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Abstract: The success of any perimeter intrusion detection system depends on three important 
performance parameters: the probability of detection (POD), the nuisance alarm rate (NAR), and the 
false alarm rate (FAR). The most fundamental parameter, POD, is normally related to a number of 
factors such as the event of interest, the sensitivity of the sensor, the installation quality of the system, 
and the reliability of the sensing equipment. The suppression of nuisance alarms without degrading 
sensitivity in fiber optic intrusion detection systems is key to maintaining acceptable performance. 
Signal processing algorithms that maintain the POD and eliminate nuisance alarms are crucial for 
achieving this. In this paper, a robust event classification system using supervised neural networks 
together with a level crossings (LCs) based feature extraction algorithm is presented for the detection 
and recognition of intrusion and non-intrusion events in a fence-based fiber-optic intrusion detection 
system. A level crossings algorithm is also used with a dynamic threshold to suppress torrential 
rain-induced nuisance alarms in a fence system. Results show that rain-induced nuisance alarms can 
be suppressed for rainfall rates in excess of 100 mm/hr with the simultaneous detection of intrusion 
events. The use of a level crossing based detection and novel classification algorithm is also 
presented for a buried pipeline fiber optic intrusion detection system for the suppression of nuisance 
events and discrimination of intrusion events. The sensor employed for both types of systems is a 
distributed bidirectional fiber-optic Mach-Zehnder (MZ) interferometer. 
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1. Introduction 

Distributed fiber-optic sensors have been used in 

many commercial and defense applications. These 

sensors have been used to protect assets such as 

airports, commercial and defense infrastructure, and 

oil and pipeline systems. A number of underlying 

sensing technologies can be implemented when 

designing distributed fiber-optic sensors which 

include Mach-Zehnder (MZ) interferometers [1, 2], 

Michelson interferometers [1], Fiber-Bragg grating 

arrays [1], Sagnac loops [1], and coherent optical 

time domain reflectometry (C-OTDR) [3, 4]. 

High performance distributed fiber-optic sensors 

have been applied to both outdoor and buried 

intrusion detection systems in recent years. The 

advantages of using fiber optic sensors in intrusion 

detection systems over conventional technologies 

are well recognized and include their immunity to 

electromagnetic interference, high sensitivity, no 

power required in the field, intrinsic safety in 

volatile environments, and high reliability and cost 

effectiveness over large distances. Their 

implementation in noisy or hostile environments 



                                                                                             Photonic Sensors 

 

  226 

presents some interesting challenges which need to 

be overcome in order to achieve acceptable 

performance. In all outdoor perimeter intrusion 

detection systems, there exists a performance 

trade-off between the probability of detection and 

nuisance alarm rate [5]. These systems are 

susceptible to a wide range of nuisance alarms from 

both environmental and man-made sources which 

can include wind, torrential rain, storms, and nearby 

traffic crossings. 

A number of sensor related signal processing 

algorithms have been presented in the literature for 

suppressing nuisance alarms. Jiang et al. [6] 

proposed a classification method for an MZ 

interferometric sensor using a wavelet packet 

transform for denoising and feature extraction and a 

neural network as a classifier. This method however 

is not suitable for eliminating nuisance alarms due to 

torrential rain as the signal amplitude of the sensor 

would be saturated in the time domain. Vries [7] 

proposed an acoustic based perimeter intrusion 

classification system that deployed a neural network 

with frequency domain features to detect different 

types of intrusion events such as climbing, cutting 

and jumping over the fence. The system however 

suffered from performance degradation when the 

quality of the sound (SNR) generated by the 

intruders and the surrounding environment 

decreased. Moreover, the frequency domain features 

were not robust enough to distinguish between 

nuisance and intrusion events. 

Yousefi et al. [8] presented a fence breach 

detection system which could detect activity on the 

fence and discriminate different types of activity. 

The hardware of the system comprised a 3-axis 

accelerometer and a RISC microprocessor. The 

system employed an algorithm that detects activity 

and non-activity on the fence. It also recognized the 

type of breach whether it was due to rattling caused 

by strong wind or a person climbing on the fence. 

This system used signal variation features along 

with the energy of two bandpass filters to separate 

the rattle and climb frequency components. While 

this showed some success, it was not possible to 

discriminate between classes that had a similar 

impact on a fence. Moreover, this algorithm was 

used to classify a small number of classes (limited to 

two classes). Min et al. [9] proposed a real-time 

monitoring system using an audio sensor to detect 

abnormal activity in the vicinity of buried gas pipes. 

