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We propose and numerically demonstrate a photonic computing primitive designed for integrated spiking neural
networks (SNNs) based on add-drop ring microresonators (ADRMRs) and electrically reconfigurable phase-
change material (PCM) photonic switches. In this neuromorphic system, the passive silicon-based ADRMR,
equipped with a power-tunable auxiliary light, effectively demonstrates nonlinearity-induced dual neural dynam-
ics encompassing spiking response and synaptic plasticity that can generate single-wavelength optical neural
spikes with synaptic weight. By cascading these ADRMRs with different resonant wavelengths, weighted multi-
ple-wavelength spikes can be feasibly output from the ADRMR-based hardware arrays when external wavelength-
addressable optical pulses are injected; subsequently, the cumulative power of these weighted output spikes is
utilized to ascertain the activation status of the reconfigurable PCM photonic switches. Moreover, the reconfig-
urable mechanism driving the interconversion of the PCMs between the resonant-bonded crystalline states and
the covalent-bonded amorphous states is achieved through precise thermal modulation. Drawing from the ther-
mal properties, an innovative thermodynamic leaky integrate-and-firing (TLIF) neuron system is proposed. With
the TLIF neuron system as the fundamental unit, a fully connected SNN is constructed to complete a classic deep
learning task: the recognition of handwritten digit patterns. The simulation results reveal that the exemplary SNN
can effectively recognize 10 numbers directly in the optical domain by employing the surrogate gradient algo-
rithm. The theoretical verification of our architecture paves a whole new path for integrated photonic SNNs, with
the potential to advance the field of neuromorphic photonic systems and enable more efficient spiking informa-
tion processing. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.507178

1. INTRODUCTION

The emergence of artificial intelligence (AI) technology has
revolutionized various aspects of human society, showcasing re-
markable accomplishments in cognitive tasks such as image rec-
ognition [1] and natural language processing (NLP) [2].
However, the performance of extensive parallel computing
tasks using conventional von Neumann architectures [3] results
in considerable processing latency and power inefficiency,
which contrasts with the highly efficient massively parallel
processing capabilities of the brain. Recently, brain-inspired
neuromorphic systems have attracted significant attention as
promising approaches to enhance parallel computing efficiency
and enable in-memory computing capabilities [4–10]. Among
diverse neuromorphic networks, SNNs, commonly recognized

as the third generation of neural networks, closely emulate the
architecture and functionality of the biological brain, demon-
strating greater biological plausibility and energy efficiency
[11–16]. Recently, noteworthy advancements have been made
in the electronic hardware implementation of several SNNs,
with notable examples including SpiNNaker [17], Neurogrid
[18], TrueNorth [19], and Tianjic [20]. However, prevalent
electronic neuromorphic systems predominantly adopt a shared
digital communications bus through time division multiplexing
(TDM) for AI matrix computations. This TDM-based com-
promise between interconnectivity and bandwidth imposes
multiple restrictions concerning low bandwidth efficiency, lim-
ited parallelism, and large processing latency. In contrast, pho-
tonic counterparts can fully harness the potential of wavelength
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division multiplexing (WDM) technology, coupled with their
exceptionally high bandwidth, minimal energy consumption,
and negligible electromagnetic interference, to perform highly
efficient massively parallel matrix operations in photonic
networks [21]. These unique capabilities significantly boost
the performance of neuromorphic computing. Therefore,
the implementation of SNNs through photonic hardware
presents a promising avenue to achieve ultrafast neuromorphic
computing.

In recent years, significant progress has been made in the de-
sign of optical devices with the capability to mimic spiking neu-
rons and synapses, facilitating the development of photonic
SNNs [22–35]. As an illustration, vertical-cavity surface-emitting
lasers (VCSELs), which effectively mimic biologically plausible
nonlinear spiking responses, have established themselves as
pivotal active devices in the field of photonic neuromorphic
computing. Their noteworthy accomplishments encompass the
successful implementation of a variety of VCSEL-based SNNs,
which demonstrate the capability to handle various neuromor-
phic computing tasks [36–45]. In addition to their active coun-
terparts, passive optical devices possess immense potential for
realizing photonic SNNs with large-scale integration and ultra-
low power consumption. For instance, passive chalcogenide
PCMs, such as Ge2Sb2Te5 (GST), have been demonstrated
as functional blocks in in-memory computing platforms, show-
casing the advantages of reversible phase transition, high scal-
ability, and low power consumption. Utilizing GST-on-silicon
waveguides, significant research efforts have been devoted to
the development of CMOS-compatible, compact, and recon-
figurable photonic switching units [46–59]. These inherently
nonvolatile switches are characterized by near-zero static loss
and outstanding durability in reversible switching, making
them ideally suited for passive neuromorphic systems.
Moreover, in 2019, Feldmann et al. proposed an all-optical
spiking neurosynaptic network and showcased its ability to per-
form the fundamental task of pattern recognition, emphasizing
the scalability of photonic SNNs and their remarkably low
static power consumption [32]. Concurrently, Chakraborty
et al. proposed an innovative photonic computing primitive
based on a nonvolatile synaptic array and bipolar integra-
tion-firing neurons, enabling the potential for massively inte-
grated in-memory computing as well as ultrafast neuromorphic
computation [60,61]. In 2020 and 2022, Xiang et al. theoreti-
cally and experimentally presented an all-optical spiking neuron
based on passive microresonators [62,63]. Subsequently, our
previous work demonstrated an all-optical synaptic neuron
based on add-drop microring resonators with power-tunable
auxiliary light, highlighting the capability of passive add-drop
microring resonators for dual neural dynamics, encompassing
spiking response and synaptic plasticity [64]. By cascading
these microring-based synaptic neurons and combining with
a PCM switch, an LIF neuron that supports flexible implemen-
tation of a synaptic weighting operation and layer-individual
spike generation can be achieved [65]. Nevertheless, compared
to the advancements made in SNNs based on active optical
devices, passive approaches are still in their infancy. An inherent
challenge lies in the absence of optical excitation in passive de-
vices, making the realization of spiking neurons using passive

