
PHOTONIC SENSORS / Vol. 4, No. 1, 2014: 53–57 

 

A High Side Modes Suppression Dual-Loop Optoelectronic 
Oscillator With Fabry-Perot Etalon 

Kangzhu YIXI*, Fushen CHEN, Chenglong JIANG, and Siyue ZHANG 

School of Communication and Information Engineering, University of Electronic Science and Technology of China, 
Chengdu, 611731, China  
*Corresponding author: Kangzhu YIXI      E-mail: kangzhu_uestc@163.com  

 

Abstract: A novel dual-loop technique was proposed for single-mode selection in an optoelectronic 
oscillator (OEO). It consisted of a pump laser and a feedback circuit including an intensity modulator, 
a Fabry-Perot (FP) etalon, two optical fiber delay lines, two photodetectors, and an amplifier. By 
inserting the Fabry-Perot etalon, the proposed dual-loop OEO realized a single mode oscillation 
ranging from 0 Hz to 20 GHz. The strong oscillation mode was present at 15 GHz, and the side modes 
suppression ratio (SMSR) exceeded 140 dB. More over the length of the two fiber loops were just   
5 meters and 36 meters. 
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1. Introduction 

The optoelectronic oscillator (OEO) was first 
introduced by Yao and Maleki , which used a long 
fiber to replace the inductance capacitance (LC) 
resonant circuit in order to reduce the phase noise of 
the oscillator [1]. The standard OEO structure 
consists of a pump laser, an intensity modulator, the 
optical fiber, a photodetector, an amplifier, and a 
narrow bandpass filter. For the ability to achieve the 
radio frequency (RF)/microwave signal with high 
frequency purity and low phase noise, the OEO is 
widely used in optical and wireless communications 
[2, 3], radar, and modern instrumentation [4]. It has 
been proved that the length of the fiber determines 
the phase noise of the OEO [1]. In particular, it is an 
effective way to reduce the phase noise by 
increasing the loop length. However, the mode 

spacing is inversely proportional to the loop length 

[5, 6]. As a result, it is hard to find an electrical filter 
which is narrow enough to obtain single mode 
oscillation. The dual-loop OEO with two different 
length delay lines has solved this tradeoff and 
attracted considerable attention [7, 8]. The long loop 
of the structure is used to increase the modes 
suppression and reduce the phase noise of the 
system. The short one has a function of increasing 
the mode spacing which relaxes the requirement of 
the bandwidth of the electrical filter. 

In this work, we designed a novel dual-loop 
OEO which used a Fabry-Perot (FP) etalon to 
replace the electrical filter. The FP etalon had high 
quality, less influenced by the surrounding 
temperature, and it had lower phase noise than the 
electrical filter [9]. The transmission and phase 
characters of the FP etalon were discussed at first. 
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Then, we analyzed the theory and performance of 
this novel dual-loop OEO. The simulation result 
showed that there was only one stable oscillation at 
the frequency of 15 GHz in the range from 0 Hz to 
20 GHz, and the SMSR was over 140 dB. 

2. Principle 

The Fabry-Perot interferometer consists of two 
parallel high-reflectance glass plates. Light reflects 
and refracts multiple times between the two plates 
resulting in the multi-beam interference [10]. In 
general, for an interferometer, the distance between 
the two plates may change, but it is a constant for an 
etalon. The periodic transmission function of the 
etalon only strengthens the power of special 
frequencies which are separated by the free spectral 
range (FSR) of the etalon to oscillate and decreases 
the power of other frequencies. If the cavity of the 
FP etalon is filled with air, it can be given that 
FSR=c/2h, where h is the length of the cavity. Then, 
the transmission coefficient of the FP etalon will be 
expressed as 

1( ) ( )
1 exp( )

i Rt t e
R i

ϕν ν
ϕ

− −
= =

−
       (1) 

where ν is the optical frequency, R is the reflection 
coefficient, and φ(ν)=2πν/FSR is the round trip 
phase shift inside the etalon. ψ(ν) is the additional 
optical phase from the etalon which can be written 
as 

1( ) sin ( )( ) tan
2 1 cos ( )

R
R

ϕ ν ϕ νψ ν
ϕ ν

−= +
−

.      (2) 

Figure 1 shows the transmission and phase 
response characteristics of the FP etalon. In the 
simulation calculations, we assume the reflection 
coefficient R=0.8, the length of the cavity h=   
1.66 mm. It is obvious that the additional optical 
phase is a function of the input light frequency. 