They extracted a frequency domain feature using a 

nonlinear scale filter bank method and cepstral mean 

subtraction along with a combination of two 

classifiers using the Gaussian mixture model and 

multi-layer perceptron. Their system achieved a 

92% detection rate to abnormal activity such as 

hammer drilling and digging. The detection rate of 

intrusion was however degraded in the presence of 

background noise such as traffic in the vicinity of 

the sensor. 

In this paper, robust level crossings based signal 

processing algorithms are presented for detecting 

intrusion event and suppressing nuisance alarms in 

both outdoor fence-mounted and buried fiber-optic 

intrusion detection systems without significantly 

affecting sensitivity. The use of a real-time level 

crossing algorithm to suppress rain-induced 

nuisance alarms and discriminate between 

continuous nuisance and non-continuous intrusion 

events in perimeter intrusion detection systems is 

described. The use of a level crossing based 

detection method and novel classification algorithm 

is also presented for the suppression and 

discrimination of nuisance events from intrusion 

events in a buried intrusion detection system. 

Results are shown from real-time fiber optic sensing 

systems. 

2. Fiber optic intrusion detection system 

The intrusion detection system used in this work 

is based on the future fiber technologies microstrain 

locator technology as applied to fence perimeter 

applications [2]. The microstrain locator is based on 

the use of a bidirectional MZ as a distributed sensor 
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to detect and locate an intrusion anywhere along the 

sensing length, LS, as shown in Fig. 1. The two 

sensing fibers and the lead out fiber are typically 

housed in a standard single mode fiber optic cable 

which is mounted on the perimeter fence. In this 

paper, the intrusion detection system will be referred 

to as the locator. 

 
Fig. 1 A basic future fiber technologies microstrain locator 

system using a bi-directional MZ with the input polarization 

control: C1 – C5 are all 50:50 fiber couplers. 

The deployed sensing system consists of an 

industrial computer which houses a highly coherent 

1550-nm laser source which injects continuous wave 

counter-propagating light into the MZ. Two 

detectors, also housed in the sensing controller, 

receive the clockwise (CW) and counter-clockwise 

(CCW) signals from the MZ to analyze the signals. 

The sensing controller also includes polarization 

controllers PCCW and PCCCW to maximize the fringe 

visibility of the MZ and optimize the location 

accuracy by actively compensating for changes in 

fiber birefringence. Detection of an event is based 

on analyzing the interferometric signals, while the 

location of an event along the sensing length LS is 

resolved by measuring the time difference between 

received counter propagating signals. Additionally, 

using the event signals detected by both detectors it 

is possible to apply the appropriate signal processing 

techniques to classify the signals and perform both 

event recognition and event discrimination. 

2.1 System installation 

For fence-mounted perimeter systems, the 

implementation of the sensor as a fence-based 

perimeter system is achieved by housing the two 

sensing fibers as well as the insensitive lead-out 

fiber Llead-out in a single fiber cable which is directly 

attached to the fence fabric as shown in Figs. 2 and 

3 [10]. This can be applied to a range of fence 

fabrics including chain link, weld mesh, and 

palisade styles. 

 Inactive 
lead-in cable

Start sensor
Fibre optic 

sensing cable End sensor

Microstrain/locator 
densing controller Lead-out or 

return fibre
Sensing fibers 

(interferometer)  
Fig. 2 Use of a single fiber cable to implement the 

bidirectional MZ sensing system. 

 

 
Fig. 3 Implementation of the locator sensor on a fence 

perimeter. 

The quality of installation of the sensing cable 

on the fence structure is very important in achieving 

optimum system performance and is very often 

underestimated. The fence construction needs to be 

built according to an acceptable standard and the 

sensing cable attached correctly. Poor fence 

construction and sensor cable attachment contribute 

to excessive nuisance alarms and long-term 

performance degradation. While good installation 

practices do not eliminate all nuisance alarms, it will 

ensure that excessive nuisance signals are not 

generated due to hypersensitivity of the fence to 

environmental noise. It also enables optimal 
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performance of any nuisance mitigation algorithms 

employed. Another factor which impacts the 

probability of detection is the cable configuration 

which is used. Figures 4(a), 4(b), and 4(c) show 

three different examples of possible installation 

configurations of the sensor cable on a chain link 

fence. While the configuration in Fig. 4(a) can 

provide a basic level of security, looping the sensor 

up and down the posts [Fig. 4(b)] will improve the 

detection rate of fence climbing at or near the more 

rigid posts and is a typical configuration used. 