components considerably more formidable than with active
devices. Thus, research in the passive domain is particularly
scarce. Moreover, within the framework of WDM-based
SNNs, the structural paradigm to simultaneously achieve both
a spiking response and synaptic plasticity at a single wavelength
within a single device has been largely disregarded for an ex-
tended period. However, such devices and models that enable
dual neural dynamics have the capacity to maximize device uti-
lization. Additionally, in passive GST-based photonic switches,
the manual transmission of reset pulses after each activation,
required to restore GST to its initial state, imposes constraints
on achieving large-scale integration within GST-based pas-
sive SNNs.

In this paper, we propose an on-chip SNN based on
ADRMRs and electrically reconfigurable PCM photonic
switches. In this neuromorphic system, a hardware matrix array
is constructed by cascading the silicon-on-insulator (SOI)
ADRMRs with distinct resonant wavelengths. It is demon-
strated that each ADRMR within the ADRMR-based array can
serve as a synaptic neuron based on its nonlinearity-induced
self-pulsation, excitability, and synaptic plasticity. When exter-
nal wavelength-addressable optical pulses are injected, they trig-
ger the nonlinear effects of the ADRMRs corresponding to the
respective wavelengths within the ADRMR-based array. As a
result, multiwavelength weighted spikes are generated at the
terminal of the ADRMR-based array. Then, the output multi-
wavelength weighted spikes are converted into electrical power
input to the positive electrode of the electrically reconfigurable
GST optical switch via a photodetector (PD). Activation of the
electrically reconfigurable GST optical switch takes place when
the accumulated Joule heat, resulting from the TLIF dynamics
impact of multiwavelength weighted spikes on the heater of the
switch, reaches the GST melting point. The activation status of
the GST switch is continuously monitored in real-time by em-
ploying a continuous beam of light; then, an automatic output
spike and reset operation are executed upon switch activation.
Finally, an exemplary four-layer fully-connected SNN is formed
by integrating the ADRMR-based arrays and electronically re-
configurable GST photonic switches. The exhibited capabilities
of this proposed SNN in successfully accomplishing image rec-
ognition tasks are explicitly highlighted through its recognition
of datasets, including MNIST and EMNIST.

2. PRINCIPLE

Figure 1(a) presents the schematic of our proposed TLIF neu-
ron system, which mainly incorporates an integration unit and
a firing unit. The integration unit of the TLIF neuron system
comprises an ADRMR-based synaptic neuron array, a PD, a
WDM source, and an electronic module; the firing unit con-
sists of an electrically reconfigurable GST photonic switch, a
beam of probe continuous light, and an output neural spike.
In the integration unit, an on-chip optical frequency comb is
generated as the WDM source for the ADRMR array, via an
auxiliary laser heating approach [66,67]. The WDM source is
split into two components, with each part being directed into
the “input” port (pump light) and the “through” port (auxiliary
light) of the cascaded ADRMRs, respectively. The resonant
wavelengths of ADRMRs are set to correspondingly match
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with the wavelengths of the WDM source. Next, our attention
will be directed toward the ADRMR, one of the essential foun-
dational components in the proposed TLIF neuron system.
Figure 1(b) illustrates the two silicon-based ADRMRs: an
add-drop microring resonator [68] and a photonic crystal
add-drop ring resonator [69,70]. In such a scenario, by accu-
rately tuning the powers of the pump and auxiliary light above a
certain threshold, along with appropriate wavelength detuning,
self-pulsation would be observed in ADRMRs. Then, by de-
creasing the sum power of both the pump light and the aux-
iliary light below the self-pulsation threshold power, the
ADRMRs would be excited to output neural spikes through
adding perturbations of proper strength to the auxiliary light.
Moreover, by injecting two beams of power-tunable and oppo-
site-direction continuous light into the ADRMRs and main-
taining their sum power at a constant value, linearly-tunable
and single-wavelength neural spikes can be generated in virtue
of the nonlinear effects triggered by perturbation pulses.
Utilizing coupled mode theory (CMT) for the passive side-
coupled microresonator, a universal synaptic neuron model
applicable to all silicon-based ADRMRs with a power-tunable
auxiliary light to describe these nonlinear effects, can be ex-
pressed through [62,64,71–76]
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Within these equations, the symbols “+” and “−” signify the
forward and backward directions, respectively. Here, a repre-
sents the complex amplitude of the propagation mode, and
N stands for the density of free carriers in the ADRMR.
Additionally, S� (S−) is the complex amplitude of pump (aux-
iliary) light, while Sp represents the complex amplitude of the
perturbation light. Furthermore, SDrop indicates the complex
amplitude of the output light at the “drop” port. Several other
key parameters are involved: the cold resonance frequency ωR,
the nonlinear frequency shift δω, the frequency of the input
light in the waveguide ω, the mode-averaged temperature dif-
ference with the environment ΔT , the relaxation time for tem-
perature τth, the effective free-carrier decay rate τfc, the density
of silicon ρSi, the thermal capacity of silicon Cp, Si, the effective
mode volume V , the confinement coefficient Γ, the propaga-
tion constant in the output waveguide β, the finite distance
between the reference planes d , the absorption power Pabs,
the coupling coefficient κ, the constant governing two-photon
absorption βSi, the velocity of light c, the group index ng , the

