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Abstract: Photoelectric displacement sensors rarely possess a perfectly linear transfer characteristic, but 
always have some degree of non-linearity over their range of operation. If the sensor output is nonlinear, it 
will produce a whole assortment of problems. This paper presents a method to compensate the nonlinearity of 
the photoelectric displacement sensor based on the extreme learning machine (ELM) method which 
significantly reduces the amount of time needed to train a neural network with the output voltage of the optical 
displacement sensor and the measured input displacement to eliminate the nonlinear errors in the training 
process. The use of this proposed method was demonstrated through computer simulation with the 
experimental data of the sensor. The results revealed that the proposed method compensated the presence of 
nonlinearity in the sensor with very low training time, lowest mean squared error (MSE) value, and better 
linearity. This research work involved less computational complexity, and it behaved a good performance for 
nonlinearity compensation for the photoelectric displacement sensor and has a good application prospect. 
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1. Introduction 

The photoelectric displacement sensor is widely 
used in the on-line measurement for the boundary 
position in the industrial production and experiments 
such as steel rolling, textile, and printing. It is also 
used to ensure the successful completion of the tape, 
trimming border, and overprinting pattern or to 
ensure a better damping effect and vibration 
isolation. In theory, the relationship between the 
input displacement and output voltage of the optical 
displacement sensor [1–3] is non-linear. The 
input-output data from the optical measurement 

system must be corrected to improve the 
measurement accuracy. In the practical application, 
piecewise linear correction methods are commonly 
used. However, they are usually short of preciseness 
in some situations that require higher precision. In 
order to improve the measurement accuracy of 
photoelectric sensors, researchers have made great 
efforts by various experimental and digital 
correction methods [4–11]. But the phenomenon of 
inadequate precision still exists, which cannot meet 
the actual needs for testing high precision 
displacement parameters. The support vector 
machine (SVM) is a new machine learning method 
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[12–15], which is established on the statistical 
learning theory, based on the structural risk 
minimization principle, and possesses a good 
generalization ability. As SVM algorithm is a 
convex quadratic optimization problem, it can 
guarantee to find the global optimal solution and can 
solve the problem with the small sampling number, 
nonlinear relation, and high dimension. To 
overcome the difficulties faced by the above said 
techniques, the extreme learning machine (ELM), a 
nonlinear compensation method was proposed in 
this work, which could make the optical 
displacement sensor linear. The corrected network 
could be processed according to the linear 
characteristics, and the measurement accuracy was 
improved. 

This paper is organized as follows: after 
introduction in Section 1, a brief description on the 
photoelectric displacement sensor is given in 
Section 2. Experimental observations of the sensor 
are also discussed in this section. Section 3 deals 
with the mathematical analysis of the ELM. The 
computer simulation study of the proposed models 
by using the experimental data of the optical sensor 
are carried out in this section. Results and discussion 
with output performance curves before and after 
compensation of nonlinearity using the specified 
algorithms are mentioned in Section 4. Finally 
conclusions and future scopes are discussed in 
Section 5. 

2. Photoelectric displacement sensor 

2.1 Principle of operation 

The photoelectric displacement sensor is a 
lateral semiconductor-based photo-detector device. 
The structure and equivalent circuit of the sensor are 
shown in Figs. 1 and 2, respectively. It is a 
non-split-type photoelectric conversion device in a 
position to continuously detect the light point. The 
practical optical displacement sensor generally uses 
the positive-intrinsic-negative (PIN) semiconductor 
structure, as shown in Fig. 1. Its surface is P layer on 

the light-sensitive side with the output electrode on 
each side, the middle is I layer, and the bottom layer 
is highly doped N layer, to reverse the bias voltage. 
When the incident light reaches a point of the 
photosensitive surface of the optical displacement 
sensor, photo-generated carriers are excited after the 
photon absorption by the semiconductor. Under 
transverse electric fields, carriers flow to both ends 
of the output electrode, forming the output current I1 
and I2, and the ratio of I1 to I2 will change with the 
movement of the light source position. The location 
of points of light could be determined according to 
the current signal proportion collected on electrodes. 
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Fig. 1 Structure of the photoelectric displacement sensor. 

