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In this work, we apply the group representation theory to systematically study polarization singularities in the in-
plane components of the electric fields supported by a planar electromagnetic (EM) resonator with generic ro-
tation and reflection symmetries. We reveal the intrinsic connections between the symmetries and the topological
features, i.e., the spatial configuration of the in-plane fields and the associated polarization singularities. The
connections are substantiated by a simple relation that links the topological charges of the singularities and
the symmetries of the resonator. To verify, a microwave planar resonator with the D8 group symmetries is de-
signed and numerically simulated, which demonstrates the theoretical findings well. Our discussions can be ap-
plied to generic EM resonators working in a wide EM spectrum, such as circular antenna arrays, microring
resonators, and photonic quasi-crystals, and provide a unique symmetry perspective on many effects in singular
optics and topological photonics. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.485625

1. INTRODUCTION

An electromagnetic (EM) singularity refers to a point in space
where a physical parameter of the EM field is undefined, which
gives rise to nontrivial topologies of the field [1–6]. The EM
singularities as topological defects have provided a unique per-
spective for connecting many fundamental concepts, such as
angular momenta of light [5–7], bound states in the continuum
[8–11], EM multipoles [12–14], and optical chirality [15,16],
and thus have become a central topic that covers a broad range
of the EM spectrum from microwaves, via terahertz, to opti-
cal frequencies, in the research field of wave engineering
[6,12,17,18]. There are two typical categories of singularities:
the scalar and the vector singularities, also known as phase and
polarization singularities. The phase singularity occurs in a sca-
lar field where the intensity is zero and the phase is undefined.
In the paraxial regime, an EM wave with the phase singularity
is aliased as a vortex mode that has a homogeneous polariza-
tion pattern and carries an orbital angular momentum (OAM)
of lℏ (l is the order of phase singularity or topological charge;
ℏ is the reduced Planck constant) [5,6,19]. The polarization
singularity occurs in a vector field where a parameter character-
izing polarization ellipse is undefined, such as orientation,
handedness, or eccentricity [1,2,17]. An EM wave with the

polarization singularity exhibits inhomogeneous polarization
patterns. The manipulation of the polarization patterns with
EM scatterers has been of importance in both classical and
quantum optics and has fueled various applications, such as
optical manipulation [20,21], optical information processing
[22–24], engineering Bose–Einstein condensation [25], con-
trolling single-quantum radiation [26], realizing optical quasi-
particles [27–30], and designing EM devices beyond scalar
optics limit [28,31–34].

In the study of phase and polarization singularities, the sym-
metries of EM scatterers always play a significant role. For ex-
ample, rotational symmetries of the scatterers are closely related
to the EM singularities [10,35–41]. This can be demonstrated
by the fact that many devices with rotational symmetries have
been proposed to generate scalar vortex modes with phase sin-
gularity and have facilitated a plethora of OAM-based applica-
tions ranging from classical to quantum regimes [42–45].
Accordingly, the relation between the symmetries and the phase
singularity has been intensively studied [35–40]. Regarding the
relation between the symmetries and the polarization singular-
ities, symmetry analysis finds [46] that polarization singularities
in one-dimensional (1D) and two-dimensional (2D) photonic
crystals (PCs) can support bound states in the continuum
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(BICs). For this case, to realize the BICs, aside from the trans-
lation symmetries and possible rotational symmetries in the
PCs, the PCs are further required to hold the Cz

2T and σz sym-
metries (in detail, the former is the rotation of 180 deg with
respect to the axis perpendicular to the PCs together with the
time reversal symmetry, while the latter is a reflection with re-
spect to the mid-plane of the PCs). Also, a systematic study
harnessing the group theoretical tool has been performed to
study the polarization singularities in the momentum space
of 2D photonic quasi-crystals [10]. However, both studies
are carried out in the momentum space, and such relation
in real space has not been clearly and systematically revealed.

In this work, we focus on a planar EM resonator with M
rotational and M reflection symmetries (which form a DM
group), and apply the group representation theory to investi-
gate the relations between the symmetries and the polarization
singularities. This work results in two key conclusions: the first
is encoded in Eqs. (4) and (5) in Section 2 and the second,
i.e., the “symmetry-matching condition” in Section 3. The
former relates the topological features of the polarization dis-
tributions supported by the resonator with the resonator’s sym-
metries. This relation offers a neat way for designers interested
in predicting accepted or forbidden topological charges of
polarization singularities based on the symmetries of the under-
lying resonator. The latter provides a set of design rules that
customizes the geometric parameters of a feeding network,
so that the network can produce an incident field that excites
a planar EM resonator to radiate polarization singularities with
the desired topological charges. By this design rule, we design
a microwave plasmonic resonator (MPR) with the D8 group
symmetries. The numerical simulations demonstrate our theo-
retical considerations well. Our approach can be readily ex-
tended to other EM systems working in a wide EM spectrum,
such as chiral nanoemitter arrays [36,37], microring resonators
[38,39], photonic quasi-crystals [21], and circular antenna
arrays [35]. It can provide not only a unique symmetry perspec-
tive on many effects in singular optics and topological photon-
ics, but also a generic symmetry approach towards devising,
e.g., optical skyrmions [27,47], plasmonic merons [29], and
photonic spin textures [28,30].