Fig. 1. Core structure of the proposed on-chip silicon-based computational primitive. (a) Schematic representation of the TLIF neuron system,
comprising an ADRMR-based synaptic neuron array, a photodetector (PD), an electronic module, a WDM optical source, a beam of probe con-
tinuous light, an output neural spike, and an electrically reconfigurable GST photonic switch. Real-time multiwavelength weighted spikes generated
by the ADRMR-based synaptic neuron array are guided into the PD and then enter the electrical module for processing. Activation of the electrically
reconfigurable GST photonic switch occurs upon reaching a predefined threshold of cumulative power from the weighted spikes. This activation
leads to the continuous detection of light at the switch output, subsequently triggering an output neural spike and a reset pulse. (b) Two types of
ADRMRs: add-drop microring resonator and photonic crystal add-drop ring resonator. (c) Electrically reconfigurable GST photonic switches with
an ITO heater and a graphene heater, respectively.
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correction factor μ taking values in the range 1–2, and the total
loss for the cavity mode γ�,total.

Next, in the scenario of multiple parallel-connected synaptic
neurons based on ADRMRs, each characterized by distinct res-
onant wavelengths, their individual output spikes are coupled
into a single waveguide. The cumulative power of these multi-
wavelength weighted spikes is calculated as

Pn �
Xn
i�1

jSi,Drop�t�j2, (6)

where Si,Drop�t� represents the complex amplitude of light
emitted from the ith ADRMR at the “drop” port at time t.
The value of n depends on the number of ADRMR-based neu-
rons in the array.

Next, the output spikes generated by the hardware array
consisting of ADRMRs are directed toward an integrated
PD. The PD executes the transformation of these optical spikes
into electrical spikes, which are then transmitted to the elec-
tronic module for further processing. The electronic module
primarily handles biasing and amplification operations on
the electrical spikes converted by the PD, concomitantly estab-
lishing a linear correlation between optical power and electrical
power, ultimately culminating in the generation of a total
power density that can be calculated by

Q total � f �G�αPD · Pn � I bias�	, (7)

where αPD denotes the responsivity of the photodetector, Ibias
represents the bias current, and the current amplification is in-
dicated by G. To enhance the flexibility of the overall SNNs,
the G value can be dynamically modulated.

Finally, the cumulative weighted electronic spikes are
directed to the firing unit. The pivotal component within
the firing unit is an electrically reconfigurable GST photonic
switch. Within Fig. 1(c), two representative electrically recon-
figurable GST photonic switches are depicted, employing in-
dium tin oxide (ITO) and graphene as electrical heaters.
Here, a concise overview of the optical properties of the electri-
cally reconfigurable GST optical switches is given. In the con-
text of programmable photonic applications, strong optical
modulation and low insertion loss are essential for the optimal
optical performance of the GST optical switch. It is demon-
strated that these GST-based optical switches exhibit notable
contrasts in resistivity and complex refractive indices across a
wide spectral range when undergoing a structural phase tran-
sition from the covalent-bonded amorphous form to the reso-
nant-bonded crystalline state. In its crystalline state, GST
displays an elevated refractive index and extinction coefficient
values, resulting in a significantly reduced optical transmission
capability of the device. In contrast, the transition of GST from
its crystalline state to a disordered glassy state, accompanied by
lower optical constants, enhances the optical transmission
properties of the device. To elucidate the optical properties of
the electrically reconfigurable GST optical switches more effec-
tively, the mode profiles of the photonic switching units
were modeled and simulated using a frequency-domain two-
dimensional (2D) finite element method (FEM), achieved
through mode analysis. Then, in terms of the reconfigurable
mechanism, electrically reconfigurable GST photonic switches

