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Structured illumination microscopy (SIM) has been widely applied to investigate intricate biological dynamics
due to its outstanding super-resolution imaging speed. Incorporating compressive sensing into SIM brings the
possibility to further improve the super-resolution imaging speed. Nevertheless, the recovery of the super-
resolution information from the compressed measurement remains challenging in experiments. Here, we report
structured illumination microscopy with complementary encoding-based compressive imaging (CECI-SIM) to
realize faster super-resolution imaging. Compared to the nine measurements to obtain a super-resolution image
in a conventional SIM, CECI-SIM can achieve a super-resolution image by three measurements; therefore, a
threefold improvement in the imaging speed can be achieved. This faster imaging ability in CECI-SIM is
experimentally verified by observing tubulin and actin in mouse embryonic fibroblast cells. This work provides
a feasible solution for high-speed super-resolution imaging, which would bring significant applications in
biomedical research. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.515895

1. INTRODUCTION

With the spatial resolution beyond the optical diffraction limi-
tation, super-resolution microscopy has been widely applied in
the observation of the fine structures and dynamics in cells, which
has greatly boosted the development of the biomedical field.
Several super-resolution fluorescence microscopy techniques
have been proposed based on various principles [1], which pro-
vide multiple options. Notable examples include stimulated
emission depletion microscopy (STED) based on point spread
function narrowing [2–4], single molecule localization micros-
copy (SMLM) utilizing localization of photo-switchable fluores-
cence molecules [5,6], and structured illumination microscopy
(SIM) employing spatial frequency shifting [7–9]. Due to the
unique advantages of high imaging speed, low photo damage,
and wide applicability for fluorescence labels, SIM has emerged
as the most widely used super-resolution microscopy technique
for studying the structure of living biological cells, such as actin

cytoskeleton [10], mitochondria [11], lysosomes [12], and endo-
plasmic reticulum [13].

However, limited by the requirement for nine measure-
ments with different structured patterns, the imaging speed
of SIM is restricted by the frame rate of the deployed camera.
Besides, it is difficult to further improve the frame rate of a
camera with a sufficiently large bit depth and a high pixel res-
olution. Although video-rate super-resolution imaging has been
achieved in SIM, it is still unable to observe the high-speed
dynamics of fine structures. To further improve the super-
resolution imaging speed of SIM, various methods have been
proposed. Some methods aimed to reduce the number of im-
ages required for SIM reconstruction by exploiting the informa-
tion redundancy [14]. For example, SIM reconstruction with
only four images was achieved by various algorithms, including
the Bayesian framework, the least squares method, and the
modified incoherent Fourier ptychographic procedure [15–17].
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A deep-learning-based SIM reconstruction algorithm with
three images was proposed by leveraging the isotropy of the
fluorescence [18]. However, the information redundancy is
sometimes disturbed by the noise, which leads to a poor quality
in the reconstructed super-resolution images. Some other
methods aimed to compress multiple raw images to fewer mea-
surements with compressive sensing (CS). For example, CS-
based frameworks were developed to reconstruct super-resolved
images with fewer pixels or downsampling [19,20]. Although
these works reduced the collected information, no improve-
ment in the imaging speed was obtained. Introducing a snap-
shot compressive imaging conception into SIM is a potential
strategy to accelerate the super-resolution imaging [21]. A com-
pressed imaging-based SIM technique (CISIM) was proposed
to improve the imaging speed by compressing multiple raw im-
ages into only one recorded image and subsequently extracting
the super-resolution images, as reported in our previous work
[22]. However, different from conventional imaging, the pre-
cise recovery of the high-frequency information with structured
illumination from compressed measurements remains challeng-
ing due to the high data compression ratio and the high noise
sensitivity. Moreover, precise structured illumination patterns
are required for a reconstruction in CISIM, which are difficult
to acquire in the experiment from the compressed measure-
ments. These issues hinder the implementation of CISIM in
the real observation of high-speed biomedical dynamics.

