
PHOTONIC SENSORS / Vol. 6, No. 2, 2016: 158‒168 

 

Shift Endpoint Trace Selection Algorithm and Wavelet Analysis 
to Detect the Endpoint Using Optical Emission Spectroscopy 

Sihem BEN ZAKOUR1* and Hassen TALEB2 

1Higher Institute of Management Tunis, University of Tunis, Tunisia 
2Higher institute of Business and Accounting Bizerte, University of Carthage, Tunisia 
*Corresponding author: Sihem BEN ZAKOUR      E-mail: Sihembenzakour@yahoo.com  

 

Abstract: Endpoint detection (EPD) is very important undertaking on the side of getting a good 
understanding and figuring out if a plasma etching process is done on the right way. It is truly a 
crucial part of supplying repeatable effects in every single wafer. When the film to be etched has 
been completely erased, the endpoint is reached. In order to ensure the desired device performance 
on the produced integrated circuit, many sensors are used to detect the endpoint, such as the optical, 
electrical, acoustical/vibrational, thermal, and frictional. But, except the optical sensor, the other ones 
show their weaknesses due to the environmental conditions which affect the exactness of reaching 
endpoint. Unfortunately, some exposed area to the film to be etched is very low (<0.5%), reflecting 
low signal and showing the incapacity of the traditional endpoint detection method to determine the 
wind-up of the etch process. This work has provided a means to improve the endpoint detection 
sensitivity by collecting a huge numbers of full spectral data containing 1201 spectra for each run, 
then a new unsophisticated algorithm is proposed to select the important endpoint traces named shift 
endpoint trace selection (SETS). Then, a sensitivity analysis of linear methods named principal 
component analysis (PCA) and factor analysis (FA), and the nonlinear method called wavelet 
analysis (WA) for both approximation and details will be studied to compare performances of the 
methods mentioned above. The signal to noise ratio (SNR) is not only computed based on the main 
etch (ME) period but also the over etch (OE) period. Moreover, a new unused statistic for EPD, 
coefficient of variation (CV), is proposed to reach the endpoint in plasma etches process. 
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1. Introduction 

Plasma is partially ionized gas [1]. Therefore, it 

contains electron energy which excites the atoms and 

molecules then de-energizes in emitting photons. 

Under those circumstances, the plasma thus emits 

light. On the temperature scale, plasma has the three 

following classical states, solid, liquid, and gas [2]. 

Plasma is used for the surface treatment through 

transforming the electrical energy into a chemical 

energy by separating molecules [3]. Thus, it contains 

not only radicals and reactive atoms but also ions 

which can be accelerated by an electric field applied 

to bombard surfaces. The plasma process is used in 

many industrial fields such as biomedical, food, 

textile, automotive, and micro-electronics. In the 

biomedical sector, plasma is used to sterilize 

instruments or modify surface properties to make 
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them bio-compatible, thus limiting the risk rejection 

by the human body. Plasma is also used for the 

deposition of protective layers on the biomedical tool 

surfaces. During the etch process, when the desired 

layer material is clear, the gas of plasma should be 

stopped to avoid the over etch of the underlying layer. 

At this moment, a signal will appear indicating that 

the required clearing is done [4]. The most popular 

method for detecting the endpoint is to monitor the 

trace of the reactive species emission or volatile 

products emission through optical emission 

spectrometer (OES) [5 ‒ 8]. At the start of the 

endpoint phenomenon, the augmented intensity in a 

particular channel signal corresponds to a growth in 

the concentration of reactant in the plasma etch 

process, considering that the reactant species is less 

used in the surface reaction of the integrated circuit. 

In contrast, any decrease in the intensity of 

wavelength channel is assigned by a slack in product 

concentration, because the under product species is 

contrived in the integrate circuit (IC) surface reaction 

[9]. As the etched surface becomes more and more 

small, the collection of huge number of spectra is 

unavoidable in the aim of improving the detection of 

endpoint. The implementation of EPD system allows 

having multi-OES and then a precise stop procedure 

in a specific layer, which increases throughput and 

yield [10, 11]. In this paper, a new algorithm is 

proposed to select the important fifty endpoint traces 

named shift endpoint trace selection (SETS)    

from the full spectra in the first section. Then the 

linear and nonlinear dimension reduction techniques 

are applied named principal component analysis 

(PCA), factor analysis (FA), and wavelet analysis 

(WA), in Section 3, respectively. The results and the 

sensitivity analysis is done based on mean and 

coefficient of variation (CV) statistics through the 

use of signal to noise ratio (SNR) in Section 4. 

