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Epsilon-near-zero (ENZ) media were demonstrated to exhibit unprecedented strong nonlinear optical properties
including giant second-harmonic generation (SHG) due to their field-enhancement effect. Here, on the contrary,
we report the quenching of SHG by the ENZ media. We find that when a tiny nonlinear particle is placed very
close to a subwavelength ENZ particle, the SHG from the nonlinear particle can be greatly suppressed. The SHG
quenching effect originates from the extraordinary prohibition of electric fields occurring near the ENZ particle
due to evanescent scattering waves, which is found to be universal in both isotropic and anisotropic ENZ particles,
irrespective of their shapes. Based on this principle, we propose a kind of dynamically controllable optical meta-
surface exhibiting switchable SHG quenching effect. Our work enriches the understanding of optical nonlinearity
with ENZ media and could find applications in optical switches and modulators. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.491949

1. INTRODUCTION

Nonlinear optical harmonic generation is of great significance
in a broad range of technologies and has been attracting much
attention in photonics, chemistry, and biosensing. The under-
standing and manipulation of nonlinear optical properties of
nanostructures is a major issue for realizing nonlinear nanopho-
tonic devices. In the past decades, a lot of efforts have been
made to enhance the nonlinear frequency conversion efficiency,
including the new materials and systems [1–7]. Recently, with
the advent of plasmonics, metamaterials, and metasurfaces that
go beyond natural materials in many aspects, significant atten-
tion has been devoted to the understanding and the observation
of nonlinear optical processes in nanophotonics [1–7]. For
boosting the second-harmonic generation (SHG) [8–13], as
one of the most important nonlinear optical effects, many ap-
proaches have been proposed. For example, through exciting
resonance modes like surface plasmon polariton resonances
[8], Fano resonances [9], anapole modes [10,11], and bound
states in the continuum [12], the fundamental fields inside the
nonlinear materials can be greatly enhanced, so as to boost the
SHG. Notably, epsilon-near-zero (ENZ) media [7,14–17] with
a vanishing permittivity are found to exhibit pronounced
nonlinear optical properties [7,18–38]. The ENZ media can
provide large field enhancement due to the continuity of the
normal component of the electric displacement field across
the interface [18,19], and at the same time provide unique

opportunities for realizing phase-matching conditions [23,38].
Consequently, the ENZ media can give rise to unprecedented
strong nonlinear optical responses including the significantly
enhanced SHG [18–22,27–29].

In this work, on the contrary, we demonstrate that the ENZ
media can be exploited to “turn off” the SHG of a nonlinear
particle. We show that when a tiny nonlinear particle is placed
very close to a subwavelength ENZ particle, the SHG conver-
sion efficiency can be reduced by more than 2 orders of
magnitude as compared to that from the nonlinear particle
alone (Fig. 1). The SHG quenching effect attributes to the
extraordinary local evanescent fields occurring near the ENZ
particle due to evanescent scattering waves. Remarkably, the
prohibition of electric fields appears besides the ENZ particle,
and therefore, the SHG from the tiny nonlinear particle placed
there would be suppressed. We find that this extraordinary local
evanescent field exists for both isotropic and anisotropic ENZ
particles, irrespective of their shapes. Furthermore, based on the
principle of SHG quenching effect, we propose a kind of
dynamically controllable optical metasurface integrated with
anisotropic ENZ media, which consist of alternative layers of
semiconductor material cadmium oxide (CdO) and phase-
change material germanium telluride (GeTe). We find that
through changing the phase states of GeTe, the SHG from
the metasurface can be switched on or off. Our work demon-
strates a feasible approach for controlling nonlinear responses
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with ENZ media, which may find applications in optical
switches and modulators.

2. SHG QUENCHING AND THE UNDERLYING
PHYSICS

First, to explore the physical mechanism of the unique SHG
quenching effect, we begin with a simple configuration com-
prising a linear ENZ spherical particle (relative permittivity
εe ≈ 0, relative permeability μe � 1) and a tiny nonlinear
spherical particle (relative permittivity εn � 2, relative per-
meability μn � 1) in free space, as illustrated in Fig. 2(a).
Both particles are in the deep-subwavelength scale with radii
of re � λ0∕100 (ENZ particle) and rn � 0.1re (nonlinear par-
ticle), where λ0 is free-space wavelength. The gap (i.e., edge-to-
edge distance) between the two particles is d . The two particles
are illuminated by a plane wave propagating along the z direc-
tion with electric field Eω

0 polarized in the x direction.
The SHG of the tiny nonlinear spherical particle can be

accounted for by effective surface contribution and
characterized by a surface nonlinear current source J2ω �
−i2ωε0χ

↔�2�
a ∶EωEω, where χ

↔�2�
a is the nonlinear susceptibility

tensor, and Eω is the fundamental frequency electric field inside
the nonlinear particle. ε0 is the permittivity of free space. For
isotropic and centrosymmetric materials, the second-order

surface susceptibility tensor χ
↔�2�
a can be reduced to only three

independent nonzero components χ
↔�2�
⊥⊥⊥, χ

↔�2�
⊥∥∥, and χ

↔�2�
∥∥⊥

[39,40]. Here the symbols ⊥ and ∥ represent the directions
perpendicular and parallel to the particle’s surface, respectively.