employ external heaters to achieve electrical switching. This
process relies on the transmission of joule heat, generated by
electrical pulses from the heaters, to induce status transitions
in the GST. Therefore, nonlinear threshold activation is ac-
complished when the cumulative power of weighted output
spikes stemming from the ADRMR-based array reaches a
threshold that generates joule heat adequate to induce the tran-
sition of the GST photonic switch from the crystalline state to
the disordered glass state. Subsequently, the GST material was
heated to a level slightly above its glass transition temperature
yet remained below its melting point by employing a low-
power and prolonged pulse to promote the nucleation of small
crystals and their subsequent growth, resulting in a return to
the crystalline state of high optical constants. Additionally, it
is crucial to recognize that the heat generated by electrically
reconfigurable GST photonic switches may influence other
components within the proposed architecture. Therefore, a
prudent approach involves the application of thermal isolation
measures to adequately segregate arrays of electrically reconfig-
urable GST photonic switches. To investigate the thermody-
namic processes associated with these GST-based optical
switches, a coupled electro-thermal 2D FEM model was devel-
oped. This model is instrumental in qualitatively simulating the
electrical switching of the photonic devices with electronic
heaters, enabling the prediction of temperature distributions
across the entire switching units. Moreover, in cyclic reconfig-
urable processes that incorporate GST-based optical switches,
the neuron-like dynamics of the system, based on the heat
transfer equation, can be elucidated as

ρCp
dT
dt

� −∇ · �kth∇T � � Q ;

if T ≥ T Thresh, then

release a spike and setT � T 0 with δt : (8)

Here, ρ is the material density, kth is the thermal conductivity,
Cp is the specific heat, and the Q represents the heating source.
The parameter δt denotes a relatively refractory period. T 0

stands for the resting temperature. T Thresh represents the
threshold values for the TLIF neuron system, with the melting
point (Tm) serving as the threshold for GST. Nevertheless, the
coupled electro-thermal 2D FEM model based on the heat
transfer equation, although capable of accurate simulation of
thermal dynamics, is relatively difficult to utilize to currently
complete the calculation of the network. We consider a specific
set of cases in the overall TLIF system, where a temperature
control circuit is used to maintain the temperature around
the switch at a constant value, designated as T 0. The model
prescribes the constant temperature T 0 as a boundary condi-
tion. In this situation, the 2D FEM model based on the heat
conduction equation is approximated by the linear differential
equation [77]

ρCp
dT
dt

≈ −k�T − T 0� � Q ;

if T ≥ T Thresh; then

release a spike and setT � T 0 with δt : (9)

The parameter k denotes the heat transfer coefficient, which is
utilized to approximate the rate of temperature cooling for
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fitting the temperature distributions of our proposed 2D FEM
model. This linear differential equation represents a typical
mathematical model utilized to emulate the most basic LIF
neurons. Consequently, these TLIF neuron systems effectively
emulate the LIF behavior observed in biological neurons and
can be utilized to construct a variety of LIF-based architectures
for SNNs.

3. RESULTS AND DISCUSSION

A. Dual Neural Dynamics of the Passive ADRMR
Figure 2(a) presents the schematic of an all-optical synaptic
neuron based on ADRMR with a power-tunable auxiliary light.
On the one hand, the ADRMR exhibits the capability to gen-
erate neural spiking responses akin to those observed in biologi-
cal neurons when influenced by external stimuli. On the other
hand, it governs the output magnitude of the spikes directed to
subsequent neurons, in a manner reminiscent of biological syn-
apses. This dual neural dynamic has been demonstrated in an
add-drop microring resonator [64]. It is worth underscoring
that the add-drop microrings should be considered as a specific
case, and the exploration of other ring resonators with dual neu-
ral dynamics, including an add-drop microdisk and photonic
crystal add-drop ring resonators, is still relatively scarce.
Previous reports have introduced a universal CMT for all
passive side-coupled microresonators [62,63], providing a
structured framework for elucidating the nonlinear-induced
self-pulsation and excitability behaviors experimentally ob-
served in these resonators [72,73,78–84]. Here, we narrow

down our study to a particular subset of all passive side-coupled
microresonators that target ring resonators coupled with two
waveguides. Figures 2(b)–2(d) demonstrate the nonlinearity-
induced self-pulsation, excitability, and synaptic plasticity be-
haviors of an add-drop microdisk, an add-drop microring, and
a photonic crystal add-drop ring resonator, respectively. In our
simulations, the parameter values for the microdisk, microring,
and photonic crystal are selected based on reference to previ-
ously reported values [62,64,71–75,79,82,84]. Simulation out-
comes reveal that all passive ADRMRs, including add-drop
microdisks, add-drop microrings, and photonic crystal add-
drop ring resonators that meet certain parametric criteria can
exhibit self-pulsation behavior upon surpassing a nonlinearity-
correlated power threshold. When the input power is decreased
below the self-pulsation threshold power, the self-pulsation
behavior disappears, and subsequently, a neuron-like excitabil-
ity of the spiking response can be induced through the activa-
tion of the nonlinearity-based self-pulsation using an external
perturbation pulse as a power medium. At the same time, the
input continuous light, which includes both pump light and
auxiliary light and is coupled into the ADRMR from the op-
posite direction, maintains a constant power. By modulating
the power ratio between pump light and auxiliary light, it be-
comes feasible to generate amplitude-adjustable neural spikes at
the “drop” port, and these spikes exhibit an approximately lin-
ear variation concerning the power of the pump light. It is note-
worthy that ADRMR-based spiking neurons are minimally
affected by the shape and noise of the perturbation pulses,
and their output spikes exhibit considerable robustness [64].
By controlling the output spike amplitude with our proposed
linear scheme, the output spikes also have equal linear changes
in energy. Hence, the precise energy-controlled mechanism and
robust characteristics of neural spikes contribute to the en-
hanced accuracy of the proposed neuromorphic computation.
Moreover, by capitalizing on the wavelength selectivity and the
dual neural dynamics inherent in ADRMRs, the incorporation
of ADRMRs with varied wavelengths can be employed to
construct arrays conducive to WDM. External wavelength-
addressable perturbation pulses with different wavelengths are
introduced into the ADRMRs array, and these perturbation
pulses seek out the ADRMRs within the array that corresponds
to their individual resonant wavelength. Subsequently, the
ADRMR-based array responds to these perturbations, generat-
ing multiwavelength weighted neural spikes. Furthermore, the
photonic crystal-based synaptic neuron can operate much faster
than the microdisk- and microring-based synaptic neuron. This
accelerated performance imparts heightened computational
processing potential to SNNs grounded in photonic crystal-
based synaptic neurons.

