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In this paper, we present the experiment and the theory scheme of light-atom interaction in atomic magnetom-
eters by using a hybrid Poincaré beam (HPB) to solve an annoying problem, named “dead zone.” This kind of
magnetometer can be sensitive to arbitrary directions of external magnetic fields. The HPB has a complex polari-
zation distribution, consisting of a vector radially polarized beam and a scalar circularly polarized beam in our
experiment. These two kinds of beams have different directions of dead zones of external magnetic fields; thereby,
the atomic magnetometer with an HPB can avoid the non-signal area when the direction of the external magnetic
field is in the plane perpendicular to the light polarization plane. Furthermore, the optical magnetic resonance
(OMR) signal using an HPB still has no dead zones even when the direction of the external magnetic field is in
the plane parallel to the polarization plane in our scheme. Our work has the potential to simplify and optimize
dead-zone-free atomic magnetometers. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.519409

1. INTRODUCTION

Optically pumped magnetometers (OPMs) have sensitivity up
to sub-femto-tesla by measuring the Zeeman splitting caused
by the external static magnetic fields and even can be compa-
rable with superconducting quantum interference devices
(SQUIDs) [1]. With the developments in sensitivity [2–5]
and stability [6,7], OPMs have been widely used in fundamen-
tal physics [8,9], biomagnetism [10,11], geomagnetism [12],
and magnetic fields measurement in space [13], like detecting
dark matters [14].

“Dead zone” is an inherent flaw of optically pumped mag-
netometers, shown as the vanished sensitivity in certain direc-
tions of the external magnetic fields [15]. These annoying dead
zones can be effectively solved by adding the signals of two
beams with different linear polarization directions [16], com-
bining unpolarized light and spatially varying microwave fields
based on the symmetry of atomic transition hyperfine structure
[17], utilizing both resonance signals at the Larmor frequency
and its second harmonics [18], adjusting the direction of the
linear polarization to be perpendicular to the external magnetic
field in Bell-Bloom magnetometers [19], synchronously main-
taining the linear polarization and the RF field to be
perpendicular to the external magnetic field in RF magnetom-
eters [20], using a Herriott cavity [21], and modulating the
ellipticity of the light polarization [22,23]. Most of the above
solutions are based on modulating the types or the directions of
the polarization of the light beam, which arouses interest in
whether dead-zone-free measurement can be achieved by using

a single hybrid Poincaré beam (HPB) as a pump-probe beam
without any modulations.

The HPB is one vector polarized beam (VPB) with a com-
plex polarization structure in the transverse direction on a hy-
brid-order Poincaré sphere [24,25]. The hybrid-order Poincaré
sphere can describe an arbitrary polarization of beam with a
vortex phase, except the North Pole [26,27]. The interaction
of the vector polarization beams and atoms is an emerging area
of research [28–30] since the VPBs provide the additional de-
grees of manipulation freedom of the beam and the atomic me-
dia [31]. The interactions can be used in the measurement of
the strength [32,33] and the direction [34,35] of the magnetic
fields. Furthermore, the interaction can be applied in mapping
the polarization distribution [36], extraction of the spatial op-
tical information [37], and optical tweezers [38,39].

Recently, radially or azimuthally polarized beams, as two
types of the VPBs, have been introduced in the magnetic mea-
surement in magnetometers by our group [40]. Radially or azi-
muthally polarized beams have diverse directions of the
magnetic fields in the dead zones compared with linearly or
circularly polarized beams. On the condition of this kind of
beams, some unusual features appear but dead zones still exist,
which means more complex VPBs in dead-zone-free measure-
ment are promising.

In this paper, we extend our previous work based on radially
or azimuthally polarized beams and demonstrate a single-beam
magnetometer scheme with an HPB in varying directions of
the external magnetic fields. First, several optical magnetic
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resonance (OMR) signals based on HPBs with different polari-
zation distributions in varying external magnetic fields
perpendicular to the polarization plane are demonstrated exper-
imentally, which explores that sensitivity in arbitrary directions
of external magnetic fields is possible. We also derive the ana-
lytical expressions to describe the results, and the experimental
results fit well with the theoretical results. The OMR signals
under the situation in which external magnetic fields are paral-
lel to the polarization plane of light are also detected to prove
that the all-space dead-zone-free measurement can be achieved.
We think our work brings the vector polarized beams into
dead-zone-free measurement and has the potential to simplify
and optimize all-direction atomic magnetometers.