Figure 2(b) shows the scattering cross section of SHG
(SCS2ω) from the tiny nonlinear particle when it is successively
moved from position 1 to position 5 along the trajectory
1 → 2 → 3 → 4 → 5 [green curves in Fig. 2(a)]. Along the tra-
jectory 1 → 4, the edge-to-edge distance d is kept unchanged at
re∕20, and position 5 is at a distance of 6re from the ENZ
sphere’s center. Here we assume that the nonlinear susceptibil-
ity of the tiny particle is several orders of magnitude larger than
that of the ENZ particle, and therefore, the nonlinear response
of the ENZ particle is negligible. Such an assumption is rea-
sonable when using appropriate optical materials [30], as we
will show in the following practical implementations. The cal-
culation is performed using the finite-element software
COMSOL Multiphysics. The solid blue lines and red dots de-
note the normalized SCS2ω of the cases with and without the
ENZ particle, respectively. The latter case is normalized to 1. As
expected, in the absence of the ENZ particle, the SCS2ω will
not change as varying the position under the illumination of a
plane wave. Interestingly, we observe that the presence of the
ENZ particle has a great influence on the SHG conversion

Fig. 1. (a) Schematic illustration of SHG from a tiny nonlinear particle. (b) The SHG is quenched when a linear ENZ particle is placed very close
to the tiny nonlinear particle.

Fig. 2. (a) Schematic layout of the configuration for exploring the SHG quenching effect. It is composed of a linear ENZ spherical particle
accompanied with a tiny nonlinear spherical particle in the deep-subwavelength scale. The green curve denotes the trajectory of the nonlinear
particle moving around the ENZ particle. Positions 1 and 4 are close to the poles, positions 2 and 3 are on the equatorial plane, and position
5 is far from the ENZ particle. The two particles are illuminated by a plane wave propagating along the z direction with the electric field polarized in
the x direction. (b) The blue solid line denotes the normalized scattering cross section of SHG SCS2ω as a function of the position of the nonlinear
particle along the trajectory in (a). The red dots show the SCS2ω from the nonlinear particle alone, which is normalized to 1.
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efficiency of the nonlinear particle. The SCS2ω reaches the
maximal value when the nonlinear particle is on the equatorial
plane of the ENZ particle (positions 2 and 3), while it is largely
reduced when the nonlinear particle is close to the poles of the
ENZ particle (positions 1 and 4). Compared with the case
without the ENZ particle, we find that the SCS2ω from the
nonlinear particle at position 1 or 4 is reduced by more than
1 order of magnitude, indicating that the SHG is quenched.
Such an SHG quenching effect would fade away if the nonlin-
ear particle is at a distance comparable with the radius of the
ENZ particle (position 5), indicating that the quenching of
SHG is a short-range effect. The influence of the geometrical
parameters on the SHG quenching effect is elaborated in
Appendix A.1.

The underlying physics of such a unique position-depen-
dent characteristic lies on the extraordinary evanescent fields
near the ENZ particle. When encountering the ENZ particle,
the incident light will be scattered into various directions. If the
size of the ENZ particle is comparable to or smaller than the
wavelength, strong scattered evanescent waves that are evanes-
cent in the forward and backward directions but capable of
transferring energy flux along the perpendicular directions
would emerge [41–43]. Such evanescent fields vary dramati-
cally with positions, thus leading to the position-dependent
SHG efficiency, as observed in Fig. 2. Particularly, near-zero
electric field occurs on two sides of the ENZ particle
perpendicular to the direction of incidence and along the
direction of polarization, which is also denoted as the “side scat-
tering shadows” [41]. When the tiny nonlinear particle is
placed there, the incident light cannot “see” it, and therefore
the SHG is suppressed.

The generation of the dramatically varying evanescent fields
stems from the continuity boundary condition at the ENZ par-
ticle–air interface. Since the ENZ particle is at the deep-sub-
wavelength scale, the fundamental electric field inside it can be
considered uniform and can be approximately expressed as
Eω
ENZ � 3

2�εe
Eω
0 [43]. Thus, the continuity of the electric dis-

placement field at the poles of the ENZ particle yields

Eω
air,p �

3εe
2� εe

Eω
0 , (1)

where Eω
air,p is the electric field at the poles on the air side. On

the other hand, the electric field on the equator of ENZ particle
on the air side can be obtained as

Eω
air,e �

3

2� εe
Eω
0 (2)

due to the continuity of the electric field. When εe → 0, we
have

Eω
air,e ≫ Eω

air,p → 0: (3)

Equation (3) indicates the dramatically varying fundamental
electric field around the ENZ particle and near-zero electric
field at the poles. When a tiny nonlinear particle is placed close
to the ENZ particle, it will experience significantly different
fundamental electric fields at different positions, thus leading
to the position-dependent SHG efficiency. Remarkably, the
SHG is quenched when the nonlinear particle is located at
the poles as the fundamental electric field there is shielded

by the ENZ particle. We note that the extraordinary evanescent
fields only exist in the regions very close to the ENZ
particle, and therefore the quenching of SHG is a short-range
effect.

