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Using freeform optical surfaces in lens design can lead to much higher system specifications and performance
while significantly reducing volume and weight. However, because of the complexity of freeform surfaces, free-
form optical design using traditional methods requires extensive human effort and sufficient design experience,
while other design methods have limitations in design efficiency, simplicity, and versatility. Deep learning can
solve these issues by summarizing design knowledge and applying it to design tasks with different system and
structure parameters. We propose a deep-learning framework for designing freeform imaging systems. We gen-
erate the data set automatically using a combined sequential and random system evolution method. We combine
supervised learning and unsupervised learning to train the network so that it has good generalization ability for a
wide range of system and structure parameter values. The generated network FreeformNet enables fast generation
(less than 0.003 s per system) of multiple-solution systems after we input the design requirements, including the
system and structure parameters. We can filter and sort solutions based on a given criterion and use them as good
starting points for quick final optimization (several seconds for systems with small or moderate field-of-view in
general). The proposed framework presents a revolutionary approach to the lens design of freeform or generalized
imaging systems, thus significantly reducing the time and effort expended on optical design. © 2023 Chinese

Laser Press

https://doi.org/10.1364/PRJ.492938

1. INTRODUCTION

Optical design and imaging optics play an important role in
technological and social development. In their long history,
imaging systems have mainly consisted of spherical and aspheri-
cal elements because of their rotational shape and ease of
fabrication; however, their aberration correction ability is lim-
ited, particularly in nonsymmetric systems. To overcome the
limitations of traditional spherical and aspherical systems, non-
rotational symmetric freeform optical surfaces can be used,
which improve system performance and specifications while
reducing the volume and number of elements. The use of
the freeform optical surface is considered to be a revolution
in imaging optical design [1,2]. In the last 15 years, the devel-
opment of advanced fabrication technologies has promoted the
use of freeform optics in many fields, such as astronomical tele-
scopes [3], head-mounted and head-up displays [4–8], cameras
[9,10], off-axis imagers [11,12], and imaging spectrome-
ters [13–15].

Advanced freeform surfaces may improve the performance
of imaging optics but also further increase design difficulty and
time cost significantly because of the complexity of the surface
shape and nonsymmetric system structure, in addition to the
limitation of the scarcity of existing reference systems and the
difficulty of understanding freeform optics. Traditional optical
design or lens design methods usually start with finding a
proper starting point and then performing multiparameter op-
timization. The starting point is typically obtained by searching
literature or accessing the lens databases within optical design
software. However, this process takes a lot of time and may not
find a feasible starting point, especially for the freeform optical
systems. Without a good starting point, the design process will
rely on extensive human effort and design skills, and extensive
time may be spent on tedious trial and error, especially for be-
ginners in optical design with limited or no knowledge of aber-
ration theory or other design experiences. Nodal aberration
theory has been used to guide the design and optimization
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of freeform imaging systems [16–18]. Direct or point-by-point
design methods have been proposed to construct systems based
on given design requirements [19–25]. However, these meth-
ods also have limitations on the design efficiency, simplicity,
and generality, especially for a system with advanced system
specifications such as wide field-of-view. The above-mentioned
design methods need to be tailored to a certain design task. For
other design tasks, the methods may need to be reapplied, and
even the optimization strategy may need to be adjusted accord-
ingly. In addition, the time cost for a single design task is high.
Deep learning (DL) can be considered as a solution to these
issues, as it can effectively summarize design knowledge and
apply this knowledge to design tasks with a wide range of sys-
tem and structure parameters. In 2019, Côté et al. used DL to
obtain lens design databases to produce high-quality starting
points for coaxial spherical objectives [26]. Then, this was im-
proved by the introduction of more design forms [27,28].
However, the above framework is limited to coaxial spherical
systems. In 2019, Yang et al. [29] proposed the preliminary
design framework of freeform reflective imaging systems, which
Chen et al. [30] improved by increasing the range of system
specifications. However, the design method is limited because
only one solution can be generated, which may not be optimal
to fulfill the design requirements for system structures. It is of
great significance while challenging to realize ultrafast genera-
tion of multiple-solution freeform imaging systems based on
given design requirements on system and structure parameters,
which can dramatically improve optical design efficiency and
reduce human effort.

In this study, we propose a deep-learning framework for the
intelligent design of freeform imaging optics. The design frame-
work is viable for generalized off-axis reflective, refractive, and
catadioptric systems with multiple freeform surfaces. We gen-
erate the training data set automatically using a combined se-
quential and random freeform system evolution method. We
further propose a special feedback strategy and use it to improve

diversity of the systems in the data set. We also combine
supervised learning and unsupervised learning based on free-
form surface differential ray tracing to obtain a neural network
with high performance. The generated network, which we call
FreeformNet, enables the fast generation (less than 0.003 s per
system) of multiple-solution freeform imaging systems after
we input the design requirements that include the system
and structure parameters. We can filter and sort the output sys-
tems based on a given criterion and use them as good starting
points for the quick final optimization (several seconds for sys-
tems with small or moderate field-of-view in general).

We used the design of a freeform off-axis three-mirror im-
aging system with wide range and advanced system specifica-
tions to demonstrate the effect of FreeformNet. The efficiency
of the freeform optical design improved significantly and hu-
man effort was minimized. The proposed framework provides a
new and generalized approach for complicated imaging optical
design, thus facilitating the development of revolutionary and
generalized optical design software.

2. METHODS

A. Overall Design Framework
The design framework uses a deep neural network (DNN) to
generate the freeform systems. The DNN has multiple hidden
layers between the input and output layers, which can achieve a
complex mapping relationship from the input space to the out-
put space. For the starting point generation task of freeform
imaging optical systems, the inputs are specific system param-
eters and structure parameters, and the outputs are one or more
freeform surface imaging systems that meet the design require-
ments, which can be used for subsequent optimization. This
can be considered as design knowledge, as the network “knows”
the systems corresponding to the design inputs. These knowl-
edges are obtained through combined supervised and unsuper-
vised learning during DNN training. Figure 1 shows the entire
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Fig. 1. Whole optical design framework based on deep learning.
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design framework. For supervised learning, a considerable
number of freeform systems with different system and structure
parameters, in addition to good imaging performance, are re-
quired as the training data set. A combined sequential and ran-
dom freeform system evolution method is proposed and used
to automatically generate the fundamental data set for the
pretraining of the DNN in supervised learning mode. A feed-
back strategy is further used to enrich the data set and improve
the supervised training result of the DNN. Unsupervised learn-
ing based on differential ray tracing is then introduced.
Combinations of various system and structure parameters
are input into the DNN to obtain the output systems, and their
imaging performance and constraints are integrated into the
total loss function. Supervised and unsupervised trainings
are combined and cooperate to obtain the final DNN with
good performance and generalization ability. The use of a feed-
back strategy and unsupervised learning reduce the pressure of
obtaining extensive systems for constructing data sets. When
network training is completed, the DNN can be considered
to have enough knowledge to output systems: one or more sys-
tems can be output quickly and directly according to certain
design requirements, and the systems can be regarded as good
design starting points for quick further optimization.