Finally, the concluding remarks are given in Section 

5. Table 1 shows the list of abbreviations used in this 

work.  

Table 1 Abbreviation lists. 
Abbreviation Definition 

IC Integrated circuit 
SETS Shift endpoint trace selection 
PCA Principal component analysis 
FA Factor analysis 
WA Wavelet analysis 
CV Coefficient of variation 

SNR Signal to noise ratio 
EPD Endpoint detection 
ME Main etch 
OE Over etch 
M Mean 
SD Standard deviation 

2. Shift endpoint trace selection (SETS) 
algorithm 

2.1 Endpoint states and traces 

Endpoint detection is employed to identify when 

the etched film has been cleared to the underlying 

film. At this moment, the process can be stopped or 

modified to a more selective etch. To detect the 

endpoint, when the film will be removed, without 

falling on over etch state in other words without 

damaging or removing the underlying film, and 

being sure about avoiding also the under etch state, 

that is the film being etched has not been completely 

removed, as shown in Fig. 1. 

 
Fig. 1 Devices have been ideally etched, of which one has 

been over etched and the other under etched.  

The ideal endpoint trace for an etch process has 

plotted intensity like a step change [12] as depicted 

in Fig. 2. This ideal case in the plasma etch process 

has no noise, no drift, and with uniform clearing of 

features across the wafer. In reality, the etch process 

is affected by some variations, and those variations 

in the etch rate will produce non-uniform clearing. 

Hence, the endpoint trace will contain error and drift 
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as shown in the aforementioned figure. In general, 

the endpoint detection does not occur at a specific 

time but refers to the range of times over which the 

film is cleared. The starting of endpoint is named the 

start of clear, and the finishing of endpoint is named 

the end of clear. During any chemical process, there 

is typically a transient state which starts at the 

beginning of any plasma process, which refers to the 

initial transient. Then, the signal generally obtains a 

steady state before detecting the endpoint, named 

the main etch [4]. 

Ideal endpoint trace 
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Fig. 2 Real endpoint trace can have various sources of noise 

and drift, with a change that occurs not in a single step, but 
gradually over some time span, due to non-uniform clearing of 
features and the ideal endpoint trace has step-wise change at 
endpoint and no noise in the signal. 

2.2. Proposed algorithm named shift endpoint 
trace selection (SETS) algorithm 

The growth on the collected data leads to a very 
large databases, high complexity, and long time 

execution [4, 6, 12]. The size reduction is one of the 
main tasks on the multivariate analysis [12]. It 
abates a large observed set of dimensions into a 

smaller features set. The major and the significant 
purposes of dimensionality reduction techniques are 
to visualize, compress, de-noise, and reduce the size 

of the data. As the importance of plasma etch 
process on the production of integrated circuit (IC) 
and on the side to understand and detect endpoint in 

the plasma etching process, collecting a huge 
number data (about of 12018725=4695910 
intensities) is unavoidable. All spectra intensities are 

presented in time resolution and spectral resolution. 

Despite the benefits of having a lot of information 
about all process details and progresses, this 
collection could handle the exactness of monitoring 
the endpoint. For this reason, the selection of the 

most important OES light is a decisive and essential 
task. A new proposed algorithm, named shift 
endpoint trace selection (SETS) to select the nearly 

meaningful time traces, is given as follows: 

 

 For all run Plasma etch step 

   For time endpoint trace 

   Compute |difference| between endpoint range 

   Rank Difference with an increasing order 

   Selecting the first fifty differences 

   ENDFOR 

 ENDFOR. 

 

3. Dimension reduction techniques 

The use of multivariate methods for endpoint 

detection is unavoidable to monitor multi- 

wavelength channels. In this section, the 

multivariate tools are investigated. The matrices 

notations are given as a basic fact to master the 

multivariate analysis. And an introduction to matrix 

(linear) algebra is essential in order to better 

understand the next coming multivariate algorithms. 