More strict proof can be obtained based on the Mie scatter-
ing theory [44] and the electrostatic theory [45]. Under the
limit of k0re ≪ 1 (here k0 � 2π∕λ0), the fundamental electric
field outside the ENZ sphere (r > re) can be derived as (see
Appendix A.3 and A.4)

Eω
air � Eω

0

�
1� 2

εe − 1

εe � 2

r3e
r3

�
sin θr̂

� Eω
0

�
−1� εe − 1

εe � 2

r3e
r3

�
cos θθ̂, (4)

where r is the distance from the center of the ENZ sphere, and
θ is the polar angle (the angle measured from the z axis). When
εe → 0, we obtain the amplitude of the fundamental electric
field on the ENZ sphere’s surface (i.e., r � re) on the air
side as

Eω
air �

3

2
Eω
0 cos θ: (5)

Equation (5) implies that the fundamental electric field is
enhanced (i.e., Eω

air � 3
2
Eω
0 ) on the equator (i.e., θ � 0), while

is zero (i.e., Eω
air � 0) at the poles (i.e., θ � π∕2), coincident

with the above analysis.
For numerical verification, in Fig. 3(a) we show the simu-

lated fundamental electric-field amplitude on the ENZ sphere’s
surface on the air side in the absence of the nonlinear sphere.
The numbers 1–5 represent five different positions correspond-
ing to the positions of the tiny nonlinear sphere in Fig. 2.
Apparently, the electric field on the equator (positions 2 and
3) is enhanced compared with that of the incidence, while it
is largely reduced to near-zero at the poles (positions 1 and
4). At position 5 which is far away, the influence of the
ENZ particle fades away, and the electric field there tends
to that of incidence. We note that these extraordinary local
electric fields are observed for relatively ideal ENZ particle with
εe � 10−4. In order to explore the influence of the εe on the
local electric fields, in Fig. 3(b) we plot the normalized electric-
field amplitude jEω

i j∕Eω
0 at position i (i � 1, 2, 3, 4, 5) as a

function of εe. We observe that the electric field jEω
1,4j (or

jEω
2,3j) decreases (or increases) quickly as the εe decreases from

unity and becomes stable as long as εe < 10−2. Since the evan-
escent fields only exist very near the ENZ particle, the electric
field jEω

5 j remains almost unchanged.
We note that the electric field jEω

1,4j is not that close to zero
because the positions 1 and 4 have a distance of d � re∕20
from the poles of the ENZ sphere. Actually, with reducing
d , the jEω

1,4j∕Eω
0 will tend to be 1.5εe , as implied in

Eq. (1). On the other hand, the jEω
2,3j∕Eω

0 tends to be 1.5 ac-
cording to Eq. (2). For verification, in Fig. 3(c) we plot the ratio
jEω

2 j∕jEω
1 j with the varying ratio re∕d (re is kept unchanged at

λ0∕100). Here we set εe � 10−4. The results clearly show that
the ratio jEω

2 j∕jEω
1 j approaches the ideal value (i.e., ε−1e , red

dashed lines) when d is considerably small, consistent with
the above theory.
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However, a practical nonlinear particle cannot be infinitely
small. The presence of the nonlinear particle could affect the
evanescent fields of the ENZ particle. Therefore, the nonlinear
particle should be much smaller than the ENZ particle, such
that the original evanescent fields are not largely disturbed, and
the nonlinear particle can experience enhanced or weakened
local fields instead of the averaged fields. In order to show
the influence of the particle’s size, the ratio of SHG scattering
cross section jSCS2ω2 j∕jSCS2ω1 j as a function of the ratio rn∕d is
plotted in Fig. 3(d). Here d is kept unchanged at λ0∕2000. The
SCS2ω1 (or SCS2ω2 ) denotes the SHG scattering cross section
when the nonlinear particle is placed at position 1 (or 2), as
illustrated by the inset in Fig. 3(d). We see that the ratio
jSCS2ω2 j∕jSCS2ω1 j increases with the reducing rn, indicating
better SHG quenching performance with smaller rn.

The above results suggest that in order to achieve excellent
performance of SHG quenching effect, the conditions of
εe ≤ 10−2 and d ∼ rn ≪ re shall be satisfied. In addition, it
is noteworthy that the SHG quenching effect is robust against
the material loss of the ENZ particle. We find that even when
the εe possesses an imaginary part 3 orders of magnitude larger
than its real part, the good performance of SHG quenching
effect can still be obtained (see Appendix A.2).