Subsequently, the compatibility of ADRMR-based synaptic
neurons with GST materials was investigated. Regarding the
phase change material GST, the transition from the crystalline
state to the amorphous state is achieved using high-power,
short-duration energy pulses. These pulses rapidly elevate
the temperature of GST above its melting point, leading to the
fracture of chemical bonds associated with the resonance-
bonded crystalline state and the transformation into the cova-
lent-bonded amorphous state [85]. Our simulation results

Fig. 2. (a) All-optical ADRMR-based synaptic neuron. (b)–(d) Self-
pulsation behavior, excitability behavior, and synaptic plasticity of
(from left to right) (b) the microdisk, (c) the add-drop microring,
and (d) the photonic crystal add-drop ring resonator.
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indicate that the output spike durations generated by the add-
drop microdisk, add-drop microrings, and photonic crystal
add-drop ring resonators are approximately 150 ns, 25 ns,
and 10 ns, respectively. The nanosecond-duration pulses gen-
erated by these ADRMRs can be employed to induce the tran-
sition of GST from the crystalline to the amorphous state. As
shown in Figs. 3(a1), 3(b1), and 3(c1), the amplified output
spikes of microring-based synaptic neurons and photonic crys-
tal-based synaptic neurons are inputted into the electrically re-
configurable GST photonic switching models with an ITO
heater and a graphene heater, respectively. The real-time tem-
perature distribution (T ) of the GST optical switches was ob-
tained in response to this specific form of electrical pulse. Here,
it is hypothesized that the phase transitions are smoothly under-
gone within a limited temperature interval of ΔTm � 10 K
(ΔT g � 100 K), centered around Tm � 888 K (T g � 673 K)
for the purpose of swift melting (and relatively slow crystalli-
zation) [52,53]. The simulation parameters for the electrically
reconfigurable GST photonic switches were adopted from
previously reported literature [47,52,53,86–88]. Figure 3(a1)
illustrates that when the pulse power remains below a certain
threshold, the joule heat produced by the ITO heater does not
attain the required level to reach the melting point (Tm).
Consequently, the GST does not undergo a transition into a
disordered glassy state. However, Figs. 3(b1) and 3(c1) show-
case that upon reaching a specific threshold power, the neural
spikes effectively harness their energy to initiate the melting of
GST (Tm), followed by a rapid quenching below the glass tran-
sition temperature (T g ). This process formed the disordered
glass state with low optical constants and increased the optical
transmission of the optical switch. Hence, when the weighted

spikes of our TLIF neuron system attain a designated power
threshold, they trigger an amorphization process of the GST
material via joule heat generated by the heater, achieving a
threshold determination function analogous to the spiking neu-
ron. According to these simulation results, the elevated energy
density of the neural spikes generated by ADRMRs aligns ef-
fectively with the GST materials, paving the way for the devel-
opment of integrated SNNs that amalgamate the advantages of
both elements.

B. Dynamics of the TLIF Neuron System
Figure 4(a) illustrates the three phases experienced by the TLIF
neuron system: the heating and cooling phase, the firing phase,
and the reset phase. These three phases collectively constitute a
unified process that implements the neural dynamics of the
TLIF neuron system. Specifically, the generation of joule heat
through external pulses acting on the heater of the GST switch
during both the heating and cooling phases can be analogized
to an integration process within the framework of the LIF neu-
ron. Following the cessation of heating, the material gradually
cools down, resembling the leakage process exhibited by LIF
neurons. The progression from the heating and cooling phases
to a firing phase is contingent upon the condition that when
the instantaneous temperature of GST reaches a threshold cor-
responding to its melting point (Tm) the GST undergoes a
transformation from its crystalline state to a noncrystalline
state. This transition results in the reduction of the optical con-
stant of GST, consequently increasing the optical transmission.
Subsequently, once the electronics module detects continuous
light of a specific intensity, the resulting detection signal forces
the positive electrode of the GST switch to 0, thereby cooling it
rapidly. Concurrently, the input port of GST optical switch re-
ceives a customized external optical spike driven by the detec-
tion signal and then emits the spike to the output port.
Following the firing phase, the reset phase commences. The
reset electrical pulse, generated during the reset phase, is
automatically directed toward the positive electrode of the

Fig. 3. (a1) and (b1) The add-drop microring-based output spikes
after amplification as inputs to an electrically reconfigurable optical
switching model employing an ITO heater. (c1) The photonic crys-
tal-based output spikes after amplification as inputs to an electrically
reconfigurable optical switching model employing a graphene heater.
(a2), (b2), and (c2) represent the transient temperature response in the
scenarios (a1), (b1), and (c1), respectively. (a3), (b3), and (c3) illustrate
the temperature distribution at the end of a spike during the amorph-
ization process for (a1), (b1), and (c1), respectively.

