 pm/  in the         ℃

range of 30 ℃–90  ℃ [169].
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Fig. 9 Phase-based MFC sensors with ultrahigh sensitivities: (a) transmission spectral responses to different ambient 

RIs for an MFC sensor operating near the turning point of effective group index difference. Reproduced with permission 
[100]. Copyright 2016 AIP Publishing; (b) modeled (solid curves) and measured wavelengths (points) at transmission 
dips versus ambient RI for the MFC sensor operating near the turning point. Reproduced with permission [100]. 
Copyright 2016 AIP Publishing; (c) transmission spectra of an MFC sensor with the Vernier effect for different 
surrounding RIs (spectra are offset by 22 dB). Reproduced with permission [182]. Copyright 2018 Elsevier; (d) measured 
wavelengths at transmission dips versus surrounding RI for the MFC sensor with the Vernier effect. Reproduced with 
permission [182]. Copyright 2018 Elsevier. 

 

MFIs also exhibit excellent performance in 

phase-sensitive optical sensing. For example, Wo  

et al. [78] demonstrated an MZI using a 2-μm silica 

microfiber as the sensing arm, with an RI sensitivity 

of 7 159 μm/RIU. Excluding MZIs with different 

optical paths, modal interferometers comprising 

multimode microfiber [99] and non-adiabatic 

transition regions [189, 190] have been 

demonstrated for RI, gas, and liquid level sensing. 

Sun et al. [80] reported a highly birefringent 

microfiber loop interferometer with an RI sensitivity 

of approximately 24 373 nm/RIU and a temperature 

stability above 0.005 nm/ . Moreover, based on ℃

graphene-MFI hybrid structure, Yao et al. [191] 

realized an all-optical NH3 gas sensor with a high 

sensitivity of ~6 pm/ppm and a resolution of    

~0.3 ppm as shown in Figs. 10(a) and 10(b). A 

cascaded MFI structure is another interesting topic, 

owing to its ability to demodulate multiple sensing 

parameters [192–194]. A multimode 

microfiber-based dual MZI can achieve 

simultaneous measurements of RI and temperature 

with sensitivities of 2 576.584 nm/RIU and        

1 001.864 nm/RIU and –0.193 nm/  and ℃      

0.239 nm/ , respectively ℃ [192]. Recently, a 

microfiber modal interferometer was functionalized 

with glucose oxidase and proposed for bio-selective 

and high-sensitivity glucose detection with a 
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response coefficient of 1.74 nm/mg–1ml–1, as shown 

in Figs. 10(c) and 10(d) [195]. 

MFBGs for RI [119, 121, 123, 128, 129], 

temperature [124, 127, 196], strain [196, 197], force 

[197, 198], and humidity [199] sensing have been 

reported; the large evanescent fields enable high RI 

sensitivities of 102
 nm/RIU – 103

 nm/RIU. However, 

the temperature and strain sensitivities of MFBGs 

have not been improved compared with those of 

bulk FBGs. MFBGs exhibit an advantage over bulk 

FBGs for force sensing, particularly for detections 

of micro-force because their reduced thickness 

significantly enhances the sensitivity (102
 nm/N –  

103
 nm/N). For practical applications, it is beneficial 

to realize the simultaneous measurement of multiple 

parameters and avoid cross-sensitivity [196]. For 

this purpose, Lee et al. [200] developed a multimode 

etched-core FBG sensor with an asymmetric 

non-adiabatic taper and demonstrated simultaneous 

demodulation of the RI, temperature, and strain with 

accuracies of 1×10–4
 RIU, 0.32 , and 10℃  με, 

respectively. The functionality of an MFBG sensor 

can be enhanced by functional material coatings. For 

example, an MFBG coated with the graphene oxide 

(GO) film was implemented for relative humidity 

sensing with a sensitivity of 17.361 pm/RH% and 

linear correlation coefficient of 99.89% [199]. In 

addition to MFBGs, MFLPGs were also 

implemented for optical sensing [87, 88, 201, 202], 

exhibiting a comparable performance with MFBGs, 

while requiring a simpler manufacturing process [87, 

88, 117, 201–203]. 
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Fig. 10 Phase-based MFI sensors: (a) schematic diagram of a graphene/microfiber hybrid waveguide (GMHW) and setup of the 