3. SHG QUENCHING IN GENERAL SITUATIONS

The extraordinary evanescent waves and the consequent
SHG quenching effect are general and could be observed in

arbitrary-shaped ENZ particles and anisotropic ENZ particles.
As an example, in Fig. 4(a) we present the simulated fundamen-
tal electric-field distribution on the surface of a finite-sized iso-
tropic ENZ film (εe � 10−4, with dimensions 0.02λ0 ×
0.02λ0 × 0.005λ0) on the air side under illumination of a plane
wave. Prohibition of electric field above (or below) the cuboid’s
upper (or lower) surface is clearly observed. Under this circum-
stance, a tiny nonlinear particle placed above the ENZ film
cannot “see” the incident light, and therefore the SHG will
be suppressed. For a demonstration, in Fig. 4(b) we compare
the normalized SHG scattering cross section SCS2ω from a
nonlinear particle alone (red lines) and that from the nonlinear
particle placed above the ENZ film at an edge-to-edge distance
of λ0∕2000 (blue lines) as a function of εe. Here the nonlinear
particle is the same as that in Fig. 2. It is seen that the SCS2ω

can be reduced by more than 2 orders of magnitude by the
ENZ film with εe ≤ 10−2 compared with the SCS2ω from
the nonlinear particle alone, indicating the suppression of
SHG by the ENZ cuboid.

Moreover, we consider an anisotropic ENZ film with
εe,x � 1, εe,y � 1, and εe,z � 10−4, which are the x, y, and
z components of the relative permittivity tensor, respectively.
We see from Fig. 4(c) that the prohibition of electric field above
(or below) the cuboid’s upper (or lower) surface still exists irre-
spective of the existence of anisotropy. This is because the z
component of the electric field on the air side is proportional
to εe,z and is therefore near zero, as a result of the continuity of
the electric displacement field. The SHG quenching effect is

Fig. 3. (a) Distribution of normalized fundamental electric-field amplitude on the ENZ particle’s surface on the air side in the absence of the
nonlinear particle. The numbers 1–5 denote five different positions of the nonlinear particle in Fig. 2. (b) Normalized fundamental electric-field
amplitude jEω

i j∕Eω
0 at position i (i � 1, 2, 3, 4, 5) as a function of the εe . (c) The ratio jEω

2 j∕jEω
1 j with respect to the ratio re∕d . Here re is kept

unchanged at λ0∕100. The red dashed line shows the ideal value of ε−1e . The inset illustrates the configuration. (d) The ratio jSCS2ω2 j∕jSCS2ω1 j with
respect to the ratio rn∕d . Here d is kept unchanged at λ0∕2000. The SCS2ω1 (or SCS2ω2 ) denotes the SHG scattering cross section when the nonlinear
particle is placed at position 1 (or 2), as illustrated by the inset.
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verified in Fig. 4(d). We see that the anisotropic ENZ film with
εe,z ≤ 10−2 can significantly reduce the SHG scattering cross
section SCS2ω from the nonlinear particle to near 2 orders
of magnitude (blue lines) compared with the SCS2ω from
the nonlinear particle alone (red lines). These results clearly
manifest the universality of the SHG quenching effect.

4. DYNAMIC CONTROL OF SHG QUENCHING
WITH OPTICAL METASURFACES

The universality of the SHG quenching effect suggests that it
could be extended to other systems besides the above particle-
scattering system to explore more efficient ways to control the
SHG conversion efficiency. In fact, metasurfaces [46–49], as
two-dimensional artificial electromagnetic materials structured
at the subwavelength scale, provide a versatile platform for
manipulating light–matter interactions and realizing significant
nonlinear responses [4–6,12,13]. In the following, we would
like to show a kind of optical metasurface exhibiting switchable
SHG quenching effect.

Figures 5(a) and 5(b) show the schematic graphs of the op-
tical metasurface, consisting of a square array of meta-atoms
with a lattice constant of 200 nm on a 2 μm thick silica
(SiO2) substrate. Each meta-atom comprises a large cuboid
(100 nm × 100 nm × 50 nm in dimension) accompanied with
two small SiO2 cuboids (20 nm × 20 nm × 25 nm in dimen-
sion) on the upper and lower sides, as illustrated by the insets.
The top surface of the SiO2 cuboid is covered by a layer of
graphene. In practical realization, such patterned graphene
could be fabricated through photolithography [50], electron

beam lithography [51], plasma etching [52], laser direct pat-
terning [53], etc. The graphene is known as a unique nonlinear
optical material with outstanding optical properties
[13,54–56]. Generally, the SHG is forbidden of free-standing
graphene due to its centrosymmetry. Interestingly, when the
graphene is placed on a substrate with broken inversion sym-
metry (e.g., the SiO2 utilized here), SHG would be allowed
[13]. Considering the fact that graphene belongs to the D6h

symmetry group, its surface second-order nonlinear optical
conductivity tensor σ

↔�2� only has three independent nonzero
components, i.e., σ�2�⊥⊥⊥, σ

�2�
∥∥⊥ � σ�2�∥⊥∥, and σ�2�⊥∥∥ [13,57,58].