Fig. 4. Dynamics of the TLIF neuron system. (a) The TLIF com-
putational primitives undergo three sequential phases: the heating and
cooling phase, the firing phase, and the reset phase. (b) Schematic rep-
resentation of thermal leakage and integration dynamics when exposed
to external pulse inputs. In this diagram, “I” symbolizes the integration
process, and “L” represents the leakage process.
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electrically reconfigurable GST optical switch by the electrical
module, following the firing of the neural spike. This procedure
guarantees that the GST is gradually heated to a point just
above its glass transition temperature (T g ), yet remains below
its melting point (Tm), across an adequately prolonged interval.
Notably, the electrothermal module employed to reset the
amorphous GST to its crystalline state introduces a small en-
ergy overhead to the overall network. Additionally, the electrical
resetting method is dedicated solely to the activation and de-
activation of the reset pulse, avoiding an increase in the foot-
print and complexity through its inherent simplicity. This
electrical automation scheme offers the benefit of effectively
resolving the drawbacks associated with previous manual
GST resetting methods. Finally, the GST resets from its disor-
dered glassy state to its initial crystalline state. Moreover, it is
noteworthy that, at the input of the GST-based optical switch,
two lasers are employed: one generating continuous wave (CW)
light for real-time threshold detection, and the other producing
customized optical spikes directed to the next neural layer. The
wavelength of the CW light is intentionally chosen to be dis-
tinct from the wavelength of the neural spikes. At the output of
the optical switch, the probing CW light can be filtered out
using a wavelength selector. Figure 4(b) presents two illustrative
examples demonstrating the temperature changes during the
heating and cooling phase, triggered by external pulse input.
When a high-energy density spike is received from an external
source, the heating material undergoes temperature elevation.
In the absence of input spikes, the temperature experiences a
rapid decay. The simulations carried out using the 2D FEM
show that the heating process bears a resemblance to the inte-
grated dynamics observed in LIF neurons, while the cooling
process mirrors the leaky dynamics characteristic of LIF
neurons.

Furthermore, Fig. 5 presents the results obtained from the
modal analysis conducted on two illustrative electrically recon-
figurable GST optical switches. The GST width and thickness
are set at 500 nm and 20 nm, respectively. Based on the mode
analysis, significant modifications in the mode profile and the

complex effective index (ñeff � neff − κeff i) are evident when
the GST undergoes electrical switching between the amor-
phous and crystalline states. The distinct extinction coefficients
(κeff ) observed in crystalline GST (cGST) and amorphous GST
(aGST) signify the level of insertion loss at different GST states
within the device. Notably, cGST exhibits a significantly larger
optical loss compared to aGST. Substantial mode modification
is expected to ensue after the phase transitions, as indicated by
the simulated mode profiles involving aGST and cGST. Hence,
the modulation of the extinction coefficient within the GST
material during the phase transition has a significant impact
on the transmittance of waveguide.

C. On-Chip Silicon-Based Spiking Neural Network
Figure 6(a) provides a schematic overview of an architecture
that utilizes individually addressable, fully connected photonic
SNNs. In this architecture, the TLIF neuron system is em-
ployed as the basic building block of the photonic neural net-
work, and wavelengths and interconnections are utilized to
establish connections between the TLIF neuron systems to
construct larger and more diverse SNNs. The entire network
consists of an input layer and an output layer, optically linked
through N hidden layers. Each hidden layer takes the output
from the preceding layer as its input and transmits the proc-
essed outputs to the subsequent layer. The input layer acts
as the optical interface to the physical world, receiving and dis-
seminating the data to be processed by the subsequent layers in
the network. In the real world, the target dataset is encoded
using the spiking encoding transform, such as the Poisson en-
coding transform, and converted to a spike-based time series.
Each spike possesses its own wavelength attributes and is
directed into the optical interface of the input layer. Moreover,
a single layer of the network consists of a collector, a distributor,
and its TLIF neuron system. The collector gathers all the out-
puts from the previous layer, which are then equally distributed
to all ADRMR-based synaptic neurons within the layer by the
distributor. These synaptic neurons with distinct resonant
wavelengths process their respective inputs, computing the
power sum within the shared waveguide. Subsequently, the cal-
culated result is forwarded to the activation unit, the electrically
reconfigurable GST optical switch that determines whether to
transmit the output spike. In this architecture, the output
spikes originating from the TLIF computational primitives
in the preceding layer solely serve to trigger the excitatory re-
sponse of the ADRMR-based synaptic neurons in the sub-
sequent layer. Due to the inherent characteristics of ADRMR-
based synaptic neurons [64], the properties of the output spikes
from each TLIF neuron system remain highly robust against
transmission-related factors such as noise, dispersion, and non-
linear effects. Additionally, the output spikes from the TLIF
neuron systems in each layer are independent and do not ac-
cumulate various noises as the neural network level increases,
making this property a significant advantage for multilayer
SNNs.