To solve these issues, here we report a structured illumina-
tion microscopy with complementary encoding-based com-
pressive imaging, termed CECI-SIM. CECI-SIM integrates
complementary encoding-based temporal compressive imaging
(TCI) with SIM to elevate the super-resolution imaging speed.
By encoding every three raw images with the illumination pat-
terns of different phase-shift steps in the same direction with
complementary codes and compressing them into a single
image, only three compressed images are required for the
reconstruction of a super-resolution image in CECI-SIM. The
complementary encoding strategy effectively alleviates the re-
covery burden of the fine structural information from the
compressed images. A high-performance image reconstruction
algorithm is developed to reconstruct the super-resolution

images, which consists of a reconstruction algorithm based
on the alternating direction method of multipliers (ADMM)
for temporal compressive imaging (TCI) reconstruction and
a HiFi-SIM algorithm for SIM reconstruction. The faster
super-resolution imaging ability of CECI-SIM is demonstrated
experimentally by the observations of tubulin and actin in
mouse embryonic fibroblast cells, which shows a close perfor-
mance in the image quality with conventional SIM and a three-
fold imaging speed improvement. Given the powerful ability in
the super-resolution imaging speed, CECI-SIM can provide a
potential tool for the investigation of high-speed intracellular
dynamics.

2. THEORETICAL MODEL

Conventional SIM necessitates nine raw images with illumina-
tion patterns involving three phase-shift steps in three direc-
tions. Three phase shifts in every direction are utilized to
precisely calculate the zeroth-order low-frequency components
and the first-order high-frequency ones, while the illumination
patterns of the three directions are used to obtain the isotropic
super-resolution images. Consequently, the super-resolution
imaging speed of conventional SIM can only reach 1/9 of that
of the recording camera. In other words, the imaging speed
bottleneck of conventional SIM lies in the frame rate of the
camera. Since it is difficult to further improve the frame rate
of a camera with sufficient bit depth and pixel number, com-
pressing multiple raw images under the limited frame rate of
the camera is a potential strategy. Based on the compressive
sensing theory [23–25], the sparsity in natural fluorescence im-
ages and the uncorrelated sampling offer a precondition for the
recovery of the compressed images.

The schematic diagram of CECI-SIM is shown in Fig. 1,
which consists of two parts: image acquisition and image
reconstruction. In the image acquisition part, illumination light
with nine structured patterns p�x, y, n� is periodically projected
onto the fluorescently labeled sample d �x, y� to produce spatial
frequency shifting, where the nine structured patterns are as-
signed in three directions and three phase-shift steps.
Therefore, a series of nine structured fluorescent images are

Fig. 1. Schematic diagram of CECI-SIM. (a) The image acquisition part of CECI-SIM. (b) The image reconstruction part of CECI-SIM.
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generated, which contain the super-resolution information in
different directions. After passing through an objective lens,
the acquired raw SIM images s�x, y, n� can be considered as
the convolution of the structured fluorescent images with the
point spread function (PSF) h�x, y� of the objective lens accord-
ing to the optical diffraction, which can be written as

s�x, y, n� �
ZZ

h�τx − x, τy − y�p�x, y, n�d �x, y�dxdy: (1)

In conventional SIM, the raw SIM images s�x, y, n� are di-
rectly recorded by a camera to reconstruct the super-resolution
images. However, these raw SIM images in CECI-SIM are fur-
ther modulated by complementary pseudorandom binary codes
c�x, y, t�. As shown in Fig. 1(a), every three raw images with
illumination patterns in the same direction while different
phase-shift steps are modulated with three complementary
pseudorandom binary codes and then integrated into a com-
pressed image, which is recorded by a camera in a single expo-
sure. Thus, nine raw SIM images are compressed into a total of
three images. Every single recorded image of the three raw im-
ages m�x, y, t� can be expressed as

m�x, y, t� �
Z

c�x, y, t�s�x, y, n�dn: (2)