2. EIGEN ELECTRIC FIELDS IN A RESONATOR
WITH THE DM GROUP SYMMETRIES

The main conclusions of this section are Eqs. (4) and (5). To
derive the conclusions, we start with reiterating several key ob-
servations on the irreducible representations (irreps) for the CM
group and the DM group. Here, most importantly, we give an
index, i.e., an integer j, to each dimension of the irreps of the
groups. Then, we point out that each dimension of the irreps
defines an eigen electric field distribution. By using a resonator
with the D8 group symmetries, we illustrate the polarization
morphologies and the topological features of the eigen electric
field distributions. Last but not least, because each dimension
of the irreps 1) is given an integral index, i.e., j, and 2) defines
an eigen electric field distribution holding very specific topo-
logical features, i.e., topological charges, we rigorously establish
a relation between the indices j’s and the topological charges in
the eigen electric fields, i.e., Eqs. (4) and (5).

To streamline the text, the mathematical background and
the mathematical derivations are put in the appendices. The
mathematics behind Subsection 2.A is given in Appendix A,
and the proofs for the relations are given in Appendix B.

A. Indexing the Irreps of the CM and DM Groups
Without loss of generality, we consider a planar metal resonator.
The resonator has M -fold rotation and M -fold reflection sym-
metries. The rotations and the reflections form the DM group.
For further discussions, we note that the rotations form the CM
group, and the CM group is a subgroup of the DM group. For
both the CM and the DM groups,M is an integer larger than or
equal to 2. An example of a resonator with the D8 group sym-
metries is illustrated in Fig. 1.

In the following, several important observations on the
irreps of the CM group and the DM group are reiterated as
follows [48]. For the CM group, the main points are:

• WhenM is odd, the irreps of the CM group have one 1D
irrep, i.e., A, and �M − 1�∕2 2D irreps, i.e., Eh, where h is an
integer spanning from 1 to �M − 1�∕2.

• WhenM is even, the irreps of the CM group have two 1D
irreps, i.e., A and B, and �M∕2 − 1� 2D irreps, i.e., Eh, where
h is an integer spanning from 1 to M∕2 − 1.

• Each dimension of the irreps of the CM group can be
indexed by an integer j (see how the indices are stipulated in
Appendix A). For the case thatM is odd, A is indexed by j � 0.
For the case that M is even, A and B are indexed by j � 0
and j � M∕2, respectively. For both even and odd M ’s, the
two dimensions of Eh are indexed by j � h and j � M − h,
respectively.

For the DM group, the main points are:

• WhenM is odd, the irreps of the DM group have two 1D
irreps, i.e., A1 and A2. They originate from the 1D irrep A of
the CM subgroup. Accordingly, the A1 and the A2 irreps inherit
the index j � 0 from the A irrep of the CM group.

• When M is even, the irreps of the DM group have four
1D irreps, i.e., A1, A2 and B1, B2. The A1 irrep and the A2 irrep
originate from the 1D irrep A of the CM subgroup, while the
B1 irrep and the B2 irrep are from the B irrep of the CM

Fig. 1. Illustration of a resonator with eightfold rotation symmetries
and eightfold reflection symmetries. These symmetries compose the
D8 group. In (a), the resonator (in orange) is assumed to be
made of metal. The resonator in (a) is abstracted as eight points to
demonstrate the symmetries [see the orange points in (b)]. In (b), three
symmetries operations are given as examples: C3

8, is a rotation by 3π∕8
with respect to the z axis (see the purple arrow); and σv and σd are
reflections with respect to the planes made by the z axis and the green
line, and by the z axis and the red line, respectively.
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subgroup. As a result, A1 and A2 are indexed by j � 0, and
B1 and B2 are indexed by j � M∕2.

• For both even and odd M ’s, the 2D irreps Eh of the DM
group and their indices are the same as the CM group case.