 
Fig. 2 Equivalent circuit. 
Suppose that light is at point A of the 

photosensitive layer on the optical displacement 
sensor, and the distance from the center is XA. Let P 
layer resistance uniform. The equivalent resistances 
from point A to the both sides of the optical 
displacement sensor are R1 and R2, the load 
resistance is RL, and R1 and R2 are far greater than RL. 
The distance between the poles is 2L, the currents 
flowing through the poles are I1 and I2, and the total 
photocurrent is I0. According to the Lucovsky 
equation of the horizontal photoelectric effect, there 
is 
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0 1 2I I I= +              (1) 
where        1 0[( ) ] / (2 )AI L X I L= −  
and          2 0[( ) ] / (2 )AI L X I L= + . 
Therefore, it yields 

2 1 2 1( ) / ( )AX I I L I I= − + .       (2) 
If the currents I1 and I2 on the load resistance are 
measured, XA can be calculated. 

When the photoelectric displacement sensor is 
adopted in the displacement measurement, the 
output voltage signal goes through the transmitter, 
and the output can reflect the size of the 
displacement. Through the A/D, digital signals of 
the displacement can be obtained. Because existing 
serious non-linearity between the output voltage  
and the measured displacement, it can be expressed 
as 

2 3

0 1 2 3
max maxmax

( )
U UUy f x a a a a

U UU
   

= = + + +   
   

 

(3) 
where y is the measured weight; U is the output 
voltage of the optical displacement sensor; Umax is 
the maximum output voltage of the optical 
displacement sensor; a0, a1, a2, and a3 are constant 
coefficients for the non-linear calibration. To 
eliminate the nonlinear error of the optical 
displacement sensor, the output y of the optical 
displacement sensor could be sent to a compensator 
whose characteristic function is z = F(y), where   
F(y) = f–1(y), and then the nonlinearity can be 
eliminated effectively. Obviously, F(y) is a nonlinear 
function, and the output value z after compensation 
is the same as measured x, thus the optical 
displacement sensor has ideal characteristics. 

2.2 Linearity 

One of the best characteristics of a transducer is 
considered to be linearity, that is, the output is 
linearly proportional to the input. The computation 
of linearity is done with reference to a straight line 
showing the relationship between the output and 
input. This straight line is drawn by using the 
method of least squares from the given calibration 

data. This straight line is sometimes called an 
idealized straight line expressing the input-output 
relationship. The linearity is simply a measure of the 
maximum deviation of any of the calibration points 
from this straight line. 
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Fig. 3 Actual calibration curve. 
Figure 3 shows the actual calibration curve i.e., a 

relationship between the input and output and a 
straight line drawn from the origin using the method 
of least squares. 

Percentageofnonlinearity =
Maxdeviation from the idealized straight line 100.

Full scale deviation
×

   

(4) 
Equation (4) expresses the nonlinearity as a 

percentage of full scale reading. It is desirable to 
keep the nonlinearity as small as possible as it would 
in that case result in small errors. In this research 
work, we have taken the performance of the optical 
displacement sensor. The experimental data obtained 
by conducting experiments on the sensor are given 
in Table 1. The output response curves of the sensor 
are shown in Fig. 4. It is clear that the output 
response of the pressure sensor shows the presence 
of nonlinearity. 

Table 1 Experimental observations of the optical 
displacement sensor. 