GMHW-MZI for NH3 sensing. Reproduced with permission [191]. Copyright 2014 Elsevier; (b) sensing performances of the GMHW 
(red) and the microfiber on MgF2 without graphene attached (blue). Reproduced with permission [191]. Copyright 2014 Elsevier;    
(c) schematic diagram of a functionalized microfiber modal interferometer for selective and highly sensitive glucose detection. 
Reproduced with permission [195]. Copyright 2018 Elsevier; (d) spectra of the functionalized MFI in glucose solutions with different 
concentrations. Reproduced with permission [195]. Copyright 2018 Elsevier; (e) relationship between resonant wavelength shift and 
concentration for the functionalized MFI. Reproduced with permission [195]. Copyright 2018 Elsevier. 

 
Owing to their compact size, high Q factor, and 

easy coupling strategy, microfiber-based resonant 

sensors have been widely applied in the 

measurement of the RI [68, 69, 139, 140, 146, 147, 

204], temperature [63, 141, 205–209], current [210, 

211], electric field [212], magnetic field [178], and 
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humidity [213]. For example, as the simplest 

microfiber resonant structure, a microfiber loop 

resonator with a Q factor of ~105 has been 

demonstrated for temperature sensing with 0.1 mK 

resolution [63]. However, the freestanding 

microfiber loop maintained by van der Waals and 

electrostatic forces is weak in mechanical stability. 

Alternatively, microfiber resonators based on more 

stable structures, such as a knot [178, 205, 208, 209, 

212, 213], a coil [68, 69, 211, 214, 215], a ring [139], 

and an FP cavity [140, 141], have been proposed 

and implemented for sensing applications. An 

encapsulation process was also employed to 

stabilize the freestanding microfiber resonance 

structures [70, 216]; however, the packaging will 

influence the Q factor and field overlap between the 

structure and the analyte [217]. 

3.2 Loss-based sensors 

Ultrasensitive microfiber absorption spectroscopy 

can be utilized for molecule detections [218, 219], 

owing to the large evanescent fields and strong 

light-matter interactions in subwavelength 

microfibers. For microfiber sensors based on 

absorption effects, the transmission loss depends on 

the fraction of the evanescent fields, molecular 

concentration, absorptivity, and effective interaction 

length [38]. To obtain high sensitivity, microfiber 

structures, such as optical resonators, can be 

introduced to enhance the overlap between guided 

light and the surroundings or increase the effective 

interaction length [220, 221]. Furthermore, functional 

material coatings, such as metal nanostructures 

[222–224], antibodies [224, 225], gelatin [226], 

doped sol-gel films [227], and graphene [228–230], 

have been adopted for the realization of selective 

sensing. Recently, an absorption-based strain sensor 

using a graphene-microfiber hybrid structure was 

reported [231]. The optical conductivity of graphene 

on a microfiber can be tuned using external strain 

applied on the microfiber, resulting in a change of 

transmission intensity in the spectrum [232, 233]. 

Sun et al. [234] showed that the absorption of the 

graphene-assisted structure was also sensitive to the 

surrounding temperature. As illustrated in Figs. 11(a) 

and 11(b), Chen et al. [170] demonstrated that the 

absorption edge of the monolayer WS2 on a 

microfiber linearly shifted with the uniaxial strain, 

exhibiting a sensitivity of ~10 nm/% strain. 

A microfiber sensor based on radiation modes 

was developed for conditions where the surrounding 

RI is larger than that of the microfiber. Gao et al. 

[236] demonstrated the possibility of employing 

leaky radiation to measure an environment RI that 

was higher than that of the microfiber material with 

a theoretically predicted sensitivity higher than 

400 °/RIU. Recently, Zhang et al. [237] reported a 

sensor that enabled multifunctional flow sensing in 

microfluidic chips, which utilized the transition from 

guided to radiation modes for a microfiber 

embedded in polydimethylsiloxane film. 