The endpoint optical data are arranged in 

two-dimensional array (matrix) and given by the 

matrix below: 
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X       (1) 

where X is the intensity matrix having m time 

samples and n wavelength channels. Each sample x 

represents the spectra intensity for the ith time 

sample and the jth wavelength channel. It is often 

commodious to divide the matrix into row and 

column vectors. The column of the matrix X refers 
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to a particular wavelength trace, noted as xj. Hence, 

the endpoint traces can expressed with X by 
 1 2 1[    j n nx x x x xX  .      (2) 

The row vector of the matrix, xi., refers to 

spectrum at a specific time sample i. The matrix X 

could be expressed by using row vectors as follows: 

1

2

. .

.

m

x

x

x

 
 
 
 
 
 
  

X                 (3) 

As it was mentioned previously, the endpoint 

occurs seldom instantaneously, and in the most cases 

it occurs during a small time interval not on a 

specific point. On all occasions, the endpoint 

represents a mean shift from the main etch mean to 

the over-etch mean [4]. If this shift is much larger 

than some boundary which is computed from the 

etch data state, the endpoint is detectable. The 

matrix formulation of endpoint problem is given by 

the matrix X as a matrix containing two partitions, 

the main etch data and the endpoint data. 

(ME)

(EP)

X

X

 
  
 

X              (4) 

where X(ME) contains the main etch data and X(EP) 

contains the endpoint data. The starting idea of 

principal component analysis (PCA) is to fractionate 

correlated data into a new set of uncorrelated 

measurements. The principal component analysis 

(PCA) is the most used method to reduce data [13‒

15]. References [16, 17] employed PCA to analyze 

in-situ spectroscopy data, and PCA is also used as a 

feature selection by [18, 19] in order to have 

information about processes and detect faults when 

there is no sufficient historical data. While the major 

aims of factor analysis (FA) is to identify the most 

significant data set to explain correlations among 

factors. There are several references that treat the 

factor analyses [20]. Reference [21] employed FA to 

evaluate of semiconductor ray spectra. Hence, the 

factor analysis serves to identify the correlation 

between the process variables and the common 

factors (latent variables). The main difference 

between PCA and FA is that the first relates 

variables into a small number of PCs and studies all 

variance while the second produces the factors and 

analyzes only the shared variance. The employment 

of PCA and FA which transform data on linear 

combinations of variables to analyze OES data 

represents a constraint themselves of linearity. A 

common form of multivariate non-linear analysis is 

the wavelet analysis. A wavelet is a waveform, with 

limited duration and having an average value of zero, 

and with irregular and asymmetric properties. As a 

result, there are different types of wavelets such as 

the Haar, Daubechies, Coiflets, Symlet sand, and 

biorthogonal wavelets [22]. For each 

aforementioned wavelet, they have their wavelet 

filters (low pass and high pass) while the Haar is the 

most simplest and its filter has only two coefficients 

in both low pass and high pass. The others such as 

Daubechies and Coiflet, have more vanishing 

moments not symmetric and also more coefficients 

both in low pass and high pass side. The Haar 

wavelet is a perfect choice in studying the time 

domain (compactly supported, small support, only 2 

taps) but not in the frequency domain. In addition, 

the Haar wavelet has an efficient memory exactly 

reversible (easy reconstruction) and it is 

computationally the cheapest one. Wavelet theory, 

discovered by [23], has been employed in different 

scientific fields, such as physics, engineering and 

mathematic, data compression, and speech analysis. 

The wavelet analysis decomposes a function into 

frequency components that represent different 

degrees of function smoothness, with high frequency 

components capturing the least smooth function 

behavior while low frequency components capture 

the most smooth function behaviors, which makes it 

easy to extract the information exclusively in the 

time-frequency domain, as shown in Fig. 3.  
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Fig. 3 Multi-resolution analysis showing the decomposed 
signal into approximation and details at Level N. 

The wavelet analysis employs a linear 
combination of basis functions (wavelets), including 
time and frequency resolutions. For any function in 
L2, the wavelet could be presented as follows [23]: 

, ,( ) ( ) (2 )j
k k j k j k

k Z j L k Z

f t C t d t k 


  

       (5) 

where j and k are dilation and translation indices, 
respectively, and Ck and dj,k refer to the 

approximation and detail coefficients, respectively. 
ΦL,k(t) is the father wavelets representing the low 
frequency and smooth parts of a signal, however, 

Ψj,k(t) refers to the mother wavelet having high 
frequency and detail part of a signal. Their 
expressions of father and mother wavelet functions 

are given, respectively, as follows: 
2

, ( ) 2 (2 )L L
L k t t k              (6) 