The three binary codes have complementary distribution,
which means the value of their summation in every pixel is
equal to l. With these special complementary codes, the recov-
ery from the compressed measurement has higher fidelity [26].
For simplification, the image acquisition of CECI-SIM can be
rewritten with a matrix form and is given by

m � ICs � As, (3)

where m is the matrix of the compressed images m�x, y, t�, C
represents the encoding operator with the spatial modulation
c�x, y, t�, and I represents the integral operator with the cam-
era. The whole optical transfer operator of CECI-SIM can be
simplified as A.

To obtain the super-resolution image from the compressed
images in CECI-SIM, an image reconstruction algorithm with
two stages is designed, which consists of TCI reconstruc-
tion and SIM reconstruction, as shown in Fig. 1(b). For the
TCI reconstruction, an iterative algorithm based on ADMM
framework is utilized to recover the raw SIM images from the
recorded compressed ones [27–29]. Since it has a plug-and-play
(PnP) structure with replaceable priors [30,31], it is abbreviated
to PnP-ADMM. The inverse problem of the TCI
reconstruction can be described mathematically as

ŝ � argmin
s

kΦsk1, subject toAs � m, (4)

where Φ is the transformation operator of a sparse domain, and
k · k1 denotes the L1 norm. Considering maximum likelihood
estimation [32], the optimization problem can be solved iter-
atively and is given by8<
:
s�k�1� � �v�k� −u�k��� 1

ρA
T �I � 1

ρAA
T �−1�m−A�v�k� −u�k���

v�k�1� �DΦ�s�k�1� �u�k��
u�k�1� �u�k� ��s�k�1� −v�k�1��

,

(5)

where v and u are the auxiliary intermediate variables of
ADMM, ρ is a scale factor of ADMM, and DΦ is the denoiser
with priors. As shown in Fig. 1(b), the flow chart of the PnP-
ADMM algorithm is described as follows. A set of random im-
ages are set as the initialized iterative variable in the iterative
algorithm. First, the current expectation of a compressed image
for the iterative variable is estimated based on the image ac-
quirement process in CECI-SIM, which can be measured in
the system calibration. Second, the loss between the current
expectation and the real measured value of CECI-SIM is cal-
culated. Third, the generalized projection method automati-
cally optimizes the iterative variable based on the loss value
above. Fourth, the result from the gradient descent search is
filtered with image denoisers that satisfy some kind of sparse
constraint. Finally, the discriminator will judge the convergence
status of the algorithm. If the residual between the last iterative
variable and the new one is below the threshold value, the
iterative algorithm will stop and output the reconstruc-
tion result. Otherwise, the algorithm will continue the next
iterative search. Thus, nine raw SIM images are reconstructed
from three compressed images through TCI reconstruction.
Benefiting from the PnP framework, the image denoisers with
different priors can be flexibly switched in the algorithm. In this
work, total variation (TV) and DRUNet denoisers are jointly
utilized [30,33], which, respectively, explore the total variation
minimization and deep-learning-based image priors to ensure
that the recovered results have high enough signal-to-noise ra-
tios (SNRs) and retain the high-frequency image details for fur-
ther SIM reconstruction.

Regarding the SIM reconstruction stage in CECI-SIM, con-
ventional SIM algorithms can be used to solve the task [34,35].
However, a SIM reconstruction algorithm with high robustness
to input raw images is desired because some image degradations
occur during the reconstruction from compressed images in the
previous stage. Thus, here the HiFi-SIM algorithm is employed
in this work due to its excellent suppression of artifacts and
noise [36].