B. Fundamental Data Set Generation
A freeform imaging optical system can be characterized by sys-
tem parameters, structure parameters, and surface parameters.
System parameters describe the field-of-view (FOV), aperture
value, and imaging size. Structure parameters include the posi-
tion and tilt angle of each surface, and surface parameters
describe the shape of each surface in the optical system. As
a possible network framework, the network accepts system
parameters as input and then outputs structure and surface
parameters to form only one specific system. Thus, one-to-
one mapping can be realized. However, the imaging perfor-
mance of this specific output system is not optimal in general,
and the system structure may not meet the designer’s needs.
Consequently, the application of this framework is limited.
To provide designers with more systems that enable choice
and can be filtered or sorted, it is necessary to achieve one-to-
multiple mapping, that is, multiple systems should be output
when one system parameter combination (or a combination of
selected system and structure parameter values) is input. To
achieve this goal, structure parameters can also be included in
the network input. For the above-mentioned complex one-to-
multiple freeform imaging system design framework, the num-
ber of input and output parameters is large, and the ranges of the
input system and structure parameter values are wide; hence, to
obtain a good one-to-multiple network model, previous experi-
ence is essential to guide machine learning, particularly in the
early phase of the network training process. Therefore, super-
vised learning should be used, and high-quality freeform systems
with combinations of various system and structure parameter
values have to be obtained as the “labeled” data set.

The fundamental data set generation framework is shown
in Fig. 2. Before the data set is generated for the design frame-
work of one type of system, several representative system
parameters that can fully describe the system specifications
should be selected. For freeform imaging optical systems,

the FOV, effective focal length (EFL), F -number (F#), and
entrance pupil diameter (ENPD) are typically used; however,
these parameters are not necessarily used simultaneously be-
cause some of them are correlated. Additionally, some param-
eters can be fixed to a specific value (e.g., EFL), and other
systems with various parameter values can be obtained by scal-
ing. Thus, the dimension of the system parameter space, in ad-
dition to the number of systems in the data set, can be reduced.
The system parameter combination can be expressed as the vec-
tor Φ � �Φ1,Φ2,…,Φm,…,ΦM �, where Φm denotes a spe-
cific parameter type, such as FOV and ENPD. For example,
the system parameter combination Φ of the design example
given in Section 3 is [XFOV, YFOV, ENPD], where XFOV
and YFOV represent the FOV in x and y directions, respec-
tively. We use a vector φ � �φ1,φ2,…,φm,…,φM � to denote
the specific value of the vector Φ, where φm is value of param-
eter Φm. Similarly, the surface shape of a specific system can be
characterized by the vector X � �X 1,X 2,…,X v,…,X V �,
where X v denotes a specific surface parameter (e.g., surface co-
efficient). The type of freeform surface is not limited. The lo-
cations and tilts of the freeform surfaces can be considered as
structure parameters. In this study, only the common case in
which the system is symmetric about the YOZ plane is con-
sidered. The y and z coordinates of the vertices of the surfaces
are considered as structure parameters. If the tilt term (y term)
is not used in the surface expression, the partial derivative of y at
the surface vertex will be zero, and the surface normal direction
at the vertex will coincide with the local z axis of the surface.
If the chief ray of the central field is further required to inter-
sect each surface at its vertex, then the surface normal as well as
the tilt angle of this surface can be calculated using the coor-
dinates of the surface vertices of this surface and the surface
preceding and after this surface. Therefore, the surface tilt angle
can be not added to the input structure parameters, and it can
reduce the complexity of DNN training. For the output struc-
ture parameter, as chief ray of the central field may not inter-
sect each surface at its vertex exactly for the systems generated
by the DNN, the surface tilt angle is added as an output struc-
ture parameter in order to fully describe the freeform sys-
tem. The structure parameter combination is denoted by
Ψ � �Ψ1,Ψ2,…,Ψt ,…,ΨT �. We use vectors χ and ψ to de-
note the specific value of the vector X and Ψ, respectively. In
summary, as shown in Fig. 3, the full input parameters to the
DNN are φ and ψ (excluding the surface tilt angles). The full
output parameters are χ and ψ. When χ and ψ are obtained,
along with the input φ, the output system is fully defined.

Systems with various system and structure parameter values
should be generated as the data set for supervised learning. After
the characteristic parameters are selected, it is necessary to de-
termine the appropriate parameter space for parameter values
selection, which is a high-dimensional space for system and
structure parameters. The system parameter space is abbrevi-
ated as SPΦ and the structure parameter space as SPΨ. For se-
lected system parameters, the SPΦ’s corresponding SPΨ is vast;
hence, it is impossible to fully sample and generate systems in
this space. Additionally, the imaging performance of the many
systems may be low and the system structure may be invalid
(irregular or having extensive light obstruction). The solution
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is to divide the entire parameter space into subspaces. For dif-
ferent subspaces of the SPΦ, their corresponding subspaces of
the SPΨ differ. The subspace of the SPΨ cannot be randomly

selected either; otherwise, the above issues will also appear.
To address this issue, we propose a method for determining
the subspace by using a reference system with good imaging
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Fig. 3. Illustration of input and output parameters of DNN. The superscripts i, o, and tar denote input, output, and target, respectively. The
output and target surface and structure parameters values are used to construct the mean square error (MSE) and then construct the supervised loss
function Lsuper.
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performance, whose φ and ψ are at the center of the system and
structure parameter subspace, as shown in Fig. 4.