In Fig. 6(b), we perform a simulation of a four-layer fully
connected SNN and analyze its accuracy in the context of a
well-established MNIST (EMNIST) handwritten digit classifi-
cation task. The surrogate gradient method algorithm is
employed for a comprehensive system-level analysis of our

Fig. 5. Normalized electrical field profile and the complex effective
index (ñeff ) of the fundamental quasi-transversal electric mode of the
GST-on-silicon hybrid waveguide with (a1) ITO-aGST, (a2) ITO-
cGST, (b1) graphene-aGST, and (b2) graphene-cGST at a wavelength
(λ) of 1550 nm, respectively.
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SNN. Furthermore, the selection of the MNIST dataset is in-
strumental in comparing and evaluating our SNN against tradi-
tional nonspiking counterparts. This simulation is conducted
using the SpikingJelly [89] simulation package, which allows
for SNN simulations within the PyTorch [90] framework.
Each input image in the MNIST (EMNIST) dataset consists
of 28 × 28 pixels. Initially, every pixel in each image undergoes
encoding using the Poisson encoding transform in SpikingJelly
and is transformed into a spike-based time series, a format
interpretable by the spiking neurons. On the hardware level,
the 28 × 28 pixel array is divided into 28 groups, with each
group containing 28 encoded spikes, each associated with a dif-
ferent wavelength. Subsequently, each time series is fed into an
input layer comprising 28 × 28 synaptic neuron nodes. The in-
put layer establishes complete connections with the first hidden
layer, comprising 100 nodes, resulting in a total of 78,400
trainable parameters (784 × 100). Following this, the first hid-
den layer forms full connections with the second hidden layer,
consisting of 64 nodes, introducing additional 6400 trainable
parameters (100 × 64) in this interaction. Finally, the second
hidden layer is entirely linked to the output layer, which in-
cludes 10 nodes representing digitally labeled outputs, contrib-
uting extra 640 trainable parameters (64 × 10). The process of
digit recognition culminates by identifying the digit repre-
sented by the TLIF neuron system emitting the highest fre-
quency of spikes among digits 0 to 9.

Subsequently, the network parameters of the SNN are con-
figured. For the 2D FEM simulation (the model prescribes the
room temperature as a boundary condition), the thermal dis-
tribution values have undergone normalization. This process
encompasses subtracting the room temperature T 0 (293.15 K)
and then dividing by the temperature (Tm − T 0), where Tm
denotes the melting point of the reconfigurable GST optical
switch. The normalized charging equation of membrane volt-
age of LIF neurons can be expressed as

U �t� � U �t − 1� � 1

τ
�−U �t − 1� � X �t�	: (10)

Figures 7(a1) and 7(a2) portray two representative instances
of the fitting of normalized LIF neuron curves to finite
element-derived normalized thermodynamic outcomes for vari-
ous τ values. The response curve corresponding to τ � 15 ns
exhibits the closest resemblance to the simulated thermal dis-
tribution curve obtained from the 2D FEM simulations. In the
current scenario of structural configuration and boundary con-
straints, the determined time constant τ � 15 ns stands as a
fitting approximation. However, disparities in the structural
geometry, temperature boundary conditions, and material ther-
mal conductivity across different electro-reconfigurable PCMs
photonic switches may result in varying time-constant values
(τ) when fitting the normalized LIF neuronal curve to finite
element simulations of joule heat dissipation for specific

Fig. 6. Scaling architecture for the SNNs based on TLIF neuron systems. (a) The overall SNNs structure comprises an input layer, an output
layer, and multiple hidden layers. Each of these layers consists of a collector gathering the information from the previous layer, and a splitter that splits
the signal equally to individual TLIF neuron systems. Each TLIF neuron system has electrically reconfigurable GST photonic switches to calculate
the weighted sum of the inputs, which decides whether an output pulse is generated. (b) A four-layer fully connected SNN consisting of the proposed
TLIF neuron systems.
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structures. Moreover, the time-constant values (τ) play a pivotal
role in determining the temporal scale of spike emission, rep-
resenting a key parameter that influences the information
processing speed of the TILF neuron system. Then, in the
SNN that leverages the surrogate gradient method algorithm,
the forward propagation phase of the SNN uses the fitted nor-
malized LIF neuron model as its core computational unit. In
contrast, during the backward propagation of the neural net-
work, the arctangent function (ATAN) is substituted for the
step function used in forward propagation. The forward output
of this neural network is compared to the labels associated with
the image, and the negative log-likelihood loss is computed as a
measure of the disparity between the predicted output and the
actual labels. The training of the network involved minimizing
the loss using a stochastic gradient descent-based optimizer
known as Adam. Moreover, Figs. 7(b1) and 7(b2) present the
thermal distribution of the electronically reconfigurable GST
optical switch with an ITO heater for an add-drop micro-
ring-based neural spike and a rectangular neural spike, respec-
tively. Remarkably, the heating effect of the rectangular-based
spike unit was intentionally aligned with the heating effect of
the add-drop microring-based spike unit. At the same time,
both types of spike power are scaled up 2×, 3×, 4×, 5×, 6×,
7×, 8×, 9×, 10×, 11×, and 12× in equal proportions. The sim-
ulation results indicate that the heating impact of the neural
spike generated by the add-drop microring is fundamentally
equivalent to that of a rectangular counterpart. The integration
operation of our proposed TLIF neuron system relies on con-
verting the temporal integral of the optical spike power (optical
energy) into thermal energy. The impact of the inherent shape
of the pulse on this energy conversion process is virtually neg-
ligible. Consequently, for the simulation of SNN, to streamline
analysis and enhance the computational efficiency, substituting
irregularly shaped neural spikes from the ADRMRs with