3. SIMULATION RESULTS

To assess the feasibility of CECI-SIM and determine the opti-
mal system parameters, we conduct simulations of the image
acquisition and reconstruction processes in CECI-SIM. Nine
raw SIM images of tubulin in mouse embryonic fibroblast cells
(NIH/3T3) recorded by a home-built SIM system are used as
the ground truths. As can be seen in Figs. 2(a)–2(c), both
CECI-SIM and HiFi-SIM can obtain detailed information
of the tubulin sample, which are indistinguishable in the
wide-field image. For quantitative assessment, we extract the
intensity distribution along the red line in the blue enlarged
box. As shown in Figs. 2(d)–2(f ), four intensity peaks can
be clearly distinguished from the intensity curves of HiFi-
SIM and CECI-SIM, but are indistinguishable from the
wide-field one. Furthermore, the intensity curve of CECI-SIM
closely resembles that of HiFi-SIM, which means that the
high frequency components are well extracted in CECI-SIM.
Additionally, the corresponding frequency spectra of the
CECI-SIM image beyond that of the wide-field image also con-
firm its super-resolution capability. This demonstrates that
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CECI-SIM possesses a comparable super-resolution capability
to conventional SIM, while achieving a threefold improvement
in the imaging speed by reconstructing a single super-resolution
image with only three compressed images.

Considering the high sensitivity of fluorescence microscopy
systems to physical noise, it is necessary to assess the perfor-
mance of CECI-SIM across various noise levels. To eliminate
the influence of unknown noise in the ground truth, here we
utilize an image containing artificially generated random
curves. We simulate the image acquisition process of CECI-
SIM and introduce additional Gaussian white noise with vari-
ous standard deviations σ into the recorded data. Subsequently,
we reconstruct the super-resolution images from the recorded
data with various noise levels, as shown in Figs. 3(a)–3(f ). Peak
signal-to-noise-ratio (PSNR) and structural similarity (SSIM)
of the reconstruction results are calculated to assess the quality
of the reconstructed images. It can be seen from the blue en-
larged boxes in Figs. 3(a)–3(f ) that more and more background
noises and artifacts appear in the reconstructed results of CECI-
SIM as the noise increases. CECI-SIM exhibits robustness
against the noise with a standard deviation below 0.1.
However, further elevating noise levels will result in noticeable
artifacts. When the noise standard deviation reaches 0.4, the
line structures become almost indistinguishable, as shown in
Fig. 3(f ). The dependences of the PSNR and SSIM of the

reconstructed images on the standard deviation of the noise are
presented in Figs. 3(g) and 3(h), which also show a decline of
image quality with an increase in the noise. Despite the fact that
the denoising modules are embedded in both the TCI and SIM
reconstruction stages of CECI-SIM, achieving satisfactory re-
sults at high noise levels remains challenging.

4. EXPERIMENTAL RESULTS

The experimental arrangement of CECI-SIM is shown in
Fig. 4(a). The beam from a continuous-wave laser with a wave-
length of 532 nm (Laser Quantum, torus 532) is expanded by a
beam expander (BE, Daheng Optics, GCO-2501)
and then modulated by a high-speed digital micromirror device
(DMD1, Texas Instruments, DLP6500), which is used to
produce structured illumination patterns. A spatial filter (SF)
is used to select only the �1st order diffraction beams in three
directions, allowing the generation of cosine fringes on the sam-
ple plane by interference. A polarization modulation module,
consisting of a quarter-wave plate (QWP, Lbtek, MQWP20-
532BM), a linear polarizer (LP, Thorlabs, LPVISA100-MP2),
a half-wave plate (HWP, Thorlabs, WPH10M-532), and a
partitioned half-wave plate (PHP, Lbtek, AHWP25-VIS-A-
6P-M) is used to ensure that the polarization of the beam is
parallel to the orientation of the fringes, which can obtain

Fig. 2. Simulation results of CECI-SIM. (a)–(c) The wide-field, HiFi-SIM, and CECI-SIM images. (d)–(f ) The intensity distributions along the
red labeled line in the enlarged region of the images (a)–(c). (g)–(i) The corresponding frequency spectra of wide-field, HiFi-SIM, and CECI-SIM
images.
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the fringes with high contrast. After the beam is relayed by a 4f
system consisting of a pair of lenses (L1 and L2), it is focused by
an objective lens (OL, Olympus, UPLAPO100XOHR) and
forms a structured illumination on the sample by interference.