2
, ( ) 2 (2 ) j L

j k t t k              (7) 

where , ,j k L Z  and 22L  (and 22 j ) are needed 
to normalize the function f(t), where, L (and j) 
corresponds to the level of time resolution (i.e, the 

width of the time interval) and k corresponds to the 
shift in the time location. The wavelet coefficients 
cL,k and d j,k are defined as inner products of f (t) and 

the corresponding wavelet functions (mother and 
father) are called the discrete wavelet transformation 
of the signal f (t), respectively. They are expressed as 

follows: 

, , ,( ), ( )L k L k L kC f t f t dt           (8) 

, , ,( ), ( ) .j k j k j kd f t f t dt           (9) 

The highest level of decomposition corresponds 
to the level after which there is a significant drop in 
the energy content, and the expression of energy 
content is given as follows: 

22
,

1

( ) (2 ) .
n

j
j j j k

k

EN f t d t k


        (10) 

The reconstructed signal is accurate only if the 

criterion of threshold selection is optimized. The 

threshold value using the Visushrink method (or [24

‒27] universal threshold rule) is given as follows: 

2lg( )j jt n              (11) 

where n is the signal length and j  is the standard 

deviation of the noise at scale j. Only the significant 

wavelet coefficient situated outside of the threshold 

limits are extracted by applying soft or hard 

thresholding. In hard thresholding, the wavelet 

coefficient (at each level) above threshold will be 

unchanged (keep the same value for the coefficients 

that exceed the threshold), and the values which are 

lower than the threshold are made zero, which can 

cause large variance in the reconstructed signal and 

sometimes artifacts with an roughness appearance of 

the signal after reconstruction. However, it can 

better represent peaks and discontinuities. While the 

soft thresholding is an extension of hard 

thresholding, of which the thresholded coefficients 

are set to zero when the absolute values of wavelet 

coefficients are lower than the threshold (tj) and 

adjusted by the following expression 

sign(dj,k)(|dj,k|tj) if coefficients are upper than tj. 

This method of thresholding gives better visual 

filtering quality. Indeed, it affects the detail 

threshold coefficients in a smooth way without 

making a radical change in its value. And the final 

step in the wavelet analysis is the reconstruction. 

Through inverse wavelet transforms, the signal f(t) 

is reconstructed from the threshold wavelet 

coefficients. After determination of the threshold 

details and approximation at Level j, they will be 

used as inputs, to calculate the coefficients at Level 

(j1) until getting the signal with the noise 

eliminated. 
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The summary of the main three steps in 

wavelet analysis: 

Decompose: Choose a wavelet. Choose the 

Level J. Calculate the wavelet decomposition of 

the signals at the Level J. 

Threshold: For each level from 1 to J, select a 

threshold and apply soft thresholding to the detail 

coefficients. 

Reconstruct: Through the approximation 

coefficients of Level J and the thresholded detail 

coefficients the wavelet reconstruction is done. 

4. Experimental results and discussion 

4.1 Results  

In this paper, the optical emission spectrometer 

(OES) is employed. And physically, the root of the 

optical emission is the light emitted through a 

chemical element, when the high energy state 

decreases to the lower one. In the plasma etch 

process, many chemical species have several 

emission spectra. The observed optical emission 

spectra display the chemical species and their 

variations. An optical emission spectroscopy should 

be able to resolve three components of plasma gas: 

(1) spectral resolution, (2) temporal resolution, and 

(3) spatial resolution. Hence, the study of the full 

spectral range OES is a challenging task. In this 

work, the sensor collects an array of measurements 

having 1201 channels of data, with over 827 units of 

time, since there are about approximately million 

data points in a single processing step. In other 

words, an optical emission spectroscopy is 

implemented in order to scan 1201 wavelengths 

(200 nm ‒  800 nm) from 0.4999 s to 435999 s. 

Given the extra data size, it is logical to ameliorate 

the sensitivity of the endpoint detection. And it is 

recommended to compress the data into a smaller 

subset that contains the most valuable information 

about the process, and at the same time minimizing 

the space on the hard drives by using dimension 

reduction techniques. The collected channels are 

gathered and analyzed in order to reach the real EP. 

The first fifty rows (from 0.499 s to 24.999 s) 

referring to the initial state of plasma etch (Fig. 4) 

will be suppressed in order to avoid bias results (Fig. 