rectangular pulses can be adopted. In Figs. 7(c2) and 7(d2),
the variation of the inference accuracy over time is showcased,
illustrating that the neural network accuracy converges to about
87% across the set weights ranging from 0 to 1. The present
challenge in implementing inhibitory schemes within electri-
cally reconfigurable GST optical switches arises from the
absence of a corresponding cooling mechanism. In the pro-
posed TLIF neuron, an inhibitory dynamic behavior should
also be introduced. We define a pulse cooling mechanism that
exhibits inhibitory dynamics, achieved by applying electrical
pulses to induce cooling effects on the PCMs, opposite to heat-
ing. Then, our investigation reveals that the accuracy of our
proposed SNNs could experience substantial enhancement
by introducing the inhibitory dynamics above and extending
the weight range from [0,1] to [−1,1]. In such a scenario,
the accuracy has the potential to surpass 98%. In the final step,
the network weight matrix values are mapped onto individual
ADRMR-based synaptic neurons, culminating in the realiza-
tion of a fully functional neuromorphic network in hardware.
Additionally, as shown in Figs. 7(c1) and 7(d1), a significant
fraction of weights assume a value of 0. Consequently,
ADRMRs corresponding to these 0 weights can be omitted
during hardware production, resulting in a significant reduc-
tion in the overall hardware footprint. Furthermore, it is im-
perative to highlight that TLIF necessitates recrystallization
after each spike event during the continuous operation of
the architecture. The number of operation cycles is eventually
limited by the endurance of the electrically reconfigurable GST
photonic switch. Therefore, to enhance the performance of the
proposed SNN, a crucial step involves not only the develop-
ment of an electrically reconfigurable GST switch equipped
with a dual mechanism of heating and cooling, but also ensur-
ing that this switch possesses exceptional cycle reconfigurable
durability.

Fig. 7. (a1) and (a2) Schematic illustrating the fitting process of normalized LIF neurons with varying τ values compared to the 2D time-domain
finite element method (FEM) thermodynamic simulations of the GST photonic switch with an ITO heater. Here, the input pulse width is 65 ns.
(b1) and (b2) Visualization of the 2D FEM thermal distribution of electronically reconfigurable GST optical switch with an ITO heater for (b1) an
add-drop microring-based spike unit and (b2) a rectangular-based spike unit, along with their respective power scaling by factors of 2× to 12×.
(c1) Representation of the weight distribution and (c2) digit recognition accuracy achieved by the proposed four-layer fully connected SNNs when
training through the MNIST dataset after 300 epochs. (d1) Representation of the weight distribution and (d2) digit recognition accuracy achieved
by the proposed four-layer fully connected SNNs when training through the EMNIST dataset after 100 epochs.
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4. CONCLUSION

In the present work, we propose an innovative photonic SNN
based on passive ADRMRs and electrically reconfigurable
PCMs photonic switches. The core hardware components
within the neuromorphic networks predominantly encompass
ADRMR-based arrays and electrically reconfigurable GST op-
tical switches. On the one hand, a universal synaptic neuron
model for silicon-based ADRMRs equipped with a power-
tunable auxiliary light is proposed. The simulation results dem-
onstrate that silicon-based ADRMRs can exhibit dual neural
dynamics, encompassing spiking responses and synaptic plas-
ticity. This capability facilitates the generation of linearly-
tunable and single-wavelength neural spikes. On the other
hand, the synaptic neurons based on ADRMRs, which emit
neural spikes with high energy density, exhibit strong com-
patibility with GST and are well-suited for triggering the
transition of GST from its crystalline to its amorphous state.
Subsequently, we successfully construct a scalable integrated
SNN architecture by integrating ADRMR-based arrays with
electrically reconfigurable GST photonic switches. To demon-
strate the practicality of this architecture, we utilize an exem-
plary SNN to effectively accomplish the recognition task of the
MINIST (EMNIST) digital patterns. Moreover, we introduce a
novel LIF neuron model based on thermodynamics for the first
time to the best of our knowledge, opening an avenue for sim-
ulating spiking neurons. In summary, the proposed photonic
SNN architecture not only pioneers a paradigm LIF neuron
design grounded in thermodynamics but also fosters extensive
integration capabilities within the neural network structure.
This paves the way for a completely new trajectory in the ad-
vancement of photonic neuromorphic systems.
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