Here, we set χ�2�⊥⊥⊥ � i
2ωε0heff

σ�2�⊥⊥⊥, χ�2�⊥∥∥ � i
2ωε0heff

σ�2�⊥∥∥, and

χ�2�∥∥⊥ � i
2ωε0heff

σ�2�∥∥⊥, where σ�2�⊥⊥⊥ � −9.71i × 10−16 AmV−2,

σ�2�⊥∥∥ � −2.09i × 10−16 AmV−2, σ�2�∥∥⊥ � −2.56i ×10−16 AmV−2,
and heff � 0.33 nm is the effective thickness of graphene [13].

The central large cuboid is composed of eight alternative
layers of semiconductor CdO and phase-change material
GeTe. The thickness of each CdO (or GeTe) layer is
tCdO � 13.1 nm (or tGeTe � 11.9 nm). The relative permit-
tivity of CdO can be described using the Drude model

as εCdO � ε∞ −
ω2
p

ω�ω�iγ� [59], where ε∞ � 5.5, ωp �
1.23 × 1015 rad∕s, and γ � 1.77 × 1013 rad∕s. The GeTe pos-
sesses the ability of rapidly switching between the crystalline
and amorphous phases in a reversible way, and the phase tran-
sition can be achieved optically or through Joule heating and is
proven to be reliable, fast, and repeatable [60,61]. Remarkably,
the optical properties of GeTe in different phases are

Fig. 4. (a) and (c) Distribution of normalized fundamental electric-field amplitude on the surface of an (a) isotropic, (c) anisotropic ENZ film on
the air side in the absence of the nonlinear particle. The incident light is polarized in the z direction and propagates along the x direction. (b) and
(d) Normalized SCS2ω from a nonlinear particle alone (red) and the nonlinear particle placed above the (b) isotropic ENZ film with different εe ,
(d) anisotropic ENZ film with different εe,z at an edge-to-edge distance of λ0∕2000 (blue). The nonlinear particle is the same as that in Fig. 2. The
insets illustrate the configurations.
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significantly different, and thus the optical properties of the
CdO–GeTe multilayer can be efficiently manipulated through
changing the phase states of GeTe. Due to the deep-subwave-
length size, the CdO–GeTe multilayer can be approximately
homogenized as an effective anisotropic medium, whose y com-
ponent of effective relative permittivity can be expressed as
εy,eff � �εCdOtCdO � εGeTetGeTe�∕�tCdO � tGeTe� [62]. In
Fig. 5(c), we plot the real part of εy,eff , i.e., Re�εy,eff �, as a func-
tion of wavelength when the GeTe is in the crystalline (blue
lines) or the amorphous (red lines) phase. We see that
Re�εy,eff � � 0 at the wavelength of 6.93 μm in the amorphous
phase, in which case the imaginary part of εy,eff , i.e., Im�εy,eff �,
is not very large (see the inset). Under this circumstance, the
central CdO–GeTe multilayer in the amorphous phase can be
viewed as an effective anisotropic ENZ medium with εy,eff ≈ 0.
However, when the GeTe is switched to the crystalline phase,
we have Re�εy,eff � � 0.81 ≫ 0 and Im�εy,eff � � 5.29, indicat-
ing the breakdown of the ENZ condition.

This unique property provides us with a route to dynami-
cally control the occurrence and quenching of SHG of the op-
tical metasurface through switching the phases of GeTe, as
schematically shown in Figs. 5(a) and 5(b). When the GeTe is
in the amorphous phase, the CdO–GeTe multilayer effectively

serves as an anisotropic ENZ medium, which can generate
near-zero local electric fields near the surfaces normal to the
y direction (see field distributions in Appendix A.5). The gra-
phene placed there will be hard to “see” the incident light, and
therefore the SHG from the graphene is suppressed [Fig. 5(b)].
Interestingly, when the GeTe is switched to the crystalline
phase, the ENZ condition breaks down, and the SHG from
the graphene emerges [Fig. 5(a)].

For numerical verification, we set the relevant parameters of
graphene as σ�2�⊥⊥⊥ � −9.71i × 10−16 AmV−2, σ�2�∥∥⊥ � σ�2�∥⊥∥ �
−2.56i × 10−16 AmV−2, and σ�2�⊥∥∥ � −2.09i × 10−16 AmV−2

at the operating wavelength of 6.93 μm [13]. At this wave-
length, the second-order nonlinear susceptibility of graphene
(∼10−10 m∕V) is several orders of magnitude larger than those
of CdO (∼10−18 m∕V) [22], GeTe (∼10−18 m∕V) [63], and
SiO2 [13], and therefore, here we consider the nonlinear re-
sponses of graphene only. In practical implementations, the gra-
phene can be replaced by other optical materials with large
nonlinear susceptibility such as gallium arsenide [64].
Figure 5(d) presents the SHG energy from the metasurface
with GeTe in the crystalline (green bars) or amorphous (yellow
bars) phase under illumination of normally incident light
(polarized in the y direction). In each phase, the left and right