After the range of φm �1 ≤ m ≤ M� is determined, this
range is divided into Im segments, and the length of each seg-
ment is Lm. Thus, SPΦ is divided into I � ΠM

m�1Im subspaces
SP

�i�
Φ (1 ≤ i ≤ I ) and each SP

�i�
Φ has a corresponding SP

�i�
Ψ . A

subspace pair is denoted by SP
�i�
Φ -SP

�i�
Ψ , and all subspace pairs

are combined to form the entire parameter space. Next, a refer-
ence system RSYS�i� whose system parameter is the center of
the SP�i�Φ is generated for each subspace pair, and all the refer-
ence systems are automatically generated by a special system
evolution method. The system with the lowest system specifi-
cations (easiest to be designed) is optimized first. During evo-
lution, if the system whose system parameter value is φ� has
been generated at a certain step, the weighted distances between
φ� and the system parameter values of all the systems, which
have not been optimized, are calculated. Here, the distance
D � jjW ⊗ �φ� − φ���jj2, where jj · jj2 represents the L2-
norm, ⊗ represents elementwise multiplication, and φ�� re-
present the system parameter value of one system, which
has not been optimized. W � �W 1,W 2,…,Wm,…,WM �
is the weight vector, which balances the influence of the differ-
ent parameters. Among all the remaining systems, the system
corresponding to the smallest D is determined to be the next
system to be optimized, and it will be evolved from the system
with φ�. The above process is repeated until all the reference
systems have been generated. During sequential system evolu-
tion, if an abnormal system occurs (fatal ray tracing error, ob-
struction, or poor imaging performance), the current system is
evolved from the second-nearest existing system. During opti-
mization, the image quality, distortion, light obstruction, sys-
tem structure, and some other constraints should be controlled.
When RSYS�i� is generated, it is necessary to obtain its structure
parameters ψ�i�

RSYS. The length of the interval for each struc-
ture parameter values’ range in this subspace pair is given and
represented by the vector R�i� � �R�i�

1 ,R�i�
2 ,…,R�i�

t ,…,R�i�
T �.

Consider ψ�i�
RSYS as the structure parameter center of the

SP
�i�
Ψ . Then, the value range of ψ �i�

t can be determined
by [ψ �i�

RSYS,t − 0.5R
�i�
t ,ψ �i�

RSYS,t � 0.5R�i�
t ]; that is, SP�i�Ψ is

determined by ψ�i�
RSYS and R�i�. R�i� should be determined be-

fore generating the reference system, and the structure of the
reference system can be constrained to avoid the existence of
structure with obstructions in the subspace, thus ensuring
the reasonability of the structure parameter subspace division.
Because of the difference in system size for different system
parameters, R should differ for different subspace pairs. The
larger the system parameters, the larger the structure parameters
ranges are. The design form of the systems in the subspace is
partially determined by the reference system, but the values of
structure parameters vary within the subspace.

Next, a random optimization generation method is used to
generate the fundamental data set. In each SP

�i�
Φ -SP

�i�
Ψ , systems

with random φ are generated using RSYS�i� as the initial sys-
tem. During optimization, all the surface parameters of RSYS�i�

are set as variables to obtain good imaging performance. To
increase diversity of the structure parameter values in the data
set, all the structure parameters may be changed to random
values within the SP�i�Ψ with probability Pf . Then, the changed
structure parameters are frozen with probability Pf 1 during op-
timization, whereas the unchanged structure parameters are
frozen with probability Pf 2. After optimization, the system
parameters, structure parameters, and surface parameters of all
the systems are obtained to form the fundamental data set.
Because the system generation processes in different subspace
pairs are independent, the above process can be performed in
parallel to improve the efficiency of data set generation. Using
the above method, systems with various system and structure
parameters within large ranges, in addition to good imaging
performance, are obtained and the required constraint is satis-
fied. The entire data set generation process is fully automatic;
hence, human effort is minimal.

C. Supervised Learning
After the fundamental data set is obtained, the DNN can be
trained using supervised training. Because the values and units
differ significantly between different parameters, to improve the
efficiency and convergence of training, all the input data with
the same type are normalized to [−1, 1] using a linear prepro-
cessing method similar to minimum–maximum normalization.

Fig. 4. Sketch of the parameter space and subspace pair SP�i�Φ and SP�i�ψ . A 2D space (only two system parameters and two structure parameters are
considered, respectively) is plotted here for clarity, but actual parameter spaces should be high-dimensional spaces. Four subspaces are plotted here
as an example. The subspaces plotted in same color form a subspace pair SP�i�Φ -SP�i�ψ . φ and ψ of reference system RSYS�i� are at the center of SP�i�Φ
and SP

�i�
ψ .
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The output data of the network need reverse processing to ob-
tain the actual structure and surface parameters of the system.
The loss function Lsuper can be defined as the mean square error
(MSE) between the target and actual predicted output (values
of surface and structure parameters, χ and ψ), as shown in
Fig. 3. After the loss is obtained using a feedforward calculation,
the gradient of the Lsuper over all parameters in the neural net-
work is calculated using the backpropagation algorithm. Then,
the gradient is fed back to the optimizer and used to update the
weights and biases to minimize the loss function, which makes
the predicted values closer to the target values.

At this time, the DNN can predict the corresponding sys-
tems for specific inputs. However, for a large DNN model,
a large data set is required for supervised training. In the
combined sequential and random freeform system evolution
method mentioned above, all the systems in each subspace pair
SP

�i�
Φ -SP

�i�
Ψ are evolved from a single initial system RSYS�i�.

Additionally, the number of systems in the data set is small,
and the values of different system and structure parameters are
limited. A feedback training strategy (as shown in Fig. 2) is
proposed to diversify the data set and improve the performance
of the DNN. Random φ and ψ are selected in different sub-
space pairs as the DNN input. Then the systems predicted by
the current network are directly input into the optical design
software (e.g., CODE V and Zemax) for quick optimization.
The structure parameters are frozen with probability Ps during
optimization. If the optimized system has no ray tracing error
but good image quality, the system parameters are obtained and
added to the training data set. Further training is conducted,
and system generation feedback is executed again. The above
process is repeated, and the number and diversity of the systems
in the data set are extended.

D. Unsupervised Learning
Through supervised learning, the DNN can converge quickly
using the obtained data set and be used to output systems based
on the given inputs. However, the network generalization abil-
ity may still be weak. Unsupervised learning is then introduced,
and supervised and unsupervised learning are combined for
subsequent DNN training.