Displacement (mm) Measured voltage (V) 

0.1 2.501 

0.2 2.511 

0.3 2.48 

0.4 2.482 

0.5 2.479 

0.6 2.479 

0.7 2.463 



Murugan SETHURAMALINGAM et al.: Enhancing the Linearity Characteristics of Photoelectric Displacement Sensor Based on 
Extreme Learning Machine Method 

 

27 

Displacement (mm) Measured voltage (V) 

0.8 2.464 

0.9 1.873 

1 1.567 

1.1 1.26 

1.2 1.278 

1.3 1.131 

1.4 0.987 

1.5 0.682 

1.6 –0.322 

1.7 –0.634 

1.8 –0.922 

1.9 –1.211 

2 –1.125 

2.1 –1.831 

2.2 –2.184 

2.3 –2.454 

2.4 –2.455 

2.5 –2.467 

2.6 –2.474 

2.7 –2.481 

2.8 –2.499 

2.9 –2.533 
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Fig. 4 Input-output characteristics of the optical 

displacement sensor. 
The measured voltage and linear voltage are 

differentiated in the above figure. It has been 
observed from the above graph (Fig. 4), in which the 
relation between the input displacement and voltage 
output of the optical displacement sensor is 
nonlinear. The following algorithm is used to 
compensate the nonlinearity of the sensor in this 
work. 

3. Extreme learning machine method 

The extreme learning machine method proposed 
by Huang et al. [16, 17] uses the single layer feed 
forward neural network (SLFN) architecture [18]. It 
randomly chooses the input weights and analytically 
determines the output weights of the SLFN. It has 
much better generalization performance with much 
faster learning speed. It requires less human 
interventions and can run thousands times faster 
than those conventional methods. It automatically 
determines all the network parameters analytically, 
which avoids trivial human intervention and makes 
it efficient in on-line and real-time applications. The 
extreme learning machine method has several 
advantages: the ease of use, faster learning speed, 
higher generalization performance, suitable for 
many nonlinear activation function and kernel 
functions. 

3.1 Single hidden layer feed-forward neural 
network 

The SLFN function with L hidden nodes [19], 
[20] can be represented as a mathematical 
description of the SLFN incorporating both additive 
and radial basis function (RBF) hidden nodes in a 
unified way is given as follows: 

1( ) ( , , ),   ,  L n n
L i i i i if x G a b x x R a Rβ== ∈ ∈∑   (5) 

where ai and bi are the learning parameters of hidden 
nodes, and iβ  is the weight connecting the ith 
hidden node to the output node. ( , , )i iG a b x  is the 
output of the ith hidden node with respect to the 
input x. For the additive hidden node with the 
activation function ( ) :g x R R→  (e.g. sigmoid and 
threshold), ( , , )i iG a b x  is given by 

( , , ) ( , ),  i i i i iG a b x g a x b b R= + ∈       (6) 

where ai is the weight vector connecting the input 
layer to the ith hidden node, and bi is the bias of the 
ith hidden node. ( ,ia x ) denotes the inner product of 
vector ai and x in Rn. 

For N arbitrary distinct samples, ( , ) n
i ix t R∈ ×  
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mR . Here, xi is an n×1 input vector, and ti is an m×1 
target vector. If an SLFN with L hidden nodes can 
approximate these N samples with zero error, then it 
implies that there exists βi, ai, and bi such that 

1( ) ( , , ).    1,2, ,L
L j i i i i jf x G a b x j Nβ−= =∑     (7) 

The above equation can be written as 
H Tβ =  

where 

1 1 1 1

1 1

( , , ) ( , , )
( , , )

( , , ) ( , , )
L L

N L L N

G a b x G a b x
H a b x

G a b x G a b x
N L

 
=  
 

×



  

with 1 1 1, , ;  , , ;  , , ,L L Na a a b b b x x x= = =     

1
T

T
L

L m
β

β

β

 
 = × 
  

  and 
1
T

T
L

T
T N m

T

 
 = × 
  

 .   (8) 

H is the hidden layer output matrix of the SLFN 
with ith column of H being the ith hidden node’s 
output with respect to inputs 1 2, , , Nx x x . 

From the observed readings of the optical 
displacement sensor shown in Table 1, the 
simulation study has been carried out, and the 
following results have been obtained. 