Fig. 5. (a) and (b) Schematic graphs of an optical metasurface which can be dynamically switched to exhibit (a) high, (b) low SHG conversion
efficiency through controlling the phase states of its constituent GeTe. The metasurface is composed of a square array of meta-atoms on a SiO2

substrate. Each meta-atom consists of a central CdO–GeTe multilayered structure and two small graphene-covered SiO2 cuboids, as illustrated by
the insets. The length unit is nanometer. (c) The real part of εy,eff , i.e., Re�εy,eff �, of the central CdO–GeTe multilayer with GeTe in the crystalline
(blue) or amorphous (red) phase as a function of wavelength. The inset shows the imaginary part of εy,eff , i.e., Im�εy,eff �. (d) The SHG energy from
the metasurface with its constituent GeTe in the crystalline (green) or amorphous (yellow) phase. The SHG energy in the amorphous phase is
enlarged by 10 times for better visualization. In each phase, the left and right bars correspond to the case with the central CdO–GeTe multilayer
considered as an effective medium and the case with the original multilayer structure, respectively. The incident light is polarized in the y direction
and propagates along the z direction. The operating wavelength is 6.93 μm.
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bars correspond to the case with the central CdO–GeTe multi-
layer considered as an effective medium and the case with the
original multilayered structure, respectively, showing good
agreement. We note that the SHG energy in the amorphous
phase is enlarged by 10 times for better visualization. We
see that the SHG energy in the amorphous phase is much lower
than that in the crystalline phase, demonstrating the dynami-
cally controllable SHG quenching effect in the optical meta-
surface.

We note that the pump laser used to enhance the SHG of
graphene generally will not inadvertently change the phase of
GeTe for two reasons. First, the intensity of the laser pulse that
can effectively enhance the SHG of graphene is generally lower
than that required to change the phase of GeTe because the
transition temperature of GeTe is high [65,66]. Second, the
activation energy of GeTe is ∼3.14 eV [67]. This indicates that
the wavelength of the laser pulse used to change the phase of
GeTe is required to be short, e.g., ∼248 nm [65,67], much
shorter than the operating wavelength for SHG quenching
(i.e., 6.93 μm).

In practical implementation, the constituent materials of the
metasurface can be flexibly chosen. For example, graphene
could be replaced by other two-dimensional materials with pro-
nounced nonlinear optical properties, such as transition metal
dichalcogenides (TMDs) including MoS2, WS2, and MoSe2
[68,69]. The CdO–GeTe composite could be replaced by other
materials such as indium tin oxide, aluminum-doped zinc ox-
ide, and metal–dielectric composites operating at the ENZ fre-
quency [70,71], but the drawback is that the ENZ wavelength
cannot be dynamically controlled.

5. DISCUSSION AND CONCLUSION

The SHG conversion efficiency of a nonlinear material strongly
depends on its molecular-scale constituents and their macro-
scopic ordering [8]. Based on this property, a conventional ap-
proach to manipulate the SHG signal is to engineer the local
and global symmetries of meta-atoms in metamaterials and
metasurfaces [72–74]. In addition, the enhancement of
SHG due to surface plasmon polariton resonance in metallic
nanostructures is very sensitive to each meta-atom’s geometry,
dielectric environment, and polarization of incidence, thus pro-
viding another approach to manipulate the SHG signal
[75,76]. Here, unlike the previous endeavors, our approach
paves a route to control the SHG conversion efficiency through
exploiting the near-field effect of a linear material [77], that is,
the extraordinary local fundamental electric fields of an ENZ
particle, thus further realizing the unique SHG quenching
effect. Our approach could be extended to other nonlinear
optical processes, including sum- and difference-frequency
generation.

It is noteworthy that TMDs, such as MoS2, WS2, and
MoSe2, are capable of controlling the SHG conversion effi-
ciency [68,69]. Due to their unique electronic band structures
and strong light–matter interactions at the atomic scale, the
SHG process of TMDs is sensitive to the number of layers,
crystallinity, and interlayer coupling in TMD heterostructures
[68,69,78–81]. Interestingly, it was demonstrated that the
SHG is quenched in even layered MoS2 as it belongs to the

centrosymmetric D3d space group [78,79]. Fundamentally dif-
ferent from the SHG quenching with TMDs, the SHG
quenching by the ENZ media attributes to the macroscopic
electromagnetic responses.

Our findings could have an impact on the experimental in-
vestigations of optical nonlinearity with ENZ media. A fre-
quently used configuration in experiments is to exploit
plasmonic or dielectric nanoantennas placed on a thin ENZ
film [25,27–30,37]. Usually, the boost of nonlinear responses
induced by the large field enhancement in the ENZ film is re-
ported. Nevertheless, our results in Fig. 4 indicate that the thin
ENZ film could significantly suppress the nonlinear responses
from the nanoantennas. This breaks the traditional conception
that the ENZ media are always responsible for SHG enhance-
ment and enriches the understanding of the experimental ob-
servation of optical nonlinearity.