Unsupervised learning does not require a data set with “label
information.” When random system and structure parameter
combinations are input into the DNN, the output systems
can be obtained, and the unsupervised loss function Lunsuper,
which contains two parts, can be constructed. One part,
Lperformance, is related to imaging performance. The other part,
Lconstraint, is related to the design constraints that need to be
satisfied, which are weighted penalty functions based on,
e.g., quadratic, reciprocal, logarithmic, or higher-order power
functions. Unsupervised learning can be regarded as training
the DNN to “optimize” the systems generated by the DNN
[27]. A differential ray tracing module of the freeform imaging
system is essential to connect Lunsuper with the surface and struc-
ture parameters of the freeform system as well as the parameters
of the DNN [31]. This ensures that the entire prediction and
computation processes are fully differentiable; thus, the loss
gradient can be computed and backpropagated to update the
parameters of the DNN and improve DNN performance. The
overall computing efficiency can be improved using GPU

computing power and parallel computing. The core of ray trac-
ing is to find the point where the ray intersects with the surface
and then obtain the outgoing ray direction. The expressions of
common freeform surfaces (XY polynomials surface, Zernike
polynomials surface, etc.) in local coordinate systems can be
written as follows:

z � h�x, y� � c�x2 � y2�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − �1� k�c2�x2 � y2�

p �
Xp
i�0

Aiφi�x, y�,

(1)

where c represents the curvature, k is the conic constant,
φi�x, y� is the freeform surface term, and Ai is its coefficient.
For a ray with a starting point coordinate μ � �μx , μy, μz � and a
unit propagation direction vector ω � �ωx ,ωy,ωz �, it can be
represented by (μ,ω). The coordinates of the ray (μ, ω) after
propagating for λ units of length can be written as μ� λω. The
intersection of this ray with the surface z � h�x, y� shall meet

f �x, y, z� � h�x, y� − z � f �μ� λω� � 0: (2)

λ can be solved iteratively using Newton’s method:

λ�n� � λ�n−1� −
f �μ� λ�n−1�ω�
f 0�μ� λ�n−1�ω� � λ�n−1� −

f �μ� λ�n−1�ω�
∇f · ω

:

(3)
The above process is conducted iteratively until the change

of λ is smaller than the allowable tolerance. After λ is obtained,
we obtain the coordinate of the intersection μ� λω, which is
also the start point μ 0 of the ray reflected or refracted by the
surface. The propagation direction ω 0 after this surface can
be calculated based on Snell’s law. Then, by repeating the above
process, the ray tracing process can be conducted surface-by-
surface sequentially until the ray reaches the image plane.

The actually used rays of each field in the system are deter-
mined based on the location of the aperture stop and the chief
ray of each field. Once the chief ray is found, other rays can be
sampled according to the entrance pupil size and used for im-
aging performance analysis and optimization. As the freeform
system is nonsymmetric, the traditional method of locating the
chief ray by obtaining the paraxial entrance pupil position may
be not suitable. Therefore, an iterative search method of the
chief ray is adopted. The chief ray of each field should intersect
with the aperture at its center. Trace a ray (μh,ωh) starting from
the object space of the optical system with a field point ωh and
obtain the coordinates τh of its intersection with the aperture
stop in its local coordinate system. Here, the point where the
ray intersects with a virtual plane in the object space can be
taken as μh. This process of tracing and finding the intersection
point can be expressed by τh � ε�μh�, and its derivative
ε 0�μh,�n�c � can be calculated by automatic differentiation. The
iteration process follows

μh,�n�1�
c � μh,�n�c −

τh,�n�c

ε 0�μh,�n�c �
, (4)

where subscript c represents the chief ray, n is the number of
iterations, and iteration can be stopped when τh,�n�c is less than
the allowable value. The x and y coordinates of the initial iter-
ation ray’s starting point can be the same as the vertex coordi-
nates of the first surface of the system.
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Loss functions can be constructed based on the result of ray
tracing. Lperformance includes the loss related to the root mean
square (RMS) spot size radius l spot and the loss related to dis-
tortion l dist. l spot is the average value of the RMS spot radius
among the full FOV and different wavelengths:

l spot �
1

H ×W

X
h,w

�
1

P

X
p

��xh,wp − xh,wc �2 � �yh,wp − yh,wc �2�
�1

2

,

(5)

where x and y represent the local coordinates of the image point
of a specific ray; the subscript c represents the chief ray; h, w,
and p represent the index of the sampled field point, sampled
wavelength, and sampled pupil ray, respectively; and H , W ,
and P are the total numbers of h, w, and p, respectively.

The relative distortion of off-axis sampled field points is
used to construct ldist:

l dist �
1

H ×W

X
h,w

��xh,wc − xhideal�2 � �yh,wc − yhideal�2�
��xhideal�2 � �yhideal�2�

1
2

1
2

, (6)

where the subscript “ideal” represents the ideal image point.
Lconstraint includes constraints related to, for example, the

system specifications (e.g., EFL and F#), light obstruction, sys-
tem volume, and the chief ray of the central field. The differ-
ence between the output and input structure parameters should
also be constrained to make the DNN work normally.

For the calculation of EFL, the traditional method used for
a rotational symmetric system is not feasible; hence, we use a
method that uses real ray tracing. For the focal length EFLx in
the x direction, the chief ray of a field with small angle Δθ
relative to the central field in the x direction is traced, and the
image height hx in the x direction relative to the central field
can be obtained. Based on hx � EFLx × tanΔθ, EFLx can be
calculated. The focal length EFLy in the y direction can also
be calculated using the same method. The loss of EFL lEFL
can be calculated using the MSE loss between the actual focal
lengths and the required focal length EFL�:

lEFL �
1

2
��EFLx − EFL∗�2 � �EFLy − EFL∗�2�: (7)

Similar methods can be used to calculate other system
parameters, such as the F# and magnification.