The schematic configuration of the proposed 
OEO is shown in Fig. 2. The light wave from the 
laser diode passes through a Mach-Zehnder 
modulator (MZM) and then is coupled into the FP 
etalon. After that, the light wave is divided into two 

optical fiber delay lines with different lengths of   
5 meters and 36 meters, respectively. The two loop 
signals are detected independently by two 
photodetectors (PD) before the coupler. The output 
signal after the coupler is amplified and fed back to 
the electric port of the modulator. 
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Fig. 1 Transmission and phase response characteristics of the 
FP etalon. 
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Fig. 2 Schematic of the proposed dual-loop OEO based on 

the FP etalon. 
The incident light can be expressed as 

in cos(2 )mE e tπν= , and the output optical power 
from the MZM relates to the applied 
voltage ( )in 0 osccos 2V V f tπ= , where ν is the 
frequency of the laser, and fosc is the oscillation 
frequency. The output of the MZM can be given as 

( )
( )

MZM osc

osc

cos 2 cos(2 )

cos 2

E E f t E t

E f t

π ν πν

π ν
+ −

+
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where ( )1( )sin / 2m BE e J a V Vππ+ = − , 

( )0 0( / 2 )co s / 2m BE e J V V V Vπ ππ π− = , 0 / 2a V Vππ= , 
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BV  is the bias voltage, and Vπ  is the half-wave 
voltage. 

The modulated optical signal will be coupled 
into the FP etalon and detected by the PD. The light 
wave which is exactly in the transmission resonance 
of the FP etalon will be strengthened, and the others 
will be filtered. After the optical signals pass 
through the etalon, for instance, the short loop can  

be expressed as 

( )FP MZM
2

2
E t Eν= ⋅ ⋅          (4) 

In this process, the output of the PD has different 
kind of frequencies, including three direct current 
(DC) components. Besides some of the other 
frequencies are too high to be detected, only two 
components survive at last as below: 

( ){ ( ) }2
RF osc osc osc osc

1 ( ) co s2 ( ) co s2 ( )
2

E t E E R f t f f t fν ρ π ψ ν ψ ν π ψ ν ψ ν+ −= ×  − − +  −  + + −         (5) 

where R is the load impedance of the photodetector, 
and ρ is responsivity of the detector. Equation (5) 

can be simplified as 
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The power of the oscillation signal of the short loop is 
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            (6) 

where t is the total time delay of the loop, and G is 
the gain of the loop which includes the gain GA of 
the amplifier. The self-sustained oscillation needs 
the feedback loop gain greater than one. 

3. Dual-loop simulations 

For the dual-loop OEO, the short loop and long 
loop are just as two different cavities which can 
reduce the numbers of oscillation modes and lower 
the requirements of the electrical filter. We can use 
the same method to calculate the dual-loop RF 
spectrum. The recursive relation can be given as 

1 2
1 2 1( ) ( ) ( )j j

i iV g e g e Vωτ ωτω ω−= +       (7) 

where 1τ  is the short loop delay time, 2τ  is the 
long loop delay time, ω is the radian frequency of 
the oscillation frequency, 1

g  is the complex gain of 
the short loop, and 2g  is the complex gain of the 
long loop. The total output voltage is the  
summation of all circulating fields in the loop.  
When the oscillation is stable, it can be written    
as 
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Then, the corresponding output power is 
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where , j 1,2j j jΦ ωτ ϕ= + = . 
In the dual-loop OEO, different lengths of the 

loops lead to different oscillation modes, and the 
two loops signals must match the oscillation 

conditions at the same time: 
1

2
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k and m are constant, and they are not equal in 
general. Substituting (10) into (9), we can get the 
expression of the power of the oscillation frequency: 

( )
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1 2

/ 2
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g g
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 − 
.        (11) 

The open loop gain of each loop of the dual-loop 
oscillation is allowed less than unity, as long as the 
combined open loop gain of both loops is larger than 
unity. The oscillation starts from noise, it must 
satisfy 

1 2+ 1g g =  1 2= 0.5g g = .     (12) 

Equation (12) gives the threshold of the 
double-loop OEO oscillation. Generally, in the 
self-oscillation system, the round trip phase of the 
oscillator has to be modulo integer 
multiples: osc2 2N f tπ π θ= + , where N is an integer, 
θ is the additional phase shift caused by the devices 
in the loop, and t is the delay time of the loop. 

The oscillation frequency can be expressed as 
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where M and N are two different integers. 
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Fig. 3 Relative power with different frequency spans:     

(a) 20 GHz and (b) 100 MHz. 

In the simulation, we assume that the FSR of the 
FP etalon is 15 GHz, and the reflectance R is 0.8. 
The wavelength of the incident light is 1550 nm, and 
the two fiber delay lines are 5 meters and 36 meters 
long. From Fig. 3(a), the proposed dual-loop OEO 
demonstrates to be a single mode oscillation 
between 0 Hz and 20 GHz. The FP etalon can totally 
take place of the electrical filter in the OEO which 
agrees with the theory. The strong oscillation mode 
is present at 15 GHz, which is determined by the 
FSR of the proposed FP etalon in this structure. 
From Fig. 3(b), we can see the SMSR of the 
proposed OEO is over 140 dB. 

4. Conclusions 

A dual-loop OEO based on the FP etalon has 
been proposed and analyzed. The FP etalon can 
totally take place of the electrical filter in the OEO 
to achieve the single mode oscillation. The 
oscillation frequency was 15 GHz determined by the 
FSR of the proposed FP etalon. By inserting the FP 
etalon, the length of the OEO became just tens of 
meters which was much less than that of the 
traditional dual-loop OEO. And this novel structure 
can effectively reduce the SMSR. Its SMSR was 50 

dB lower than the single loop OEO with the FP 
etalon. 
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