Where higher sensitivity is required, other cable 

configurations may be implemented such as an extra 

loop in the middle of the fence panels [Fig. 4(c)]. 

The exact configuration used will vary and will 

depend on the level of security required, the types of 

intrusion events to be detected, and the skill level of 

the intruder. It is important that the type of the fence 

barrier and cable configuration is chosen to match 

the security requirements of the proposed system. 

 
Fig. 4 Example of different cable configurations on a chain 

link fence. 

In buried systems, the sensor cable is configured 

identical to the fence sensor except the sensing cable 

is typically buried next to an oil or gas pipeline to 

detect third party interference (TPI) activities as 

shown in Fig. 5. Inevitably, it will also be sensitive 

to other non-intrusion events such as those from 

nearby traffic and railway crossings. 

 
Fig. 5 Cross section of a buried fiber optic intrusion 

detection system for detection of third party interference. 

2.2 Performance parameters 

The success of any perimeter intrusion detection 
system depends on three important performance 
parameters: the probability of detection (POD), the 

nuisance alarm rate (NAR), and the false alarm rate 
(FAR). The POD is related to the sensitivity of the 
system and provides an indication of a system’s 

ability to detect an intrusion within the protected 
area. A nuisance alarm is any alarm which is 
generated by an event that is not of interest. A false 

alarm refers to an alarm generated by the system 
electronics and is not related to the sensor or an 
event. False alarms can be minimized through the 

appropriate system design. Nuisance alarms are 
typically generated by environmental conditions 
such as rain, wind, snow, wildlife, and vegetation, as 

well as man-made sources such as traffic crossings, 
industrial noises, and other ambient noise sources. 
While increasing the sensitivity of a system 

increases its POD, it also increases its sensitivity to 
nuisance events. Basic event detection algorithms 
with little event discrimination capability which are 

applied to a wide range of intrusion events can lead 
to increased nuisance alarm rates as well as 
decreased POD. Advanced signal processing 

algorithms that can maintain a high POD and 
eliminate nuisance alarms are therefore crucial in 
perimeter intrusion detection systems. In the 

following sections, the use of event recognition and 
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classification techniques to maintain a high POD 
and minimize alarms caused by nuisance events will 
be presented for each type of the system. 

3. Intrusion detection and nuisance 
suppression in fence systems 

Event classification in perimeter intrusion 

detection systems can be defined as the 

categorization of detected signals into identifiable 

pattern classes through the extraction and analysis of 

unique signal features and attributes. The selection 

of unique features from the detected signals is 

paramount as it ultimately leads to a simplification 

of the classification problem as well as faster 

processing and higher detection rates [11]. The main 

benefits of an accurate and robust event 

classification system include the ability to 

discriminate between nuisance events and intrusion 

events, and more importantly, to suppress nuisance 

alarms without significantly compromising the 

probability of detection. 

A typical event classification system consists of 

a pre-processing stage that extracts unique features 

from the detected event, and a classifier that assigns 

the computed features to a particular class of 

intrusion or nuisance (see Fig. 6). Feature samples of 

nuisance and intrusion events are used to train a 

classifier offline, and when training is complete, the 

system will classify new instances based on what is 

learnt in the training phase. Accurate nuisance and 

intrusion event classification requires both features 

that are highly discriminative with respect to the 

classes of interest and a classifier which can form 

arbitrary boundaries in the feature space. 

 
Signal 

samples 
Signature 
analysis 

Feature 
selection 

Neural network 
training 

Pre-processing stage 

Real-time 
signal input  

Event 
detection 

Feature 
extraction  

Neural network 
classifier 

Real-time classification 
Classification result  

Fig. 6 An event classification system consisting of a 

pre-processing stage and a real-time classification stage. 

3.1 Neural networks based classification 

Accurate event detection and the use of suitably 

discriminative features are critical in any event 

classification application. When training a classifier, 

the classifier creates boundaries in the features space 

between the investigated classes. Inaccurate 

detection of an event can be a common cause of 

errors in automatic classification [12]. 