Light obstruction should be eliminated in freeform imaging
optical systems, particularly for reflective systems. It can be con-
trolled by constraining the distances between the edge points of
surfaces and the edge rays of light beams. The distances can be
calculated using real ray trace data. When the loss l obs related to
light obstruction is calculated, all the J key distances d j (a neg-
ative distance means that obstructions exist) are determined.
If d j is greater than given tolerance dmin ,j, the residual space
is considered to be sufficient, and the contribution to the loss
function should be zero; otherwise, a penalty value is added.
The loss functions can be written as

l obs �
1

J

XJ
j�1

l obs,j, where

l obs,j � −min�d j − dmin ,j, 0�: (8)

Different from aspherical surfaces, using the off-axis section
of the freeform surface will not improve the correction ability of
nonsymmetric aberrations, as the on-axis section of the surface
is also nonrotationally symmetric. The off-axis section of a free-
form surface can be characterized by the on-axis section of an-
other freeform surface. In addition, if the used area of the
freeform surface is different from the mathematical vertex
(the origin of the local coordinate system) of the surface, unnec-
essary troubles may appear during optomechanical design and
system assembly. Therefore, for the design of freeform imaging
systems, it is generally required that the chief ray of the central
field intersects with each freeform surface at its vertex (the local
coordinates should be zero). The local coordinates (x1,sc , y1,sc ) of
the chief ray of the central field with the sth surface (1 ≤ s ≤ S)
can be obtained using ray tracing. The loss function l c-ray is
defined as

l c-ray �
�
1

S

X
s
��x1,sc �2 � �y1,sc �2�

�1
2

: (9)

As the DNN should output systems whose structure param-
eters are the same as or similar to the input, the difference be-
tween the input and output structure parameters should be
controlled. The loss l str is calculated using the root mean square
error loss:

l str �
�
1

T

X
t

�STPot − STPit�2
�1

2

, (10)

where ψ i
t and ψo

t are the tth input and output structure param-
eter, respectively.

Lunsuper can be constructed using the weighted sums of
the above individual losses for all output systems, where
wspot,wdist,wEFL,wobs,wc-ray, and wstr are the weights. Addi-
tionally, for systems with more advanced system specifications,
more aberrations should be tolerated. An adjustment factor ρw
is added to balance the loss contribution of different systems to
Lperformance, and ρw decreases as the system specifications in-
crease. The losses of different systems can be summed:

Lunsuper �
X

�ρwLperformance � Lconstraint�
�

X
�ρw�wspotl spot � wdistl dist�

� �wEFLlEFL � wobsl obs � wc-ray l c-ray � wstrl str��:
(11)

The total loss when supervised and unsupervised trainings
are combined is

Ltotal � Lsuper � wunsuperLunsuper: (12)

By regulating weight wunsuper, the contribution of unsuper-
vised learning to overall network training can be modulated.
Network training can be conducted based on Ltotal to obtain
the final DNN called FreeformNet with good performance.
The overall framework of combined supervised and unsuper-
vised training is shown in Fig. 5.

E. System Generation
After FreeformNet is obtained, as shown in Fig. 6, for a specific
design task, the values of all input system parameters and struc-
ture parameters can be provided according to the design re-
quirements. In this case, the single design result tailored to
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Fig. 5. Illustration of the training mode of combined supervised and unsupervised training.

System design requirements
Determination of the entire

or partial values

Different combinations of 
system and structure 

parameters

Reverse 
processing

Single/multiple-solution 
output of freeform systems

System parameter 
requirements

FOV, ENPD, etc. 

 Structure 
requirements

Surface position, etc.

The given system  
and structure 
parameters

Randomly taking the 
values of other 

system and structure 
parameters

Predicted structure 
and surface 
parameters

Optional 
optimization and 

image performance 
evaluation

Optional filtering 
and sorting 
systems by 

requirements

Single or multiple 
design results

FreeformNet

Integrating into 
optical design 

software, or cloud, 
server, etc.

Directly used as a 
good starting point 

for further 
optimization

Fig. 6. Fast generation process of multiple-solution freeform imaging systems using FreeformNet.
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the input parameters can be output immediately by
FreeformNet. Another case is when the values of only some
of the system parameters and structure parameters have been
provided based on actual design needs. In this case, for param-
eters without designated values, the values can be randomly
selected within the corresponding parameter range. Combined
with the determined parameters, a certain number of different
parameter value combinations can be obtained and input into
FreeformNet. A series of systems that meet the basic design
requirements can be generated, and a fast multisolution output
with different structure and system parameters is realized. For a
traditional or existing freeform system generation method using
DNN, the design input is only limited to specific system
parameters combinations, and only one system can be gener-
ated fulfilling the design requirements. Compared with the
existing single-solution method, in our design framework, for
given specific system parameters (or partial system and struc-
ture parameters), multiple solutions can be generated that fulfill
the given fixed input parameters (basic design requirements)
but having different values for other parameters. Therefore,
the proposed method can be seen as a “multisolution” method.
Based on the preset evaluation indicators (e.g., various imaging
performance metrics and the system volume) and other con-
straints, the solutions can be filtered or sorted and ready for
user selection. The systems generated by FreeformNet can
be used directly as good starting points for further optimization.
The systems output directly from the network can also be
quickly optimized in parallel to generate output systems with
substantially improved imaging performance, thus greatly im-
proving the efficiency of freeform optical design. For systems
with small or moderate FOV, the optimization can be done in
several seconds for a single system in general. In this way, it only
takes several seconds in total to obtain a freeform system with
good performance after the design requirements are input into
the FreeformNet. For systems with large FOV, the time cost for
generating the starting point using FreeformNet is the same.
However, the optimization difficulty is much larger if high im-
aging performance across the full FOV is required. Some trial-
and-error and minor adjustments may be required during the
optimization process in order to balance the aberrations.
Therefore, the optimization time may be longer.

3. RESULTS

The freeform off-axis three-mirror imaging system design was
used to verify the feasibility and effect of the proposed design

framework and FreeformNet. The selected freeform off-axis
three-mirror imaging system had a central field of (0°, 0°)
and symmetry about the YOZ plane, with traditional zig-zag
folding geometry, as shown in Fig. 7(a). M1, M2, M3, and
IMG denote the primary mirror, secondary mirror, tertiary mir-
ror, and image plane, respectively. The aperture stop was lo-
cated at M2. For this system, the FOV in the x direction
(XFOV), FOV in the y direction (YFOV), and ENPD were
chosen to describe the system parameters; that is, Φ �
�XFOV,YFOV,ENPD�. The focal length was set to a fixed
value of 1 mm, and systems with other focal lengths were ob-
tained by scaling. System structure parameters included the tilt
angles and the y and z vertex coordinates of all the surfaces in
the system. Because the origin of the global coordinate system
was set to the vertex of M2, the y and z coordinates of the vertex
of M2 were not included in Ψ. Therefore, Ψ � �M1y,
M1z , M3y, M3z , IMGy, IMGz , M1tilt, M2tilt, M3tilt, IMGtilt�
(note that the input structure parameter did not contain the tilt
angles). The freeform surface type was an XY polynomial free-
form surface up to the sixth order with no base conic for sim-
plicity, and the odd-order terms of x were not used. Thus, X
had 42 individual parameters. Overall, system parameters and
partial structure parameters were considered as network inputs,
and there were nine in total. All structure and surface param-
eters were considered as network outputs, and there were
52 in total.