The fluorescence signal generated by the structured light illu-
mination is collected by the same objective lens, reflected by a
dichroic mirror (DM, CHROMA, ZT532rdc), transmitted
by a tube lens (TL), and then projected onto another digital

Fig. 3. Effect of noise on the image reconstruction of CECI-SIM. (a)–(f ) The reconstructed images of CECI-SIM under additional Gaussian
noise with different standard deviations. (g) and (h) The dependences of PSNR and SSIM of the reconstructed images on the noise standard
deviation.

Fig. 4. Experimental arrangement of CECI-SIM. (a) The experimental arrangement of CECI-SIM. BE: beam expander; QWP: quarter-wave
plate; LP: linear polarizer; HWP: half-wave plate; DMD1 and DMD2: digital micromirror devices; L1–L5: lenses; SF: spatial filter; PHP: par-
titioned half-wave plate; DM: dichromatic mirror; OL: objective lens; and TL: tube lens. (b) The time sequence of DMD1, DMD2, and the camera
during the image acquisition of CECI-SIM.

744 Vol. 12, No. 4 / April 2024 / Photonics Research Research Article



micromirror device (DMD2, Texas Instruments, DLP6500)
for spatial complementary encoding. Finally, the encoded
fluorescence signal is transmitted by a 4f system consisting
of a pair of lenses (L4 and L5) to a camera (Andor, Zyla5.5) for
collection. Here, DMD1, DMD2, and the camera are triggered
synchronously with a field programmable gate array (FPGA)
controller. The structured illumination patterns of three phase-
shift steps in every direction on DMD1 (AiP1, AiP2, AiP3,
i � 1, 2, 3) are synchronized with a set of complementary codes
(C1, C2, C3) on DMD2, and the corresponding encoded images
in every direction are integrated in every exposure (T1, T2, T3) to
obtain three compressed images, as shown in Fig. 4(b).

To demonstrate the feasibility of CECI-SIM on the super-
resolution imaging of biological structures, we experimentally
perform the observations of tubulin and actin in NIH/3T3
cells, which are important structures in cells, participating in
the intracellular transport, cell mobility, and cell division. As
shown in Fig. 4(a), a CECI-SIM system is built up to inves-
tigate the biological samples, which can also record the conven-
tional SIM images by setting DMD2 as an all-reflection mode
and recording the structured illuminated images one by one.
The wide-field, HiFi-SIM, and CECI-SIM images of tubulin
microtubules are shown in Figs. 5(a)–5(c), together with the
enlarged region labeled with a blue box and the corresponding
frequency spectra. It is obvious that both HiFi-SIM and CECI-
SIM can distinguish the nearby tubulin microtubules clearly
that cannot be distinguished in the wide-field image. The cor-
responding extended frequency spectra also confirm their
super-resolution effect. The intensity distributions along the
red labeled line are also extracted, as shown in Fig. 5(g).
Two peaks with full width at half maximum (FWHM) of about
150 nm can be distinguished. The resolutions of the wide-field,
HiFi-SIM, and CECI-SIM images of tubulin microtubule are
estimated to be 261.6, 134.7, and 136.6 nm by the decorre-
lation analysis method [37]. As can be seen, CECI-SIM shows

the super-resolution performance close to that of HiFi-SIM,
while possessing a threefold imaging speed.