A real-time event detection and feature 

extraction based on a level crossings (LC) algorithm 

was proposed and implemented [10]. This algorithm 

has been used to form the basis of detecting and 

classifying both intrusion and non-intrusion 

(nuisance) events. This allows for an effective way 

of reducing the nuisance alarm rate without reducing 

the sensitivity of the system. In this work, the 

intrusion events of interest for fence perimeter 

systems are fence-climbing and fence-cutting, while 

the nuisance events which need to be recognized and 

discriminated are throwing a stone at the fence 

(stone-throwing) and dragging a stick along the 

fence (stick-dragging). 

In general, the LC algorithm can be defined by 

the number of crossings, in the positive direction, of 

an input vector through a given threshold and can be 

expressed as [10, 13] 

    
1

0

( ) & ( 1)
N

n

LC x n thresh x n thresh




   ≥  (1) 

where x is a signal of the length N, the parameter 

“thresh” is the level threshold, and the indicator 

function Ψ  is 1 if its argument is true, or 0 

otherwise. The level threshold is always positive and 

just above the system noise. 

Based on the level crossings representation of 

the intrusion signal, a number of configurable 

parameters can be defined to detect events in real 

time [10]: 

1. Trigger level (TL): the level at which the 

intrusion event will be detected. 

2. Zero settle blocks (ZSB): the number of 

blocks with zero values before and after an event to 

determine the start and end of the event. 
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3. Zero level (ZL): the level crossing per block 

below which will be considered as zero. 

4. Maximum duration (MD) of the event: limits 

the duration of a continuous event such as stick 

dragging on the fence. 

Figures 7(a), 7(b), and 8 show examples of a 

climb event, cut event and stick drag event detected 

by the proposed detection algorithm, respectively. 

The TL parameter was set to 5 LCs, the MD was set 

to 46 blocks, and the ZSB was set to 5 blocks. 

Figure 8 shows the termination of the long event 

after it satisfies the MD parameter. Features are 

extracted from these detected events and fed into 

neural networks. 
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(b) 

Fig. 7 Time domain and LC representation of (a) a climb 

event and (b) cut event detected by the proposed algorithm. 
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Fig. 8 Time domain and LC representation of a stick drag 

event detected by the proposed algorithm. 

A time-domain signal contains too much 

irrelevant data to be used directly for classification 

[11]. Additional features are usually required for an 

effective classification. Using the LC algorithm, five 

features have been extracted from the LC 

representation of the detected intrusion signals. 

These features are: 

1. Total level crossings (TLC): the total number 

of level crossings for the duration of the event. 

2. Duration (d): the duration of the detected 

event as a number of blocks (see Fig. 9). 

3. Slope of the falling edge of the LCs: the slope 

of the falling edge of the LC graph as measured 

between the line formed when joining the end point 

of the duration (x1, y1) and the point (x2, y2). In Fig. 9 

which represents a climbing event, a threshold has 

been used to select the point (x2, y2). 

4. The angle (slope) of the rising edge of the LCs, 

 : the angle of the rising slope edge,  , is 

measured between the line formed when joining the 

initial point of the duration and the maximum point 

on the LCs graph, and the x-axis (see Fig. 9). In 

most of the cutting events, the rising edge of the LCs 

forms approximately a right angle (90°) with the 

x-axis, while the climbing events form an acute 

angle (< 90°). This feature is very important for the 

climbing event and cut event classification. 

5. Number of zeros (NZ): the number of zeros 

(NZ) is the number of blocks within the detected 

events which have a value less than the ZL parameter. 
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Fig. 9 Representation of the extracted features from the LCs 

graph of a climbing event. 

A three-layer supervised artificial neural network 

(ANN) with a back-propagation learning algorithm 

was used to classify the detected events. The five 

extracted LC based features were used as inputs to 

the ANN. The advantage of using an ANN is that it 

can be trained and can implement fast decision 

algorithms making them suitable for real-time 

applications [14, 15]. Additionally, event 

classification by the ANN does not require any 

statistical assumptions regarding the data and can 

learn to recognize the characteristic features of the 

data to classify the event efficiently and accurately. 