The next step was to determine the appropriate SPΦ. XFOV
and YFOV were specified in the range of 4°–40°, and ENPD in
the range 1/6–2/3 mm (F# in the range 1.5–6). However, be-
cause it was difficult to achieve a large etendue (for example, a
large FOV and small F# simultaneously), while satisfying the
design requirements and achieving good imaging performance,
only system parameters that satisfied the following condition
were selected:

0.5 × XFOV � 0.5 × YFOV � 20 × ENPD ≤ 33:34: (13)

In this way, the etendue will be effectively limited. During
the training of the DNN, the training result for the systems at
the edge of the system parameter space may be bad, as the num-
ber of systems in the data set whose system parameters are close
to these systems at the edges is smaller, compared with the sys-
tems in the inner part of the parameter space. Therefore, to
achieve a good overall training effect for the system parameters
within the specified range, the entire system parameter space for
network training was moderately larger than the system param-
eter space used for system generation. This can be done by
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Fig. 7. (a) The selected folding geometry of freeform off-axis three-mirror imaging system and its structure constraints. (b) Sketch of the concept
of structure parameters range.
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extending the upper and lower limits of mth system parameter
Φm by 0.5Lm (here, Lm is the length of Φm for each subspace,
which is defined in Section 2.B). For example,
for Φm, if the range of its value for system generation is
a ≤ φm ≤ b, then, during the DNN training process, the range
is enlarged to a − 0.5Lm ≤ φm ≤ b� 0.5Lm. In this way, good
imaging performance of the systems generated by the DNN
can be obtained. Then, the SPΦ was divided into smaller sub-
spaces. The ranges of XFOV, YFOV, and ENPD are seg-
mented according to the lengths L1 � 2°, L2 � 2°, and
L3 � 0.05, respectively. Therefore, I 1 � 19, I 2 � 19, and
I 3 � 11 were calculated, and the total number of subspace
pairs was I � Π3

m�1Im � 19 × 19 × 11 � 3971. After the sub-
space pairs whose central system parameters did not meet
Eq. (13) were removed, 2598 subspace pairs remained.

After the subspace pairs were divided, RSYS was generated
using a special system evolution method. The optimization of
the reference systems was completed using optical design software
CODEV. As the system was symmetrical about the YOZ plane,
only half of the full FOV was considered in the design. The six
sampled field points (0, 0), (0, YFOV/2), (0, −YFOV∕2),
(XFOV/2, 0), (XFOV/2, YFOV/2), and (XFOV/2, −YFOV∕2)
were selected for each system. During system generation, the focal
length, light obstruction, distortion, and intersection coordinates
of the chief ray of the central field with the freeform surfaces were
controlled and allowed for larger aberrations for systems with
larger ENPD and FOV. The elimination of obstructions was
achieved by controlling the five distances d shown in Fig. 7(a).
The maximum acceptable relative distortion of the off-axis field in
the x and y directions for each system is

MaxDistortion�FOV,ENPD� � 0.15 × FOV � 10 × ENPD

100
:

(14)

Let R�i� � A ×Hdim
�i�
RSYS, where Hdim

�i�
RSYS was the hori-

zontal dimension (along the z direction) of the RSYS�i� and
A � �A1,A2,…,At ,…,AT �, which was corresponding to
the input Ψ, and the value of A was the same for all subspace
pairs. Before generating the reference systems, the value of At
was determined as A1 � A2 � 	 	 	 � A6 � 1∕3. As the refer-
ence system was optimized, Hdim was constantly changing,
resulting in R also changing until optimization was finished
and the final value of R was determined. To minimize the
structure with obstructions in the subspace pair, when gener-
ating the reference system, the distance between surfaces could
be controlled according to the value of R to ensure, as much as
possible, no overlap between color blocks in Fig. 7(b) (circles
indicate each surface of the reference system; color blocks in-
dicate the range of position for each surface). The evolution
direction of the reference systems was determined by weight
W, where the value was W � �1, 1, ffiffiffiffiffi

12
p �. The reference sys-

tems were generated automatically, which took 0.83 h. In the
process of evolution, the structure parameter values of all the
reference systems were obtained, and all the subspace pairs
were determined.

Then, the full fundamental data set was generated using
a random optimization generation method. The values of
Pf ,Pf 1, and Pf 2 were 0.6, 0.5, and 0.2, respectively. Twelve

systems were generated in each subspace pair, and a total of
31,176 systems were obtained for 2598 subspace pairs, which
took 10.2 h. By obtaining the system parameters, structure
parameters, and surface parameters of these systems, the fun-
damental data set was formed.

Next, the DNN was pretrained with the fundamental data
set. The DNN used in this example had 20 hidden layers, and
the largest number of nodes in one layer was 300. The activa-
tion function, optimizer, loss function, learning rate, and batch
number were the tanh function, Adam, MSE, 10−4, and 50,
respectively. All the data in the training data set were fed into
the network. A total of 15,000 epochs were performed in pre-
training, which took 2 h. The final loss function value was
2.67 × 10−3. Training was performed on a computer with an
Intel Core i9-12900K CPU at 3.2 GHz, 64 GB of internal
memory, and NVIDIA GeForce RTX 3090 Ti GPU. After pre-
training, the feedback training strategy was further used. Each
time the system generation feedback was executed, 1000 ran-
dom parameter combinations were selected from different
subspace pairs as the DNN input. The output systems were
optimized, and the Ps value was 0.5. The good systems were
then added to the data set for further training. After feedback
training is completed, supervised training was continued for
a period of time, and the learning rate decreased gradually as
training progressed. A total of 147,000 epochs were trained,
the number of systems in the data set grew to 109,703, which
took 73.3 h, and the final loss function value achieved was
4.68 × 10−4. The performance of the model was tested using
2,000 random inputs. A total of 115 systems had ray tracing
errors, 26 systems had obstructions, and the average RMS
spot diameter of the remaining 1859 normal systems was
0.0044 mm.