5). Based on the new proposed algorithm named 

shift endpoint trace selection (SETS), only the first 

fifty endpoint traces having the highest intensity 

difference are selected. As the experimental OES 

data are coming from 5 etch steps, the total retained 

endpoint traces are equal to one hundred (505). 

Then reduction dimension techniques noted before 

will be applied to the retained traces to improve the 

picked-out endpoint traces. Moreover, the spectra 

are pre-processed to remove noise and reduce 

dimensionality. 
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Fig. 4 Plot of an endpoint traces showing the initial transition 
state. 
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Fig. 5 Plasma etch endpoint traces from Step 3 after 

suppressing intensities from 0.499 s to 24.999 s. 
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The PCA is commonly used in the data analysis. 

The first fifty principal components are studied 

which catch most of the original data variation, even 

for large numbers of wavelengths (>1000). After 

applying PCA, the five retained endpoint traces 

from the fourth etch run notice that the endpoint is 

detected in 250.999 s to 252.499 s. The same 

procedure done on PCA is done on FA, hence the 

new proposed algorithm is preceded then FA is 

applied (Fig. 6). 

 

Fig. 6 Plotting the five significant retained factors. 

The SETS algorithm is applied to the optical 

endpoint traces then the denoising procedure is 

applied by using the wavelet analysis. The chosen 

wavelet here is Haar wavelet. As mentioned 

previously, it is the most appropriate to describe the 

step change. Here, the obtained endpoint traces from 

the shift endpoint trace selection algorithm are then 

denoised and decomposed by using the wavelet 

analysis. The mean and CV of each endpoint trace of 

ME and OE are computed separately. From the 

obtained mean column presenting mean of all kept 

spectra, the mean will be decomposed at Level 3. 

This level is chosen based on the energy function 

drop. It should be noted that based on the gathered 

data, if the level of decomposition increases signal at 

a higher level, the signal will be smoother and may 

lose a lot of information about the right moment of 

endpoint detection and the species (gas) of the 

plasma etch process. Also, to plot endpoint traces, 

the reconstructed approximation coefficients will be 

used for those reasons noted below. (1) It is the 

denoised reconstruct original signal. (2) The 

endpoint detection is done based on the mean shift. 

(3) The detail coefficients represent high variance  
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Fig. 7 Mean approximation signal at Level 3. 

 
Fig. 8 CV approximation and details signal at Level 3. 
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and noise. The mean and the CV of each endpoint 

trace of ME and OE are computed separately, both 

of which will be decomposed at Level 3. Figure 7 

shows the approximated mean wavelength at Level 3 

that the endpoint is reached at the interval 250.999 s 

to 252.499 s. Based on Fig. 8, the WA-CV-approx at 

Level 3 records a meaningful shift before the real 

endpoint (under etched device). Therefore, the 

endpoint should be monitored based on the OE 

interval. The latter is more stable, and the first 

significant shift is detected at the real endpoint 

(250.999 s to 252.499 s). The WA-CV-details do not 

allow the detection of endpoint while the WA-CV- 

approx can detect endpoint if it is computed based 

on the coefficients of approximation in the OE 

interval. 

4.2 Comparing result 

As mentioned before, after initial transient and 

during the main etch step, a stable signal exists 

during the ME for each of the whole channels, but 

the intensity of the signal changes (decreases or 

increases) after the onset of endpoint. Any increase 

in the intensity of the signal refers to an increase in 

reactant in the plasma chamber, while the decrease 

in intensity of spectral channel refers to product. The 

SNR for the main etch period is the amount of signal 

compared with the noise on the main etch, which is 

used to compare the performance of the 

aforementioned preprocessing methods and is 

expressed as follows: 

OE ME
ME

ME

M M
SNR .

σ


          (12) 

When the SNR for the over etch period is the 

amount of signal compared with the noise on the 

over etched device, it is expressed as follows: 

OE ME
OE

OE

M M
SNR .

σ


          (13) 

A comparative result is summarized in Tables 2 

and 3. Table 2 computes M, SD, and CV based on 

the main and over Etch intervals. Table 3 compares 

PCA, FA, WA-mean, WA-CV-approx, and 

WA-CV-details based on SNR. The SNR is 

computed during the main etch period and the over 

etch. CV coefficients are computed based on the 

approximated signal (approximation) and details. 

Table 2 Mean, SD, and CV results based on Main and over 
etch intervals. 