The LCs and neural network based classification 

system described was implemented in a chain link 

fence-mounted fiber-optic intrusion detection system 

based on the locator technology with a sensing 

length of 600 m. The extracted LC based features 

were normalized and used as inputs to the 

feed-forward neural networks with an input layer 

consisting of 5 neurons, a hidden layer with 3 

neurons, and an output layer consisting of 2 neurons. 

Performance of the classification system was 

measured against fence-climb, fence-cut, stick 

dragging, and stone-throwing classes. The ANN was 

trained with training data representing these classes, 

and the weights were stored for real-time testing. 

Fifteen training events were used per class. 

The total number of tested events for each class 

was 26. Table 1 shows the impact of the proposed 

features on the performance of the classification 

system. From the table, it can be observed that while 

using four of the extracted LC features produces an 

optimum result for fence cutting and stone throwing 

events, by using all five features, it is possible to 

achieve a 100% correct classification rate for all 

four events. The classification accuracy of the 

system is given by 

classification accuracy 100 %
t

n
       (2) 

where t is the number of events correctly classified, 

and n is the total number of tested events per class. 

Table 1 Impact of the proposed features on the performance 

of the classification system. 

Performance in 

Features Climb Cut Stick drag Stone throwing

TLC, d, slope, ө 87 % 100 % 95 % 100 % 

TLC, d, slope, ө, NZ 100 % 100 % 100 % 100 % 

 

3.2 Mitigation of continuous-nuisance alarm 
based on LCs 

Suppression of continuous nuisance alarms such 

as those induced by torrential rain is one of the most 

challenging tasks for outdoor perimeter intrusion 

detection systems (PIDS). A real-time level 

crossings algorithm to mitigate rain-induced 

nuisance alarms in fence based fiber-optic intrusion 

detection systems was proposed and implemented 

[13]. This algorithm is computationally 

non-intensive, and it can be used to eliminate 

rain-induced nuisance alarms for torrential rainfall 

rates up to and in excess of 100 mm/hr. The LCs 

based algorithm is also used to discriminate between 

continuous nuisances such as rain and 

non-continuous intrusion events, which allows for 

simultaneous detection of intrusion events. The 

algorithm also employs a dynamic event threshold to 

be able to automatically adjust to varying rainfall 

rates. 

The LC algorithm was integrated into the locator 

sensing controller which was installed in numerous 

sites worldwide that experienced torrential rainfall. 
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These sites experienced rainfall rates up to and in 

excess of 100 mm/hour (> 4 inches/hr). Results from 

these sites have demonstrated the elimination of 

rain-induced nuisance alarms with the simultaneous 

detection of intrusion events. The LC-based 

algorithm is used to discriminate between 

continuous nuisances such as rain and 

non-continuous intrusion events. Due to its 

continuous nature, torrential rainfall will generate a 

fairly consistent level-crossing rate per time block 

period. This feature can be used to suppress rainfall 

induced alarms from the system. By monitoring for 

any changes in the level crossing rate, 

non-continuous intrusion events such as fence 

climbing or cutting can be detected during the 

rainfall period. Using a dynamic intrusion event 

threshold has also proven to be effective in 

automatically adjusting to variable rainfall rates. 

Figure 10 shows an example of the detected 

torrential rain signal on a 3.2-km long chain link 

fence perimeter. The LC representation (see inset 

nuisance level graph in Fig. 10) can be used to detect 

intrusions whose signals are essentially buried inside 

the time domain representation of the rain signal. 

The LC algorithm can also be adapted to deal with 

other continuous or semi-continuous nuisances such 

as nearby traffic noise in a similar way. 

 
Fig. 10 Real-time elimination of rain-induced nuisance 

alarms with simultaneous intrusion detection on a 3.2-km chain 

link fence (the inset graph is the LC representation of nuisance 

and intrusion events). 

4. Intrusion detection and nuisance 
suppression in buried systems 

Buried-fiber-optic sensors, such as those 

implemented for protecting buried oil and gas 
pipelines, are designed to detect physical 
disturbances generated by TPI which includes 

accidental or deliberate digging or excavation 
activities. These systems are also susceptible to a 
range of ground based nuisance events such as road 

and railway traffic and other nearby construction 
activities. These events can reduce an intrusion 
detection system’s effectiveness with an unacceptably 

high rate of nuisance alarms. In this section, some 
novel signal processing techniques are outlined to 
mitigate the effect of these nuisance events on 

buried intrusion detection systems by suppressing 
particular nuisance induced alarms without affecting 
alarms generated by intrusion events of interest. 