Next, unsupervised learning was introduced. As the struc-
tures with obstructions were avoided as much as possible when
determining the subspace pairs, the loss function related to
obstruction was not used during unsupervised training in this
example. If the structure parameter range is relatively large, and
there are inevitably many system structures with obstructions
in other design cases, adding this loss function can be consid-
ered. The weights of each part of training loss were set as
follows: wunsuper � 5, wspot � 4, wdist � 0.05, wEFL � 0.05,
wc-ray � 0.1, wstr � 5, and ρw � −0.01 × �XFOV � YFOV�−
0.01 × ENPD� 1.1, and the batch number was adjusted to 5.
Input data used for unsupervised training were not fixed. In
each epoch, we randomly selected 500 subspace pairs and ran-
domly generated a combination of input parameter values in
each subspace pair as an input and then used these 500 inputs
for unsupervised training. A total of 1210 epochs were per-
formed in the combined supervised and unsupervised training,
which took 81.5 h. The performance of the model was tested
again and the same 2000 systems were predicted. The number
of systems with a ray tracing error decreased to 61 and the aver-
age RMS spot diameter of the normal systems decreased to
0.0025 mm. Thus, unsupervised training significantly im-
proved the performance of the DNN.

The obtained network FreeformNet can quickly generate
multiple-solution freeform imaging systems based on the
design requirements (DNN input). To help the designer
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complete the above design task using FreeformNet, a corre-
sponding program has been written and used. Designers can
input the system’s entire or partial system and structure param-
eters based on the design requirements, and single or multiple
systems can be generated. It is possible to choose whether to
evaluate the system quality and whether to perform further soft-
ware optimization. The output systems can be filtered or sorted
based on a selected metric, such as the average RMS spot diam-
eter, the maximum relative distortion of the sampled fields, vol-
ume of the system, and modulation transfer function, and are
then ready for user selection.

We used three different kinds of parameter inputs to evalu-
ate the effect of the FreeformNet obtained above. In each case,
5000 inputs were tested. The predicted system focal length was
expected to be 1 mm, and the predicted systems were not fur-
ther optimized.

In the first case, all system parameters and structure param-
eters were provided (all the parameter combinations were ran-
dom values in the parameter space). A single system would be
output corresponding to one input. Among the 5000 predicted
systems, 138 systems had ray tracing errors, 43 systems had
obstructions, and the average RMS spot diameter of the other
4819 normal systems was 0.0026 mm. Except for a few systems
with relatively larger aberrations, the output systems can be
taken as good starting points for further optimization.
Figure 8 shows nine typical predicted systems, where SPO,
DST, and VOL represent the average RMS spot diameter,
the maximum relative distortion of the sampled fields, and sys-
tem volume, respectively. The average RMS spot diameter and
the maximum relative distortion of all the normal systems are

shown in Fig. 9. If further optimization is conducted, it takes
about several seconds in general to obtain good imaging per-
formance for a system with narrow or moderate FOV.

The second case was to provide all system parameters and
partial structure parameters. The provided parameters were
XFOV�24°, YFOV � 16°, ENPD�1∕3mm (F# � 3.00),
and M1y � 2.38 mm (note that M2y � 0). Other structure
parameters were set as random values within corresponding
subspaces. Among the predicted systems, three systems had
ray tracing errors, and no system had obstructions. The average
RMS spot diameter of the other 4997 normal systems was
0.0010 mm. Among them, nine typical systems with various
structure parameters are shown in Fig. 10. The systems with
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Fig. 8. Typical predicted systems when system parameters and structure parameters were all provided.
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the smallest RMS spot diameter, smallest distortion, and small-
est volume are shown in Figs. 10(a), 10(b), and 10(c) respec-
tively. The average RMS spot diameter, the maximum relative
distortion of the sampled fields, and system volume of all the
4997 normal predicted systems are given in Fig. 11.

The third case was to provide partial system parameters. The
provided parameters were XFOV � 30° and ENPD �
0.2 mm (F# � 5.00). YFOV was a random value within
4°–28.68°, and all the structure parameters were set as random
values within corresponding subspaces. Among the predicted
systems, 113 systems with ray tracing errors, seven systems
had obstructions. The average RMS spot diameter of the other
4880 normal systems was 0.0015 mm. Among them, nine typ-
ical systems with various structure parameters are shown in
Fig. 12. For all the design examples given in Section 3, the
power distribution on different mirrors of the output systems
is dependent on the training data set and unsupervised learning.
In this paper, during the system optimization included in the
data set generation and the unsupervised learning process, the
design mainly focuses on achieving high imaging performance,
and the power distribution is not considered. For a freeform
off-axis three-mirror design with a traditional zig-zag folding
geometry and no intermediate image while M2 is taken as
the aperture stop, the optical power of M1 is generally smaller
than that of M3 (see Refs. [17,19,20,22,23,25]). If specific
power distribution is required for the systems generated by the
DNN, systems with various or specific power distribution
types should be included in the training data set and unsuper-
vised learning by adding specific design constraints during
optimization. Furthermore, specific power distribution can be

realized during final optimization on the generated starting
points.

The system and structure parameter combinations used for
testing (created designs) are generated randomly within the
parameter space, and are all different from the system and struc-
ture parameters used in the data set for network training. As the
above design examples show, good starting points (correspond-
ing to random testing system and structure parameters) can be
generated by the network in most cases, which prove that the
network generalizes. New systems are “learned” from the data
set and unsupervised learning under the design framework and
are not “memorized,” as they do not exist in the training data set
(as well as the input during unsupervised learning).
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Fig. 11. Average RMS spot diameter, maximum relative distortion,
and system volume of normal systems in the second case (the system
numbers were arranged in ascending order according to the average
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Fig. 10. Typical predicted systems when all system parameters and partial structure parameters were provided.
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We also compared the proposed method with some typical
design methods of freeform imaging systems. All the methods
will be focused on the design of freeform off-axis three-mirror
systems. The comparison results are listed in Table 1. For the
method proposed in the manuscript, each system (starting
point) can be generated in less than 0.003 s. The time cost
can be further reduced if more different systems are predicted
simultaneously. For example, predicting 1000 systems simulta-
neously takes 0.015 s, 1.5 × 10−5 s per system. Note that our
method works for a system with narrow and wide FOV (the
range of the system parameters can be wide). The networks
can be actually and easily used or integrated into current optical
design software and act as a powerful design tool or “database”
for ultrafast system starting point generation. For other meth-
ods in the table, it is generally not applicable for systems with
wide FOV (or not reported). In addition, for these design
methods, the knowledge obtained in one design task can barely
be transferred and used for other design tasks; thus, it is neces-
sary to start from scratch using these methods when approach-
ing a new design task. If the starting points are not designed
directly but are searched and found from literatures, maybe tens
of minutes or several hours will be needed, and there is a large
probability that a feasible starting point cannot be found. Other
report methods based on deep-learning are not applicable for
the freeform system design nor applicable for the multiple-
solution design.