2. THEORETICAL MODEL

The polarization of HPBs is described by extending the Jones
vectors and the Poincaré sphere to hybrid order orbital angular
momentum versions [26,27]. We use a fundamental-mode
Gaussian beam and a Laguerre-Gaussian beam as the two ei-
genstates of HPBs, and the Jones vector can be written as [24]

EHPB � �−i sin γ − sin�2ψ − γ��LG0,0�êx � iêy�
� �cos γ − i cos�2ψ − γ��LG0,2�êx − iêy�, (1)

where LG0,l means the l th-order Laguerre-Gaussian function. γ
and ψ are two tunable parameters. Based on this, two new
parameters need to be defined to characterize the proportions
of 0th-order Laguerre-Gaussian beams (0-LGB) and 2nd-order
Laguerre-Gaussian beams (2-LGB):

N � −i sin γ − sin�2ψ − γ�,
S � cos γ − i cos�2ψ − γ�: (2)

To combine this expression with the polarization distributions
on the hybrid Poincaré sphere, we define

θ � 2 arctan

� jSj
jN j

�
, Φ � arg�S� − arg�N �: (3)

Here, θ and Φ correspond to the coordinate on the hybrid
Poincaré sphere, as shown in Fig. 1. Also, Fig. 1 shows the
polarization distributions of HPBs at different positions of
the hybrid Poincaré sphere, �θ,Φ� � �0°, 0°�, �64°, 0°�,
�90°, 0°�, �102°, 0°�, �110°, 0°�, and �180°, 0°� in order A to
F, and A’, C’, and F’ are the phase profiles of A, C, and F,
respectively. When θ � 0°, the beam shows a scalar circularly
polarized beam type, as shown in Fig. 1 panel A.When θ � 90°,
it means that the proportions of the 0-LGB and the 2-LGB are
the same, as shown in Fig. 1 panel C; the beam has equal
components of the center left-handed circular polarization
and the outer ring right-handed circular polarization, which
presents a vector radially polarized distribution. By controlling
the value of γ and ψ , the beams with arbitrary polarization dis-
tributions on the hybrid Poincaré sphere can be prepared.

As known, elliptically polarized beams are the combinations
of linearly polarized beams and circularly polarized beams.
Linearly polarized beams and circularly polarized beams are
special cases in which the polarization ellipticity is equal to
0 and 1, respectively. We define a similar equivalent ellipticity
Rcy in HPBs to describe the proportions of the radially polar-
ized beam component (Fig. 1 panel C) and the circularly po-
larized beam component (Fig. 1 panel A). When the equivalent
ellipticity changes from 0 to 1, the beam changes from a vector
radially polarized beam to a scalar circularly polarized beam.
Based on Eqs. (1) and (2), considering the relationship between
the polarization and the proportion of the 0- or 2-LGB, the
equivalent ellipticity can be expressed as

Rcy � 1 −
Min�jN j2, jSj2�
Max�jN j2, jSj2� : (4)

Here, Min�jN j2, jSj2� and Max�jN j2, jSj2� represent the
minimum and maximum values between jN j2 and jSj2,
respectively.

Then, we deeply consider how the beams with such polari-
zation distributions interact with atoms. In a thermatomic en-
semble of limited size, the polarization of the beams acting on

Fig. 1. The hybrid Poincaré sphere and the polarization distributions. A–F: (0°, 0°), (64°, 0°), (90°, 0°), (102°, 0°), (110°, 0°), and (180°, 0°) in
order. A’, C’, and F’ are the phase profiles of A, C, and F, respectively.
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the atoms is the result of all polarization synthesis. To describe
the problem more clearly, we define the beam propagation axis
as the Z-axis and the polarization plane as the X-Y plane. First,
we take the situation that the direction of the external magnetic
field is in the plane perpendicular to the polarization plane as an
example. In our previous work, for a vector radially or azimu-
thally polarized beam, the normalized amplitude of the OMR
absorption signal has a magnetic angular dependence, which is
written as hcy�φ� � 1

4 �3 cos2φ − 1�2 [40]; here, φ means the
angle between the beam propagation axis (Z-axis) and the di-
rection of the external magnetic fields (in the X-Z plane). That
work also shows that radially or azimuthally polarized beams
have the same direction as the dead zone, which means the
change of the angle Φ in the Poincaré sphere does not affect
the direction of the dead zone. So only the change of the angle θ
in the Poincaré sphere is considered in our following discussion.
For circularly polarized beams, the normalized amplitude of the
absorption signal with the magnetic angular dependence can be
written as hci�φ� � cos2φ [40]. Now, for the HPBs the nor-
malized amplitude with the magnetic angular dependence
can be given as

hHPB�φ� � �1 − Rcy� · hcy�φ� � Rcy · hci�φ�: (5)

The angle between the beam propagation axis and the di-
rection of the external magnetic field in the dead zone is named
a magic angle. The magic angle of circularly polarized beams is
90°, while that of vector radially polarized beams is
arccos�

ffiffiffiffiffiffiffiffi
1∕3

p
� ≈ 54.7° (and 125.3°). To focus on these two

specific directions, hHPB�90°� and hHPB�54.7°� are discussed
to show the variation of the signal strength with the beam
polarization.