The results obtained by ELM based nonlinearity 
compensation of the optical displacement sensor are 
listed in Table 2. Three different activation functions 
namely sine, sigmoid, and radial bases are used here. 
The training time, testing time, and root mean 
square error (RMSE) values are tabulated. Different 
numbers of hidden nodes are assigned for the ELM 
algorithm. 100 trials have been conducted for the 
algorithm, and the average results are shown in 
Table 2. It can be seen from Table 2 that the ELM 
learning algorithm spends 0-second CPU time 
obtaining the testing RMSE of 0.0033 with the sine 
activation function, 0.0156-second CPU time 
obtaining the RMSE value of 0.0030 with the 
sigmoid activation function, and 0.0780-second 
CPU time obtaining the RMSE value of 0.0011. The 
new ELM runs 170 times faster than the 
conventional BP algorithms. 

Table 2 Results of ELM based nonlinearity compensation of 
the optical displacement sensor. 

Activation 
function 

No. of 
generations 

No. of 
hidden 
nodes 

Training time 
(sec) 

Testing 
time (s) RMSE 

sine 100 

1 0.0156 0 0.0415 

2 0 0 0.0333 

3 0 0 0.0219 

4 0 0 0.0057 

5 0 0 0.0053 

10 0.0156 0 0.0044 

15 0 0 0.0042 

20 0.0312 0.0156 0.0033 

25 0 0 0.0033 

30 0 0 0.0033 

50 0 0 0.0033 

sigmoid 100 

1 0 0 0.6315 

2 0.0156 0.0156 0.0298 

3 0 0 0.0292 

4 0.0156 0.0156 0.0056 

5 0 0 0.0053 

10 0 0 0.0044 

15 0 0 0.0032 

20 0.0156 0.0156 0.0031 

25 0.0156 0 0.0030 

radial basis 100 

2 0.0780 0.0156 0.0420 

3 0.0624 0 0.0051 

4 0.0780 0 0.0050 

5 0.0624 0 0.0050 

10 0.0780 0 0.0044 

15 0.0936 0 0.0012 

20 0.0780 0 0.0011 

4. Results 

A computer simulation was carried out in the 
MATLAB 12 environment using an experimental 
dataset. The experimental data were collected from 
the optical displacement sensor shown in Table 1. 
The observed simulation results with different 
activation functions and hidden nodes before and 
after compensation of nonlinearity are shown in Figs. 

5 – 10. Initially, the numbers of hidden nodes were 
assumed to be 1 and 5 with the sine activation 
function as shown in Figs. 5 and 6. It showed better 
linearity characteristics. Then, the hidden nodes 
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were increased with different activation functions 
namely the sigmoid function as shown in Figs. 7 and 
8, the radial basis function as shown in Fig. 9, and 
the triangular basis function as shown in Fig. 10. It 
was observed that the ELM model yielded the 
lowest training time of zero second to obtain better 
linearity in the overall response. At the same time, it 
yielded the lowest RMSE value of 0.0011 with the 
radial basis activation function. From the output 
response graphs, the presence of nonlinearity in the 
sensor was compensated by the use of this 
algorithm. 
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Fig. 5 ELM based nonlinearity compensation with the sine 

activation function. 
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Fig. 6 ELM based nonlinearity compensation with the sine 

activation function. 
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Fig. 7 ELM based nonlinearity compensation with the 

sigmoid activation function. 
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Fig. 8 ELM based nonlinearity compensation with the 

sigmoid activation function. 
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Fig. 9 ELM based nonlinearity compensation with the radial 

basis activation function. 
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Fig. 10 ELM based nonlinearity compensation with the 

triangular basis activation function. 

5. Conclusions 

An ELM method was proposed to adaptively 
compensate for the nonlinearity offered by the 
optical displacement sensor. The ELM method based 
nonlinearity compensation produces the less training 
time and better RMSE value when comparing to 
others. Results revealed that the ELM method had 
given the best linearization approximation and 
compensated the nonlinearity with very less training 
time and the lowest MSE among the proposed tools. 
The proposed algorithm offers a less complexity 
structure and is simple in the testing and validation 
procedure. This adaptive algorithm can also be 
applied to any sensor having a nonlinear 
characteristic. This hybrid technique is used to make 
a sensor output as more linear as possible. Further, 
this adaptive algorithm is preferable for real-time 
implementation also. 
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