For the sake of completeness, the irreps of the CM group
and of the DM group are presented in Tables 1–4 in
Appendix A.

B. Singularities in Eigen Electric Fields
Based on the group representation theory [49], each dimension
of the irreps defines an electric field distribution. The electric
field distributions corresponding (belonging) to different di-
mensions of the irreps are orthonormal. Since the field distri-
bution is only dependent on symmetries, it is called an “eigen
electric field” (see the end of Appendix A for details).

To illustrate the eigen electric fields, we use the resonator
(see Fig. 1), with the D8 group symmetries as an example.
For the out-of-plane component of the fields (see Fig. 2),
i.e., Ez , the A1 and the A2 irreps demonstrate a trivial scalar
vortex mode, i.e., a vortex mode with topological charge of 0,
and a hexadecapole; the B1 and B2 irreps correspond to two
octopoles which can be obtained by a rotation by π∕8 of each
other; and the E1, E2, E3 irreps exhibit two scalar vortex modes
with opposite topological charges of −1, �1, −2, �2, and −3,
�3, respectively.

For the in-plane components (see Fig. 3), i.e., E∥, various
polarization distributions are exhibited. For the A1 and A2

irreps, the vector fields in the distributions are radially and
azimuthally oriented, respectively. Both distributions have
V-type polarization singularities (i.e., V-point). By definition,
a V-point is an intensity null point in a linearly polarized field
[17]. At the V-point, the polarization azimuth is undefined.
Further, the B1 and B2 irreps demonstrate vectorial octopole
patterns. Both polarization distributions show a mix of the lin-
ear, the left-circular and the right-circular polarization states.
Especially, for the B1 and B2 irreps, eight lines along radial

directions segregate the regions of right-handedness from the
ones of the left-handedness. Lastly, for an Eh (h � 1, 2, 3) irrep,
the eigen electric fields are always left- (corresponding to the
dimension indexed by j � h) and right-elliptically polarized
(corresponding to the dimension indexed by j � M − h and
here M � 8). The fields always exhibit the so-called C-point
singularities at which the orientation of the major axis of the
polarization ellipse is undefined. The topological charges of the
polarization distributions (marked in Fig. 3) can be evaluated
by the synthesized Stokes fields of the in-plane components
(see Appendix C).

C. Relations between the Indices of the Irreps and
the Topological Charges of Vortices
In the above example, the eigen electric fields clearly demon-
strate topological features, i.e., the EM singularities and the as-
sociated topological charges. Since the eigen electric fields are
always associated with the dimensions of the irreps of the DM
group, and each dimension of the irreps is indexed by an integer
j, it is natural to establish a relation between the index j and the
order of the topological charge. For the out-of-plane compo-
nent, we have demonstrated in our previous work [50] that
the topological charge of the scalar vortex (associated with
Ez) is related to the index j,

l z �
�
−j�Mq, j < M∕2
M − j�Mq, j > M∕2 , (1)

where q is an arbitrary integer. Equation (1) applies to both the
odd M and the even M cases. Especially, when M is an even
integer, the j � M∕2 case exhibits the M -pole (see the B1 and
the B2 cases in Fig. 2).

For the in-plane components carrying polarization singular-
ities, considering that an EM wave with polarization singularity

Fig. 2. Illustration of the magnitude and the phase distributions of
the z component of the eigen electric fields. The colors in the figure are
coded from blue to red to denote the strength and the phase variations.
Unless otherwise stated, the same color coding will be applied to the
rest of this work.

Fig. 3. Illustration of the intensity and the polarization distributions
of the in-plane components of the eigen electric fields. In the figure,
jE∥j2 � E2

x � E2
y , and “Pol. Mor.” is an abbreviation of “polarization

morphology.” To describe the polarization morphologies, three sym-
bols, i.e., the black lines, the blue hollow ellipses, and the red solid
ellipses, are introduced to represent the linear, the right-handed,
and the left-handed polarization states, respectively. The topological
charges carried by the polarization vortices are marked at the centers
of the polarization distributions.
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can be seen as the superposition of two scalar vortices in
orthogonal circular bases [17], we can express the field E∥ as

E∥ � jELjeil LφL̂� jERjeilRφeiβR̂: (2)

In the above equation, L̂ � 1ffiffi
2

p �x̂ � iŷ� and R̂ � 1ffiffi
2

p �x̂ − iŷ�
are the left and the right circular bases, respectively, l L and l R
are the topological charges associated with the left and the right
circular components, and β is the constant phase shift between
the left and the right circular components. The order of the
polarization singularity (or the topological charge) superposed
by the left and the right circular vortices can be evaluated
as [17]