 MME MOE SDME SDOE CVME CVOE 

PCA 40.48 41.017 53.451 6.7949 1.320 0.165 

FA 5042.627 6917.3 6566.9 455.80 1.302 0.0659

WA- 
mean 

511.1609 487.17 9.651 3.6795 18.883 7.5523

WA-CV
-approx

1.945 1.953 593 14.13 30.743 7.23 

WA-CV
-details

0.5309 0.5143 272.24 252.965 512.722 491.873

Table 3 SNR results based on Main etch interval and the Over 
etch interval. 

 SNRME SNROE 

PCA 0.01034 0.079 

FA 0.285 4.113 

WA-mean 2.4857 6.52 

WA-CV-approx 0.1099 0.496 

WA-CV-details 6.0955 6.055 

4.3. Discussion of results 

Based on the obtained results and with the most 

compelling evidence, the wavelet analysis method 

for the mean outperforms all other methods. And 

this is due to the characteristics of the WA-mean 

method, which is based on the flexible signal with 

no restriction about linearity, stationarity and 

symmetry of studied traces. In contrast, the wavelet 

coefficient of variation does not give us a better 

understanding about the endpoint detection, 

especially if it is computed based on the detail 

coefficients. As the CV is computed in terms of SD 

which tends to be non-stationary statistic having an 

increasing then decreasing trend, then the endpoint 

detection is not possible with statistic CV. The high 

variance hinders the endpoint detection. FA 

preserves the shape of most data, therefore, all the 
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retained five factors detect endpoint clearly. While 

the data are mean centered in PCA, the FA detects 

mean shift better than PCA based on SNR. The 

obtained result could be explained according to the 

differences between PCA and FA given below: (1) 

PCA works in the variable space while FA surpasses 

the variable space; (2) PCA resolves non-segmented 

variance while FA resolves common variance only; 

(3) PCA is an empirical summarizing technique 

keeping m components while FA is a theoretical 

modeling method suiting fixed number m factors to 

the data; (4) PCA is a dimension reduction technique 

only when FA is also a clustering technique which 

tries to find coherent variables; (5) FA is a more 

statistical technique used to translate an observed 

dataset into new axes, similarly to PCA. While PCA 

refines to combine variables into tiny PCs, FA 

examines the structure underlying the original 

variables. The SNR is a relative measure of the 

magnitude of a data set to the standard deviation. If 

the SNR is larger, the magnitude of the signal is 

relatively larger than the amount of noise which is 

quantified by the standard deviation. Then in this 

case, the studied signal is deemed to be significant 

signal. There is a negative relation between CV and 

SNR, such as the WA-CV-details for ME is 512.722 

and its SNR is 6.095 e6. Hence, an inverse 

correlation is detected between them. The small 

peaks with SNR give a large CV while the largest 

SNR gives small details and approximations. Using 

details coefficients there is a high variance 

compared with the mean which is very small, 

therefore the SNR is very low. Also, there is a 

significant improvement of SNR for all used 

methods if this ratio is computed based on the 

variance of the OE period. 

5. Conclusions and future perspective 

Based on Fig. 9, the worst result is given by 

WA-CV-details because the details are generally 

used to monitor variance, and the monitored 

variance is very small compared with mean shift. 

Based on [28], for CV<0.5, the influence function 

response will have negative values. There is a 

negative correlation between CV and SNR. The 

WA-CV-approx surpasses PCA because the former 

is computed based on the mean and the variance of 

the approximate signal which are proportionally 

significant. In addition to that, the WA-CV-approx 

has no constraints such as linearity and mean 

centering data, which are the main postulates of 

PCA. Furthermore, WA-CV-approx has less 

performance than FA, because both methods do not 

need to mean central data. While for the linearity 

assumption, both are also appropriate but FA is the 

most appropriate because it is already designed for 

linear transformation. The ratio CV has a small 

amount compared with mean, therefore FA gives us 

better SNR results than WA-CV-approx. To detect 

EP, it is advantageous to use directly the 

approximation coefficients which identify quickly 

the mean shift (EP). Those results remain the same 

in both intervals (ME and OE) but it should be noted 

that there is an improvement of SNR for OE range 

because the variance during the aforementioned 

period is more stable and smaller compared with the 

ME period. In relation to our current results, one can 

investigate more OE periods to detect the EP and 

hence consider the plasma etch process CV for 

moving from unstable to stable one. 

 

Fig. 9 Schematic presenting the obtained results. 
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