If further optimization is conducted for the systems gener-
ated by the FreeformNet, it takes several seconds in general to
obtain good imaging performance for a system with narrow or
moderate FOV. Considering the ultrafast generation of the

starting point, it only takes several seconds in total to generate
a high-performance system after the design requirements are
input into the FreeformNet. For example, for each design task
corresponding to the first six reference design specifications in
Table 1, 20 systems with different structure parameters are gen-
erated and optimized. The optimization of each group of 20
systems can be done in between 32 and 37 s, less than 2 s
for each system. In conclusion, compared with existing meth-
ods, the method proposed in this paper realizes an ultrafast
multiple-solution freeform imaging system generation, which
works for a wide range of system and structure parameters.
Further optimization can be done in several seconds for a sys-
tem with narrow or moderate FOV. The efficiency of the free-
form optical design improved significantly and human effort
was minimized.

4. CONCLUSIONS AND DISCUSSION

In this paper, we proposed a design framework enabling fast
generation of freeform imaging systems based on deep learn-
ing. The training data set is generated automatically using a
combined sequential and random freeform system evolution
method, and its diversity is further improved by a special
feedback strategy. Supervised learning and unsupervised learn-
ing based on freeform surface differential ray tracing are com-
bined to obtain a neural network with high performance. Given
the required system and structure parameters as input, one
or multiple solutions can be output by the trained model
FreeformNet almost immediately and can be taken as good
starting points for further optimization. If further optimization
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Fig. 12. Typical predicted systems when partial system parameters were provided.
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is conducted for the systems generated by the FreeformNet,
it takes several seconds in general to obtain good imaging
performance for a system with narrow or moderate FOV.
Considering the ultrafast generation of the starting point, it
only takes several seconds in total to generate a system with
good performance after the design requirements are input into
the FreeformNet. The design framework works for generalized
freeform systems with advanced system specifications. Human
effort for the complicated freeform system design task can be
reduced to a minimum and the design efficiency is dramatically
improved. This revolutionary design framework opens up a
new pathway for the complicated lens design task and will pro-
mote the development of the next-generation optical design
software. Future work will focus on the generalized one-to-
multidesign framework generating systems with various and
different kinds of structures and folding geometries as well
as a different number of optical elements.

Currently, the freeform surface type of the systems generated
by the DNN is the same as the fixed surface type of the systems
in the data set. However, the proposed design framework can be
further extended to generate systems with different freeform
surface types. To achieve this goal, systems using different
surface types should be designed during the data set generation
process. The surface type can be taken as one of the “param-
eters” of the system, and different surface types correspond to
different values. This value is also taken as one of the inputs to

the DNN. The loss function of systems using different surface
types during supervised learning should be calculated individu-
ally and then summed. Another way is to train different DNNs
corresponding to different kinds of surface types. During
system generation, systems with different surface types can be
generated by changing the surface type input to the DNN or
using different DNNs. Then, the effects of different freeform
surface types on imaging performance or other metrics can be
compared, and the preferred surface type can be selected.
Similarly, the proposed design framework can be further ex-
tended to the design of transmission optical systems. The re-
fractive indices and Abbe numbers of lens materials can be
taken as parameters of the systems and the input of the DNN.
Systems using different lens materials (or fictitious glass model)
should be designed during the data set generation process.
Combining supervised and unsupervised learning, the DNN
will be able to output different systems using different inputs
of lens materials (or refractive indices and Abbe numbers).
Then, for these systems, the imaging performance or other met-
rics can be compared, and better solutions can be selected. In
this way, the replacement of lens materials can be realized to
some extent.

In addition, for current design framework, different DNNs
are needed for system generation tasks with different folding
geometries. For one folding geometry, the design examples
given in Section 3 show that the obtained DNN has good

Table 1. Comparison of Time Cost Using Different Design Methods

Method

Time for System Generation with Narrow or Moderate FOV Time for System Generation
with Wide FOVStarting Point With Good Imaging Performance

[19] Several minutes for system:
FOV � 3° × 3°, EFL � 60 mm,

F# � 2, LWIR

Not reported Not applicable or not reported

[20] Several minutes for system:
FOV � 8° × 8°, EFL � 95 mm,

F# � 1.8, LWIR

2.44 h for system: FOV � 8° × 8°,
EFL � 95 mm, F# � 1.8, LWIR

[23] Not reported. No individual
starting point design process

Several minutes for system:
FOV � 4° × 4°, EFL � 600 mm,

F# � 3,VIS

[25] Not reported. No individual
starting point design process

5.9 min for system: FOV � 3° × 3°,
EFL � 60 mm, F# � 1.5, LWIR

[22] Not reported. No individual
starting point design process

About 30 min for system:
FOV � 8° × 6°, EFL � 50 mm,

F# � 1.8, LWIR

[17] Not reported. A step-by-step
design method based on nodal

aberration theory: FOV � 4° × 4°,
EFL � 600 mm, F# � 3, VIS

Not reported

Finding systems
from literatures

Maybe tens of minutes or several hours. A large probability that a feasible starting point cannot be found

[26–30] Not applicable for freeform system design or not applicable for multiple-solution design

Our method Less than 0.003 s per system for starting point generation for the above systems or systems with much wider
FOV. If 1000 systems are simultaneously predicted, 1.5 × 10−5 s per system. If further optimization is conducted,

it takes only about several seconds in general to obtain good imaging performance for a system with narrow
or moderate FOV (similar with the cases shown in this table). For example, optimizing 20 different systems

can be done in between 32 and 37 s, less than 2 s for each system
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generalization ability for a wide range of system and structure
parameter values. This shows the effect and feasibility of the
proposed design framework, including automatic data set gen-
eration and combined supervised and unsupervised learning.
For other folding geometries (or other kinds of systems with
different structures, such as systems with a real exit pupil),
the same data set generation method can also be used to obtain
the corresponding data set with the same basic system structure
type and various system and structure parameter values auto-
matically, and the DNN training process can be done in the
same way. The corresponding DNNs can be generated easily
and used to generate freeform systems. The data set generation
and network training process for different kinds of systems can
be done automatically and nonstop in computers, work sta-
tions, or cloud servers, in order to generate DNNs for these
various kinds of systems. Future work will focus on the design
framework enabling the exploration and generation of systems
with different or best folding geometries, combining more
complex training data set and generative adversarial network.
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