Similarly, the actin microfilaments in the NIH/3T3 cells are
also investigated with CECI-SIM. The wide-field, HiFi-SIM,
and CECI-SIM images of actin microfilaments are shown in
Figs. 5(d)–5(f ), together with the enlarged region labeled with
blue box and the frequency spectra. Again, the nearby actin
microfilaments can be distinguished by both HiFi-SIM and
CECI-SIM, while they are not distinguished in the wide-field
image. The extracted intensity distributions along the red la-
beled line verify the close super-resolution performance, as
shown in Fig. 5(h). Similarly, the resolutions of the wide-field,
HiFi-SIM, and CECI-SIM images of actin microfilaments are
also estimated by the decorrelation analysis, which are 262.8,
135.9, and 137.2 nm, respectively. In addition, CECI-SIM
shows slightly more artifacts than HiFi-SIM, as shown in
the enlarged regions in Figs. 5(g) and 5(h). Since actin micro-
filaments have denser distribution than tubulin microtubules,
the reconstructed results are more vulnerable to artifacts due to
calculation error. In general, these experimental results demon-
strate that the super-resolution imaging capability of CECI-
SIM is closed to that of HiFi-SIM, but with a threefold
improvement in the imaging speed. Due to the information
loss in the temporal compressive imaging and imperfect image
reconstruction, the performance of CECI-SIM is inevitably
slightly inferior to that of HiFi-SIM, but it is acceptable when
considering the improved imaging speed. Besides, the image
quality of CECI-SIM can be further optimized by aligning
the hardware system more precisely and developing an image
reconstruction algorithm with better performance.

5. CONCLUSIONS

In summary, we have developed a high-speed compressive
structured illumination super-resolution microscopy (CECI-
SIM) technique based on complementary encoding, improving

Fig. 5. (a)–(c) Wide-field, HiFi-SIM, and CECI-SIM images of tubulin in NIH/3T3 cells. (d)–(f ) Wide-field, HiFi-SIM, and CECI-SIM images
of actin in NIH/3T3 cells. The intensity distribution along the red labeled line in the wide-field (gray squares), HiFi-SIM (red balls), and CECI-SIM
(blue triangles) images for tubulin (g) and actin (h).
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the super-resolution imaging speed threefold compared to con-
ventional SIM. The high-speed super-resolution imaging
capability was confirmed by theoretical simulations associated
with the experimental observations of the tubulin and actin in
mouse embryonic fibroblast cells. Since the time interval be-
tween the adjacent frames in CECI-SIM can be effectively
shortened, the reconstruction artifacts induced by sample mo-
tion is depressed. With the higher imaging speed, CECI-SIM
provides a powerful tool for detecting high-speed biological dy-
namics with fine details, such as organelle interactions [38],
intracellular transports [39], and neural dynamics [40].
However, some drawbacks still exist in CECI-SIM. On the one
hand, the additional spatial encoding process reduces the over-
all photon efficiency. Thus, the fluorescent labels with enough
quantum efficiency and photostability are desired to ensure the
SNR for the recorded images. On the other hand, the data
compression ratio with complementary encoding in CECI-
SIM is limited due to the reduced light throughput of the en-
coding mask, which makes it difficult to further improve the
super-resolution imaging speed. Grayscale complementary en-
coding may be helpful to solve this problem [41]. Additionally,
the strategy of CECI-SIM can also be applied to 3D SIM
[42,43] and nonlinear SIM [44,45], where more structured il-
luminated images are required to recover the super-resolution
images. Exploiting similar compressive measurement and
reconstruction methods, high-speed super-resolution imaging
with higher spatial resolution in longitudinal or transverse di-
rections can be achieved.