I � �l R − l L�∕2: (3)

For the topological charges l L and l R , we prove (see the
proofs in Appendix B) that the topological charges of the left
and right scalar vortices (associated with EL and ER) are related
to the index j,

l L � −�j� 1� qLM�, l R � −�j − 1� qRM �, (4)

where qL and qR are arbitrary integers. Equation (4) can be
further illustrated by the numerical results (see Appendix D
for the D8 group case). As a result of Eqs. (3) and (4), the topo-
logical charge of the polarization singularity is

I � 1� �qL − qR�
M
2
: (5)

When M is even, the main conclusions in Eq. (5) can be
readily confirmed by the example in Fig. 3. That is, for the cases
where j ≠ 4, the choice of M � 8 and qL � qR � 0 leads to
the topological charge of 1 (see Fig. 3); for the case j � 4, the
choice of M � 8, qL � 0, and qR � 1 leads to the topological
charge of −3 (see Fig. 3). Notably, in Fig. 3 both the A1 and A2

irreps are indexed by j � 0. But there is a difference between
their polarization distributions. This difference originates from
the constant phase shifts β in Eq. (2). For the A1 irrep, the EL
and ER components have no phase shift, i.e., β � 0, which
results in the final polarization distribution being radially po-
larized. For the A2 irrep, the EL and ER components have π
phase shift, which results in the final polarization distribution
being azimuthally polarized. Similar remarks apply to the B1

irrep and the B2 irrep as well (see Fig. 3). Notably, since qL
and qR are always integers, a fractional-order polarization sin-
gularity is strictly forbidden for an even M .

To further confirm the above conclusions for the odd M
case, the D7 group case is shown in Appendix E. There, the
B1 irrep and the B2 irrep do not exist. As a result, when qL
and qR are zero, the topological charge of the polarization vor-
tices is 1 (see Fig. 13 in Appendix E). Besides, when qR − qL is
nonzero, the topological charge I can be fractional. That is,
the odd-fold rotationally symmetric resonators can indeed sup-
port the fractional-order polarization singularities. For example,
when M � 7, qR � −1, and qL � 0, the topological charge
I is −5∕2. This conclusion is illustrated for the D7 group case
(see Figs. 14 and 15 in Appendix E). As a note, the selection of
the values of qL and qR is closely related to the geometries
of resonators. Detailed theory on this aspect will be deliberated
in our future work. For the cases where the mirror symmetries

are broken, the DM group reduces to the CM group. But, even
in this case, Eq. (5) is still valid (see proofs in Appendix B).

Lastly, it is noted that polarization singularities can be only
properly defined when the out-of-plane component, i.e., the Ez
component, is negligible or significantly smaller than the in-
plane components. In the current section (e.g., in Fig. 2) and
also in the section that follows (e.g., in Fig. 8), the discussions
on the Ez component are only included to demonstrate that the
symmetries of a scatterer define the topological properties of
all three components of the eigen electric fields as a whole.
This observation can be useful for constructing vectorial EM
field configurations in the near-field regime of the scatterer,
e.g., the EM skyrmion in Ref. [47].

3. NUMERICAL VALIDATIONS

In this section, we present two categories of designs to numeri-
cally demonstrate the symmetry-based arguments in the pre-
vious section. Both categories are designed based on the
symmetry-matching conditions in Section 3.B.

A. Designs
The first category is a device [see Figs. 4(a)–4(c)] excited by a
one-port feeding network. The first layer of the device is an
MPR with the D8 group symmetries. The MPR is etched
on a dielectric plate made of Rogers 4530B (with the relative
permittivity 3.48, the loss tangent 0.0037, and the thickness
0.508 mm), which serves as the second layer. The same dielec-
tric plate is used for the third and the fifth layers. The fourth
layer is made of metal film and serves as the ground of the de-
vice. Two microstrip lines are etched on the lower surface of the
fifth layer and the upper surface of the third layer, respectively,
and are connected by a “via” through from the third to fifth
layer, as shown in Fig. 4(c). Due to the metal ground (the
fourth layer), the incident field is dominated by the field radi-
ated by the microstrip line on the upper surface of the third
layer, as shown in the top right-hand panel of Fig. 4(c). The
third, the fourth, and the fifth layers establish the feeding sys-
tem. Especially, we have a parameter for tuning the one-port
feeding system, i.e., rf 1, the length of the microstrip line on
the lower surface of the fifth layer.