Figures 11(a) and 11(b) show detected signal 
examples of typical intrusion events that should be 
detected, while Figs. 12(a) and 12(b) show typical 

signals of nuisance alarms due to traffic that should 
be rejected on a 2.7-km buried gas pipeline. 
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(b) 

Fig. 11 Time domain representation of intrusion events:    

(a) the intrusion signal caused by digging with a pick-axe above 

a 2.7-km buried gas pipeline protected by a locator system and 

(b) intrusion signal caused by digging with a back-hoe above a 

2.7-km buried gas pipeline protected by a locator system. 
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(b) 

Fig. 12 Time domain representation of nuisance events:    

(a) the nuisance signal from traffic on a nearby road for a 

2.7-km gas pipeline intrusion detection system and (b) strong 

periodic nuisance signal from a railway crossing for a 2.7-km 

gas pipeline intrusion detection system (the railway runs 

perpendicularly over the pipeline). 

4.1 Pre-processing and feature extraction 

The novel nuisance alarm suppression algorithm 

described herein consists of event detection, signal 

feature extraction from the time domain 

representation of the signals, and a simple decision 

tree classifier. Event detection is based on the 

previously mentioned LCs algorithm. Figure 13 

shows the pre-processing and feature extraction 

stages of the nuisance suppression algorithm. 

A number of extracted features have been 

identified as shown in Fig. 13. Three of these 

features were used for nuisance alarm suppression. 

These features are described below: 

1. Continuity of the signal: this is a measure of 

how continuous the signal is over its duration. It is 

determined by using the maximum amplitude versus 

segment information, Vm(k) where k =1, 2, ..., K, and 

K is the total number of segments within the detected 

event (see the pre-processing stage in Fig. 13). The 

continuity, C , can be given by 
G

C
K

                 (3) 

where G is the number of segments in the vector 

Vm(k) with the value more than thresh2 and the 

parameter thresh2 is normally set above the system 

noise of the time domain signal as in the case of LCs. 

The maximum possible continuity is unity. 

2. Maximum amplitude strength (MAS) (count %): 

to evaluate the MAS feature, first the amplitude 

strength of each segment (ASES) needs to be 

measured. The amplitude strength relates to how 

much of a signal is above a given amplitude 

threshold thresh1 and is defined by (4). The 

parameter thresh1 is normally application dependent. 

After evaluating the amplitude strength using (4), 

the MAS feature is calculated as the maximum value 

calculated by (4) over the whole duration of the 

detected event (see Fig. 13). It is effectively a 

measure of what percentage of a signal is above a 

given threshold value and is given as a percentage 

value. This feature is important for distinguishing 

digging events from traffic nuisances that have 

similar continuity values. The intrusion signals will 

typically have higher maximum amplitude strengths: 

total

100
S

ASES
S

                (4) 

where S is the number of samples in the specified 

segment (>thresh1), and Stotal is the total number of 

samples in the specified segment. 

3. Maximum deviation (MD, σm): the first step 

towards the evaluation of the MD is by the 

evaluation of the maximum amplitude in each 

segment, Vm(k), as is the case for the continuity 

feature (see Fig. 13). The MD is then calculated by 

subtracting the mean of the vector Vm(k) from the 

maximum value in the vector Vm(k): 

     max meanm m mV k V k          (5) 

where Vm(k) is a vector containing the maximum 

amplitude in each segment and k =1, 2, ..., K. This 

feature is important for discriminating between 
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digging intrusion events and adjacent nuisance 

events of comparably long continuities, even if they 

have roughly similar amplitudes. In this situation, 

the digging events will have a higher maximum 

deviation owing to their higher variation in segment 

maxima. This can be seen by comparing the two 

signals represented by Figs. 11(b) (intrusion) and 

12(b) (adjacent nuisance) where there are more 

periods of inactivity in the digging signal (lower in 

the amplitude) when compared with the continuous 

nuisance signal. This translates into a higher 

maximum deviation for the digging signal. 

 Detected event 

Evaluate total LCsSignal rectification/10 equal segments 

Measure max peak in each segment Measure% of the samples in each
segment above specified  

threshold 

Maximum deviation Continuity 

Extracted features 

Ratio of the amplitude 
strength 

Maximum amplitude
strength 

 

Fig. 13 New alarming system feature extraction method. 