APPENDIX A: METHODS

1. Cell Culture and Fluorescence Staining
The NIH/3T3 cell lines were purchased from Pricella Life
Technology Co., Ltd. (Wuhan, China). NIH/3T3 cells were
cultured in DMEM (Invitrogen, #11965-118) supplemented
with 10% fetal bovine serum (FBS) (Gibco, #16010-159).
To prevent bacterial contamination, 100 μg/mL penicillin
and streptomycin (Invitrogen, #15140122) were added to
the DMEM medium. Cells were grown under standard cell
culture conditions (5% CO2, humidified atmosphere at
37°C). NIH/3T3 cells were plated on a #1.5 glass-bottom dish
over 48 h before sample preparation. For cell passage, cells
were washed with pre-warmed PBS (Life Technologies,
#14190500BT) three times and digested with 25% trypsin
(Gibco, #25200-056) for 30 s. NIH/3T3 cell lines were tested
for potential mycoplasma contamination (MycoAlert, Lonza),

and all tests showed negative results. Cells were grown on
35 mm, #1.5 glass coverslips [Standard Imaging (Beijing)
Biotech, STGBD-035-1]. To increase cell adhesion, we pre-
treated glass-bottom dishes with fibronectin (Invitrogen,
#33016015) for 1 h at 37°C. On the day of sample preparation,
the cell density should be about 50%–70%. Cells were fixed
with a 37°C pre-warmed fixation buffer for 10 min, containing
4% paraformaldehyde EMS and 0.1% glutaraldehyde in PBS.
Then the sample was washed three times with PBS. For
quenching the background fluorescence, we incubated the cells
with 2 mL 0.1%NaBH4 solution in PBS for 7 min. The sample
was washed three times with 2 mL PBS and then incubated for
30 min in PBS containing 5% BSA (Jackson, #001-000-162)
and 0.5% Triton X-100 (Fisher Scientific) at 37°C.

Tubulin staining. All antibodies were diluted in the 5%
BSA � 0.5% triton solution described above. Next, we incu-
bated the sample for 12 h with the appropriate dilution of
primary antibodies: beta-tubulin (DSHB-E7) at 4°C. After pri-
mary antibodies incubation, the cells were washed 5 min with
2 mL PBS for three times. Secondary antibodies were incubated
for 60 min with the appropriate dilutions of secondary antibod-
ies (Cy3b secondary antibodies) at 25°C.

Actin staining. All dyes were diluted in the 5% BSA � 0.5%
triton solution described above. Next, we incubated the sample
for 40 min with the appropriate dilution of Acti-stain 555 phal-
loidin (Cytoskeleton, PHDH1-A) at 25°C. After washing three
times with PBS, cells were fixed with post-fixation buffer
for 10 min.

2. Imaging Reconstruction
The reconstruction of the simulation and experimental results
is performed in the MATLAB (2022a) and PyCharm
(2022.3.2) environments on a computer equipped with an
Intel Core i7-10700 at 2.9 GHz CPU, 32 GB RAM, and
NVIDIA GTX 1650 GPU. For the processing of three com-
pressed images with a size of 512 × 512, the computation time
is about 5 min.

APPENDIX B: COMPARISON OF ENCODING
STRATEGIES

1. Comparison of Complementary and
Pseudorandom Encoding
Simulations of CECI-SIM with complementary and pseudo-
random codes are conducted to show the effect of encoding
strategy on imaging performance. An image containing

Fig. 6. (a)–(d) Wide-field, HiFi-SIM, and CECI-SIM images with complementary and pseudorandom codes. The insets are enlarged views of the
regions marked with white boxes.
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artificially generated random curves with a width of 32.5 nm is
used as the ground truth. For the PSF calculation, the fluores-
cence wavelength is set as 560 nm, and the NA of the micros-
copy system is set as 1.5. After structured illumination,
complementary codes and pseudorandom codes are utilized
to encode the structured illuminated images, respectively.
The final measurements are processed by the image
reconstruction algorithm of CECI-SIM. The wide-field image,
SIM image, and CECI-SIM reconstruction with complemen-
tary codes and pseudorandom codes are shown in Fig. 6. As can
be seen from the insets, the reconstructed image with comple-
mentary codes has fewer artifacts than that with pseudorandom
codes. Structured similarities of the reconstructed images are
also calculated, which are 0.85 and 0.59 for complementary
and pseudorandom codes, respectively. The complementary
encoding strategy shows great superiority to pseudorandom
encoding.
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