In conclusion, we have demonstrated the SHG quenching
effect when a tiny nonlinear particle is placed very close to a
subwavelength ENZ particle. The SHG quenching effect is
found to originate from the extraordinary near-zero local elec-
tric fields occurring near the ENZ particle due to evanescent
scattering waves and is proved to be universal with both iso-
tropic and anisotropic ENZ particles, irrespective of their
shapes. Based on the principle of SHG quenching effect, we
have further demonstrated a kind of dynamically controllable
optical metasurface integrated with phase-change material
GeTe. Through changing the phase states of GeTe, the
SHG from the metasurface can be switched on or off. Our
work creates pathways for applications such as nonlinear optical
switches and modulators based on the integration of nonlinear
materials and ENZ media.

APPENDIX A

1. Influence of Geometrical Parameters
In Fig. 6, we investigate the influence of geometrical parame-
ters, that is, particles’ radii re and rn, and the edge-to-edge dis-
tance d on the SHG quenching effect. The model is adopted
from Fig. 2. The tiny nonlinear particle is placed at position 1
where the SHG quenching effect is expected, as illustrated in
Fig. 6(a). We see from Fig. 6(b) that the SHG SCS2ω decreases
with increasing re , because the region of electric-field suppres-
sion becomes larger, and the fundamental electric field experi-
enced by the tiny nonlinear particle becomes smaller. This
indicates that we can obtain better performance of SHG
quenching effect when using relatively large ENZ particles.
From Figs. 6(c) and 6(d), we see that the SHG SCS2ω increases
with the increasing radius of the tiny nonlinear particle rn and
the edge-to-edge distance d . As we have demonstrated above,
the quenching of SHG is a short-range effect, and the near-zero
fundamental electric fields appear at the poles of the ENZ par-
ticle. Therefore, a nonlinear particle with large rn would expe-
rience averaged fields instead of the greatly weakened local
fields at the poles of the ENZ particle. On the other hand, the
nonlinear particle far way (i.e., d is large) would not “see”
the greatly weakened local fields at the poles. As a consequence,
the SHG quenching effect would fade away if the nonlinear
particle is large or far away from the poles of the ENZ particle.
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In short, to obtain better performance of SHG quenching
effect, the radius of the nonlinear particle should be much
smaller than that of the ENZ particle, and the distance between
the two particles should be as small as possible. Based on this
understanding, we set the geometrical parameters of the model
in Fig. 2 as re∕λ0 � 0.01, rn∕λ0 � 0.001, and d∕λ0 � 0.0005
(marked by the vertical dashed lines).

2. Influence of Material Losses
Figure 7 discusses the influence of material losses of the ENZ
particle on the SHG quenching effect. The configuration is the
same as that in Fig. 2. Figure 7(a) shows the scattering cross
section of SHG SCS2ω from the tiny nonlinear particle when
it is successively moved from position 1 to position 5 along the
trajectory 1 → 2 → 3 → 4 → 5 [green curves in Fig. 2(a)].
The red dots are related to the case without the ENZ particle.
The blue lines correspond to the case with a lossless ENZ par-
ticle of εe � 10−4 (the same as that in Fig. 2), and the star
markers correspond to the case with a lossy ENZ particle of
εe � 10−4 � 10−3i (purple) or εe � 10−4 � 10−2i (yellow) or

εe � 10−4 � 10−1i (green). The results show that even when
the εe possesses an imaginary part 3 orders of magnitude larger
than its real part, the SHG conversion efficiency is almost un-
changed, and the good performance of SHG quenching can
still be obtained. This is because the material losses have little
influence on the near-zero local electric fields at the poles of the
ENZ particle. For verification, in Figs. 7(b)–7(d) we plot the
simulated fundamental electric-field amplitude on the ENZ
sphere’s surface on the air side for the cases with material losses.
Clearly, the field distributions are almost unchanged in the
presence of material losses.

3. Derivation of Field Distributions Based on MIE
Scattering Theory
Here, we consider an ENZ spherical particle in air (relative
permittivity εe, relative permeability μe, radius re) illuminated
by a plane wave. According to Mie scattering theory, we can
obtain the electric fields of incidence, the scattered waves,
and the waves inside the particle. The electric fields inside
the particle:

8>>>>>>>>><
>>>>>>>>>:

Eω
e,r � E0

k2e

X∞
n�1

in−1
2n� 1

n�n� 1�
�
FTM
n

∂2ψn�ker�
∂r2

� k2e FTM
n ψn�ker�

�
P�1�
n �cos θ� cos θ

Eω
e,θ � 1

r
E0

k2e

X∞
n�1

in−1
2n� 1

n�n� 1�
�
FTM
n

∂ψn�ker�
∂r

∂P�1�
n �cos θ�
∂θ

� ikeFTE
n ψn�ker�

P�1�
n �cos θ�
sin θ

�
cos φ

Eω
e,φ � − 1

r
E0

k2e

X∞
n�1

in−1
2n� 1

n�n� 1�
�
FTM
n

∂ψn�ker�
∂r

P�1�
n �cos θ�
sin θ

� ikeFTE
n ψn�ker�

∂P�1�
n �cos θ�
∂θ

�
sin φ

: (A1a)