4.2 Classification using simple decision tree 

By using the features described in the previous 

section in the right combination, it is possible to 

suppress a large number of nuisance alarms in 

buried intrusion detection systems. This can be done 

by implementing a decision tree. Decision trees 

represent a series of IF…THEN type rules which are 

linked together and can be used to classify or predict 

events based upon the values of a select number of 

features. For this work, we use a simple decision 

tree to discriminate between intrusion and nuisance 

events. Neural networks can also be used with these 

features to discriminate between true alarms and 

nuisance events. Intrusion events will generate 

alarms while nuisance events will be ignored. 

Real captured intrusion and nuisance event 

signals from two sites are used to test the proposed 

algorithm. Table 2 shows the values of the features 

for the intrusion and nuisance events in Figs. 11 and 

12, respectively. The real intrusion and nuisance 

data are used to derive appropriate threshold values, 

thresh_1, thresh_2, thresh_3, and thresh_4 for the 

decision tree as shown in Fig. 14. In this example, 

thresh_1 = [0, 0.8) and [0.8, 1], thresh_2 = [0, 10) 

and [10, 100], thresh_3 = [0, 15) and [15, 100] and 

thresh_4 = [0, 0.9) and [0.9, 5]. Using these values 

the algorithm classifies digging events accurately 

(Figs. 11(a) and 11(b)) while traffic nuisances [such 

as those in Figs. 12(a) and 12(b)] are rejected. 

 

Continuity
<thresh_1

(0.8)

>thresh_1 
(0.8) 

Maximum 
amplitude strength

Maximum amplitude
strength 

(Node 1) (Node 2)

No alarm Alarm

Intrusion-1

Nuisance-1 
No alarm

(Node 3) 

(Node 4)

(Node 5)

Alarm

>thresh_4
(0.9)

>thresh_3
(15)

<thresh_3 
(15) 

No alarm 

Nuisance-2 

Event detection
(LCs)  

<thresh_2

(10)

>thresh_2
(10)

Maximum deviation

<thresh_4
(0.9) 

 
Fig. 14 Practical example of the decision tree. 

Table 2 Feature values of intrusion and nuisance events. 

Features Values 

Event Type 
Continuity 

(C) 
MAS 

MD 

(σm)

Node 

decision

Intrusion [hand and assisted 

digging, Fig. 11(b)] 
0.4 34.86 3.595 Node-2

Vehicular traffic [adjacent 

traffic, Fig. 12(a)] 
1 1.86 0.76 Node-3

Road intersection and train 

crossings [Fig. 12(b)] 
1 18.99 0.4712 Node-4
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5. Conclusions 

The performance criteria of real-time fiber optic 

perimeter intrusion detection systems have been 

discussed. Performance results have shown that the 

quality of sensor installation and fence construction 

needs to be controlled to reduce excessive nuisance 

signals. More importantly, an effective robust event 

classification system also needs to be implemented 

to minimize nuisance alarms while maintaining a 

high probability of detection to intrusion events. 

A number of signal processing techniques for 

intrusion event detection and classification, and 

nuisance alarm suppression in a fiber-optic intrusion 

detection system have been proposed and presented. 

In fence-based systems, intrusion and non-intrusion 

events such as fence climbing, fence cutting, 

stick-dragging, and stone-throwing have been 

successfully classified in real time and demonstrated 

on a standard chain link fence using robust level 

crossings based features and artificial neural 

networks. Additionally, the use of a level crossings 

based algorithm with a dynamic threshold for 

suppressing torrential rain-induced nuisance alarms 

in fence-based fiber-optic perimeter intrusion 

detection systems has demonstrated its effectiveness 

against torrential rainfall rates in excess of 100 mm/hr. 

The simultaneous detection of intrusion events 

during rainfall periods has also been demonstrated. 

In buried fiber-optic pipeline intrusion detection 

systems, a level crossings based detection and novel 

classification algorithm have also been implemented. 

The use of a decision tree classification algorithm 

has demonstrated the effective classification of both 

traffic induced nuisance events and digging and 

excavation intrusion events. 

Future work is focusing on increasing the library 

of signal features to achieve the classification of 

more intrusion and nuisance events in a wider range 

of operating environments. 
 

Open Access: This article is distributed under the terms 
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