As shown in Fig. 2, when Rcy � 1, which means a magne-
tometer with circularly polarized pumped beam, the dipole mo-
ment of the atomic ensemble at 90° loses its effect, and the
atoms cannot be optically polarized; then the signal of
OMR hHPB�90°� is zero. But at 54.7° the atoms can be optically
polarized, and hHPB�54.7°� is nonzero. Further, when Rcy � 0,
which means a magnetometer with radially polarized pumped
beam, the atomic quadrupole moment at 54.7° loses its effect,
and then hHPB�54.7°� is zero, but hHPB�90°� is nonzero. If
Rcy ≠ 0 and 1, hHPB�54.7°� and hHPB�90°� are both nonzero
because the HPB has the proportions of the radially polarized
beam component and the circularly polarized beam compo-
nent, which have different magic angles. With the increase
of the equivalent ellipticity, the amplitude at 90° decreases
while the amplitude at 54.7° increases all the time. Even more,

if Rcy � 3∕7, the amplitude of two angles can attain the same
value of 0.14. In a word, the magnetometer with HPB has no
dead zone since the dipole moment and quadrupole moment
can compensate each other in some special directions of the
magnetic field.

3. EXPERIMENTAL SETUP

Our experimental setup is shown in Fig. 3, which is the single-
beam magnetometer with an RF field. The laser beam is gen-
erated by a tunable single-mode diode laser (Toptica’s DL pro),
whose wavelength is tuned near the 780.2 nm D2 line of 87Rb
(52S1∕2, F � 2 → 52P3∕2, F 0 � 1). At first, a half-wave plate
(HWP1) and a polarization beam splitter (PBS1) are used to
adjust the intensity of the pump-probe beam. Then, the beam
passes a half-wave plate (HWP2) and a quarter-wave plate
(QWP1) and can be converted to any polarization on the hy-
brid Poincaré sphere. The angles between the optical axis of the
HWP2 and QWP1 and the horizontal direction are γ and ψ ,
respectively, which have been mentioned in Eq. (1). Next, the
beam is sent into the Sagnac interferometer, which is made up
of a PBS (PBS2), a spatial light modulator (SLM), and a mirror
(M). Figure 3(b) shows the phase diagram loading by the SLM.
Finally, the beam passes a quarter-wave plate (QWP2), whose
optical axis is 45° from the horizontal direction. Hereto, HPBs
with different polarization distributions, as Fig. 1 shows, are
generated. To block stray light and sieve the HPB with a ideal
polarization, we set an aperture (A) to limit the diameter of the
spot. The intensity of the beam is about 35 μW. At last, the
HPB passing through the Rb atom cell is detected by a photo-
diode (PD).

The Rb cell, which is paraffin coated with 5 cm in length
and 3.5 cm in diameter, is put in a four-layer μ-metal magnetic
shield to avoid the influence of the environmental magnetic
fields. The experiment is performed at room temperature
(about 20°C). A solenoid coil inside the shield produces a
uniform magnetic field along the beam propagation direction
(Z-axis). Three pairs of Helmholtz coils are used to generate a
5000 nT stable magnetic field in any direction, and a 35 kHz
RF field perpendicular to the external magnetic field is also
prepared.

Fig. 2. The normalized absorption signal amplitude at 90° and
54.7° as a function of the equivalent ellipticity.

Fig. 3. (a) Schematic of the experimental setup. (b) The phase dia-
gram loading by SLM. HWP: half-wave plate; PBS: polarization beam
splitter; QWP: quarter-wave plate; M: mirror; A: aperture; SLM: spa-
tial light modulator; PD: photodiode.
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4. RESULTS AND DISCUSSION

We define the amplitude of the OMR signal as the value of the
peak depth of the absorption line of the transmitted beams.
Next, we will mainly explore the change of the OMR signal
amplitude in the HPB systems as a function of the varying an-
gle φ of the external magnetic fields in the X-Z plane.