Owing to the strong optical confinement and 

large evanescent fields, elastic light scatterings are 

significantly enhanced in a microfiber. For example, 

Polynkin et al. [238] reported a geometric 

scattering-based RI sensor by integrating a 

microfiber with a microfluidic channel; the sensor 

realized an estimated resolution of ~10–4 RIU. Liu   

et al. [239] proposed a Mie scattering-based 

microfiber RI sensor with an accuracy of 1.8×10–5
 

RIU. Rayleigh scattering is one of the most 

important elastic scattering effects and has been 

widely studied in microfibers because rapid 

detection and evaluation of nanoparticles are 

important in the fields of nanoscience and 

nanotechnology [235, 240–246]. Wang et al. [242] 

theoretically investigated nanoparticle-induced 

Rayleigh-Gans scattering in microfibers for optical 

sensing. By measuring the additional loss introduced 

by the scattering of microparticles, Wei et al. [246] 

implemented a microparticle sensor by simply using 

a microfiber. Chen et al. [244] demonstrated that the 

detection limit for a single nanoparticle can be 

enhanced by utilizing a hybrid plasmonic-photonic 

mode in a subwavelength microfiber. Yu et al. [245] 
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realized single-nanoparticle detection and sizing by 

a microfiber pair in an aqueous environment. 

Recently, they have further demonstrated an 

accurate evaluation of the distribution of ultrafine 

particulate matter in air using a microfiber array as 

shown in Figs. 11(c) and 11(d) [235]. 
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Fig. 11 Loss-based microfiber sensors: (a) experimental setup for in-line strain manipulation of absorption spectra of monolayer 

WS2 to an optical fiber nanowire (WOFN). Reproduced with permission [170]. Copyright 2019 Springer Nature; (b) absorption peak 
wavelength of the WOFN with the increase and decrease in the strain. Reproduced with permission [170]. Copyright 2019 Springer 
Nature; (c) schematic setup of a Rayleigh-Gans-scattering-based nanofiber array size spectrometry. DAQ, data acquisition system; 
PLC, polarization controller. Reproduced with permission [235]. Copyright 2018 Springer Nature; (d) size histogram of nanoparticles 
in six air samples collected from different moments, evaluated by the nanofiber array size spectrometer. Reproduced with permission 
[235]. Copyright 2018 Springer Nature. 

3.3 Frequency-based sensors 

In addition to elastic light scattering, the 

abundant inelastic scattering effects in microfibers 

also provide useful tools for sensing applications. 

Recently, Brillouin scattering in microfiber has 

attracted increasing interest because the microfiber 

can strongly confine both optical and acoustic 

modes at a nanoscale and provide a unique platform 

to investigate photon-phonon interactions [247–253]. 

For optical sensing, Brillouin scattering may benefit 

the sensitivity and compactness of microfiber 

sensors, owing to the rise of surface acoustic waves. 

Godet et al. [254] characterized subwavelength 

microfibers with a resolution of a few nanometers 

using Brillouin spectroscopy. Huang et al. [255] 

demonstrated a microfiber Brillouin sensor with a 

maximum pressure sensitivity of 0.066 MHz/kPa 

and a temperature sensitivity two times higher than 

that of a standard fiber-based Brillouin sensor. Luo 

et al. [256] revealed strain sensitivities of     

0.008 6 MHz/με and 0.020 MHz/με for the axially 

symmetric R01 and R02 acoustic modes in a 

microfiber, respectively. Recently, Huang et al. [257] 

demonstrated an RI sensor utilizing Brillouin 

scattering in a microfiber with a 2-μm diameter with 

an RI sensitivity of ~1.6 GHz/RIU. 

Intrinsic Raman scattering in bulk optical fiber 

was employed for distributed temperature sensing 

[258, 259]; however, most of the reported microfiber 

sensors are based on external Raman scattering 

induced by surrounding media [260, 261]. In these 

studies, the microfiber’s large evanescent field was 

typically employed as the probe to interact with the 

surroundings. However, the efficiency of Raman 

scattering is extremely low. Thus, it typically 

requires a high-powered pump source and a highly 
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sensitive spectrometer or a long microfiber to 

generate Raman signals with sufficient intensity. 

With the emergence of surface-enhanced Raman 

scattering, microfibers and microfiber tips decorated 

with plasmonic structures have been employed for 

ultra-sensitive molecular sensing [262–266]. 