Fig. 6. (a) Schematic layout of the configuration, which is the same as that in Fig. 2 in the main text. Here, the tiny nonlinear particle is placed at
position 1 where the SHG quenching effect is expected. (b)–(d) Normalized SHG scattering cross section SCS2ω with respect to the (b) re∕λ0 in the
case of rn∕λ0 � 0.001 and d∕λ0 � 0.0005, (c) rn∕λ0 in the case of re∕λ0 � 0.01 and d∕λ0 � 0.0005, and (d) d∕λ0 in the case of re∕λ0 � 0.01
and rn∕λ0 � 0.001. In (b)–(d), the SCS2ω is normalized to the SCS2ω in Fig. 2, in which case the geometrical parameters are set as re∕λ0 � 0.01,
rn∕λ0 � 0.001, and d∕λ0 � 0.0005 (marked by the vertical dashed lines).
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The electric fields of incidence:8>>>>>>>>><
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The electric fields of scattered waves:
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Combining the boundary conditions at r � re
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we obtain the coefficients FTM
n , FTE

n , ATM
n , and ATE

n as
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Fig. 7. (a) Normalized scattering cross section of SHG SCS2ω from the tiny nonlinear particle when it is successively moved from position 1 to
position 5 along the trajectory 1 → 2 → 3 → 4 → 5. The configuration is the same as that in Fig. 2. (b)–(d) Simulated fundamental electric-field
amplitude on the ENZ sphere’s surface on the air side for the cases with material losses.
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ATE
n � ψn�kere�ψ 0
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Here, we assume that the ENZ particle’s size is much smaller
than the wavelength (i.e., k0re ≪ 1). In this situation, the
terms other than the dipolar term (i.e., n � 1) can be ne-
glected. Then the coefficients ATM

n and ATE
n can be simplified

to ATM
1 → −ψ1�k0re�∕ς�1�1 �k0re� and ATE

1 → 0 under the limit
of εe → 0. Thus, the electric field outside the particle
Eω
air � Eω

in � Eω
sc can be simplified to

jEω
airj �

3

2
E0 cos θ, (A4)

where θ is the polar angle. Equation (A4) indicates enhanced
fundamental electric field (i.e., Eω

air � 3
2E

ω
0 ) on the equator

(i.e., θ � 0), while zero fundamental electric field
(i.e., Eω

air � 0) at the poles (i.e., θ � π∕2).

4. Derivation of Field Distributions Based on
Electrostatic Theory
Since the ENZ particle is at the deep-subwavelength scale, we
can also derive the electric field distributions based on electro-
static theory. In the electrostatic theory, the electric field satis-
fies the Laplace equation ∇ · ∇ϕ�r, θ� � 0 with E � −∇ϕ. By
solving the Laplace equation, the general expressions for the
electric potentials can be written as

ϕω
e � BE0r sin θ, r ≤ re , (A5a)

ϕω
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�
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r2

�
E0 sin θ, r > re , (A5b)

where B and C are unknown coefficients to be determined.
Then the electric fields in different regions can be calcu-
lated as

Eω
e � BE0�sin θer − cos θeθ�, r ≤ re , (A6a)
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Considering the boundary conditions at r � re , we have

er × �Eω
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ω
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air −D
ω
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Based on Eq. (A7), the expressions of the coefficients B and
C can be obtained. Inserting them into Eq. (A6), the electric
fields in different regions can be expressed as

Eω
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From Eq. (A8), the electric field on the ENZ particle’s sur-
face (i.e., r � re) on the air side can be simplified to

Eω
air �

3εe
�εe � 2� E0 sin θer −

3

�εe � 2� E0 cos θeθ : (A9)

Considering the condition of εe → 0, we obtain the funda-
mental electric field on the ENZ sphere’s surface on the air
side as

jEω
airj �

3

2
E0 cos θ: (A10)

We see that Eq. (A10) based on the electrostatic theory is
the same as Eq. (A4) based on the Mie scattering theory.

5. Field Distributions in Optical Metasurface
Figure 8 supplies the distributions of normalized fundamental
electric-field amplitude (on the plane that contains the gra-
phene) in one unit cell of the optical metasurface discussed
in Fig. 5. We observe that the field distributions in the effec-
tive-medium model and the multilayer-structure model agree
well, both showing that the fundamental electric field in the
graphene region (upper and lower square areas) in the amor-
phous phase is much smaller than that in the crystalline phase.
This finally leads to much lower SHG conversion efficiency in
the amorphous phase, as we have demonstrated in Fig. 5.
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