In Figs. 4(a) and 4(b), the OMR signal amplitude as a func-
tion of the angle φ of five kinds of beams has been explored
theoretically and experimentally, respectively. The theoretical
result in Fig. 4(a) is calculated based on Eq. (5) with different
θ. The direction of θ determines the value of Rcy, which means
different proportions of the radially polarized beam component
and the circularly polarized beam component. When
Rcy ≠ 0 �θ ≠ 90°� and Rcy ≠ 1 �θ ≠ 0°, 180°�, the HPBs
can achieve dead-zone-free measurement. The five beams have
different polarization distributions as θ equals 0°, 64°, 90°,
102°, and 110°. For comparison, all the results have been nor-
malized. The inset pictures represent the proportion of the in-
tensity distribution of the 0-LGB, the 2-LGB, and the whole
beam in order. The intensity distributions and the line shapes
of the results of the theoretical model and the experiment
match well, except that the beam spot is not a perfectly circular
pattern in the experiment.

In Fig. 4, the line shape with θ � 0° is the same as the scalar
circularly polarized beam type [23,40]. The line shape with
θ � 90° is the same as the vector radially polarized beam type
[40]. For other values of θ, they mean the varying polarization
distributions consist of different proportions of the vector radial
and the scalar circular polarization, corresponding to different
line shapes, and the line shapes show sensitivity in arbitrary
directions of the external magnetic fields. In the case of θ equal
to 110°, the amplitude of the OMR signal can always keep the

value larger than 0.1, which means an apparent dead-zone-free
measurement.

Finally, we chose the polarization distribution of θ equal to
110° on the hybrid Poincaré sphere as an example to explore
the results when the directions of the external magnetic fields
are in other planes, for example in the X-Y plane.

As Fig. 1 shows, the polarization distributions for B-E posi-
tions are radially rotational symmetry, which means the ampli-
tudes of the OMR signals in the planes perpendicular to the
X-Y plane have the same shape. So, we focus on the OMR sig-
nal when the external magnetic fields are in the X-Y plane.
From Fig. 5, there are always non-zero signals at about
3–6 mV in the X-Y plane when the direction of the magnetic
field changes from the X-axis to the Y-axis. That is, our system
can achieve dead-zone-free measurement in all directions of the
external magnetic fields. It should be mentioned that because
the direction of the external magnetic field is not exactly in the
X-Y plane and the polarization distribution is not entirely ideal,
the signal amplitude in Fig. 5 varies in a small range, but theo-
retically, it should remain constant for different directions of
the magnetic field.

Here, we should mention that in the case of the elliptically
polarized light, it can be regarded as a combination of linearly
and circularly polarized light. When the angle between the
beam propagation axis and the direction of the external mag-
netic fields is in the X-Z plane and the Y-Z plane, the change
rule of the amplitude of the OMR signal is similar to that in the
case of HPBs. However, in the X-Y plane, the amplitude of the
OMR signal equals 0 when ϕ � 54.7° because the elliptically
polarized light has no symmetrical polarization distribution in
the X-Y plane as HPBs.

5. CONCLUSION

In this paper, we build a single-beam magnetometer scheme
using different kinds of HPBs. The OMR signals based on
HPBs with different polarization distributions in varying
directions of the external magnetic fields perpendicular to
the polarization plane are studied, which can present sensitivity
in arbitrary directions of the external magnetic fields. We de-
rived the analytical expressions for these signals, and the exper-
imental results fit well with the theoretical ones. As the
equivalent ellipticity changes from 1 to 0, the line shape of

Fig. 4. The amplitude of the OMR signal as a function of the angle
between the beam propagation axis and the direction of the external
magnetic fields in the X-Z plane. The inset pictures represent the pro-
portion of the intensity distribution of the 0-LGB, the 2-LGB, and the
whole beam in order. (a) Theoretical results. (b) Experimental results.

Fig. 5. Amplitude of the OMR signal as a function of the angle ϕ
between the beam propagation axis and the direction of the external
magnetic fields in the X-Y plane.
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the results changes from the shape of the circularly polarized
beam type to the shape of the vortex radially polarized beam
type. We also give an example of the result in the X-Y plane,
and there are always non-zero signals in the X-Y plane when the
direction of the magnetic field changes from the X-axis to the
Y-axis, while the atomic magnetometer using elliptically polar-
ized light still shows dead zones. All the results show that such
HPBs can achieve dead-zone-free measurement by controlling
polarization distributions. In this paper, we bring a new ap-
proach to combine the results of two kinds of polarized beams.
As the generation methods of vortex beams have been simpli-
fied, our system has the potential to simplify and optimize all-
direction magnetic measurement atomic magnetometers. It has
potential application in biomagnetism and geomagnetism as it
is miniaturized and portable.
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