The strong optical confinement and significant 

evanescent fields in microfiber are beneficial for 

ultra-sensitive molecular fluorescence spectroscopy 

[267–269]. In comparison with the absorption 

spectroscopy, the fluorescence spectroscopy 

contains two physical processes: fluorescence 

excitation and collection [270, 271]. Both processes 

can be implemented via evanescent coupling of the 

microfiber guided modes. Li et al. [269] reported a 

hybrid microfiber-microfluidic device for 

fluorescence measurements with a detection limit as 

low as 100 pM and excellent reversibility in a 

concentration range between 0 nM and 10 nM. In 

addition to embedding microfibers in the 

microchannels of microfluidic chips, hollow core 

microfiber has been employed for optofluidic 

manipulation and fluorescence detection in fluidics 

with an effective detection volume at the femtoliter 

scale [267] (Fig. 12). There is a growing interest in 

interfacing atoms with optical microfiber to 

manipulate and probe the atomic fluorescence   

[36, 272–274]. For example, spontaneous emission 

rates of excited atoms/molecules were investigated 

when positioned around a subwavelength microfiber, 

which opened a promising field in quantum 

electrodynamics [272, 274]. 

Moreover, microfiber tips have been used as 

fluorescence probes for bio/chemical detection. The 

nanoscale fiber tip is typically fabricated by cleaving 

a tapered fiber and functionalized using metal layer 

coated on the end face or functional materials (e.g., 

bioreceptors [275], dyes [276, 277], 

semiconductor/doped-polymer nanowires [278], and 

plasmonic structures [279]) attached to the tip. The 

micro-tip sensors exhibited excellent capabilities of 

single-cell-level investigations into chemical 

reactions in biosystems. Moreover, they provided 

minimally invasive tools to probe subcellular 

compartments inside individual living cells for 

health effect studies and medical applications [279]. 
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Fig. 12 Frequency-based microfiber fluorescence sensor:  

(a) scheme of the experimental setup for a 
hollow-core-microfiber-based fluorescence detector. 
Reproduced with permission [267]. Copyright 2018 Elsevier;  
(b) fluorescence spectra of fluorescent microsphere suspensions 
at different concentrations for the hollow-core-microfiber-based 
fluorescence detector. Reproduced with permission [267]. 
Copyright 2018 Elsevier; (c) fluorescence peak intensity as a 
function of concentration of fluorescent microsphere 
suspensions for the hollow-core-microfiber-based fluorescence 
detector. Reproduced with permission [267]. Copyright 2018 
Elsevier. 
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4. Challenges and prospects 

Although significant progress has been made for 

microfiber-optic sensors in the past decades, we 

notice that several limitations must be resolved to 

enable wider applications. The first challenge is the 

fabrication of microfiber-based sensors with high 

repeatability, good scalability, and long-term 

stability. This is crucial for practical applications, 

especially for migrating microfiber sensors from 

laboratories to commercialized products. Thus far, a 

technique has been proposed to precisely 

manufacture microfibers with in-situ control of the 

waist diameter [280]. Packaging methods, including 

embedding the microfibers in low-RI materials [69, 

70, 217, 281–283], integrating them with 

microfluidic chips [219, 269], and sealing them in 

glass tubes [284], were also demonstrated for better 

protection of sensitive microfiber sensing elements. 

However, the limitation regarding the efficient 

manipulation of fragile microfibers and performance 

maintenance after packaging still remains. The 

second challenge is the competition from other 

platforms, such as micro-electro-mechanical system 

sensors [285] and silicon photonic sensors [286, 

287]. These integrated sensing devices rely on 

mature semiconductor fabrication techniques and 

offer the same advantages of a small footprint, high 

sensitivity, and fast response. Thus, it is critical to 

find the unique superiorities of microfiber sensors in 

some specific applications. Recently, with the 

emergence of the wearable technology, highly 

flexible microfiber-optic sensors may be utilized for 

human health monitoring and human-machine 

interaction [13, 288, 289]. 

5. Conclusions 

We have reviewed the typical microfiber 

structures that can be harnessed for optical sensing. 

We have also summarized the implementations of 

microfiber-optic sensors based on different 

operating mechanisms, including interference, 

resonance, absorption, leakage, scattering, and 

fluorescence effects. We discussed the remaining 

challenges and concluded with prospects for future 

development of more practical microfiber-optic 

sensors. The microfiber platform will continue to 

offer increasing opportunities for sensing 

applications in combination with new structures and 

functional materials. It seems promising that the 

limitations of existing microfiber-optic sensors may 

be solved in the near future, and we expect that the 

sensors will be finally implemented in 

commercialized applications. 
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