The second category is a device excited by a two-port feed-
ing network [see Figs. 4(d)–4(f )]. The feeding systems in the
third, the fourth, and the fifth layers are redesigned. In detail,
two microstrip lines related by a rotation of geometric angle
Δφ � nπ∕4 are etched on the upper surface of the third layer
and serve as two ports, as shown in Fig. 4(d). The two ports are
linked by two vias (marked by “via 1” and “via 2”) to a 1-to-2
power divider etched on the lower surface of the fifth layer, as
shown in Figs. 4(e) and 4(f ). The input power is fed equally to
two ports by a power divider. The dynamic phase difference ψ
between two ports is realized by a delay line of the divider
with the length of Δd in one branch, as shown in Fig. 4(f ).
Therefore, we have two tunable parameters for tailoring the
two-port feeding system, i.e., the geometric angle Δφ and
the length of the delay line Δd [see Fig. 4(f )].

B. Symmetry-Matching Condition
To excite an eigen electric field, the so-called symmetry-matching
condition needs to be satisfied (see our previous work [51]).
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That is, the incident field must have a nonvanishing projection
along the dimension of the irrep that defines the eigen electric
field. This argument is due to the orthonormality of the eigen
electric fields discussed in Section 2 [48]. In this spirit, for the
one-port feeding case, it can be demonstrated that the design
given in Figs. 4(a)–4(c) can excite the eigen electric fields belong-
ing to the A1, the B1, the E1, the E2, and the E3 irreps
(Appendix F.1). For the two-port feeding case, the geometric an-
gle Δφ and the dynamic phase ψ can be tuned (see our previous
work [51] for detailed derivations),

Δφ � 2N 1 � 1

M − 2j
π, ψ � 2N 2π − jπ

2N 1 � 1

M − 2j
, (6)

so that an eigen electric field belonging to the dimension index by
j � h or j � M − h of the Eh irrep can be excited. It is worth
noting that Eq. (6) is derived for a resonator with generic DM

group symmetries, where M can be any integer larger than or
equal to 2; and N 1 and N 2 are also arbitrary integers. In our
design, since the geometric angle Δφ is assumed to be nπ∕4,
n is obtained as M �2N 1�1�

2�M−2j� .

C. Numerical Results
We numerically simulate the designs with the one- and the
two-port feeding networks in CST Microwave Studio (CST).
For the one-port case, the reflection coefficient S11 in Fig. 5(a)
shows that there are five well-separated dips. The excited modes
at the dips are marked by m1, m2, m3, M4, and M0, respec-
tively. From the out-of-plane component, i.e., Ez , at the dips
[see Fig. 5(b)], it is observed that the Ez component of the
m1–m3 modes demonstrates the dipole, quadrupole, and
hexapole modes, respectively; and the Ez component of theM4
and the M0 modes does the octopole mode and the zeroth-
order mode (or trivial scalar vortex mode with topological

Fig. 4. Illustration of the devices with the one- and the two-port feeding networks. (a), (b), and (c) show the top, the bottom, and the side views of
the device with the one-port feeding network. (d) and (e) show the side views of the device with the two-port feeding network. (f ) shows the details of
the two-port feeding network. In (a)–(c), the adopted parameters are: ri � 12 mm, ro � 24 mm, rd � 52 mm, rf 1 � 26 mm, rf 2 � 28 mm,
d r � 4 mm. The width of the microstrip line is 1.1 mm to ensure that the input impedance of the microstrip line is 50 Ω. In (c) and (e), two
additional vias marked by “via 3” and “via 4” are to connect the ground of the SMA connector with the fourth layer, i.e., the ground of the microstrip
lines.

Fig. 5. Illustration of the simulation results for the one-port case in Figs. 4(a)–4(c). The reflection coefficient S11 of the MPR is shown in (a). In
(a), the dips in the reflection coefficient are marked by m1, m2, m3,M4, andM0 (from low frequencies to high frequencies), respectively. In (b), the
real parts of the Ez component at the five dips are demonstrated. The fields are taken at the z � 10 mm cut plane. In the inset of (b), a dashed black
circle delineates the profile of the MPR; and a gray arrow points at the position of the via 0 in Fig. 4(c). In (b), the real part of the electric field is
normalized to the range between −1 and �1.
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charge of 0), respectively. Then, the Ez component of the
modes is projected onto each dimension of the irreps of the
D8 group. It is observed from Fig. 6 that the m1, the m2,
and the m3 modes only have nonzero projections along the di-
mensions indexed by j � 1, 7 of the E1 irrep, the dimensions
indexed by j � 2, 6 of the E2 irrep, and the dimensions in-
dexed by j � 3, 5 of the E3 irrep, while the M4 and the
M0 modes only have nonvanishing projections along the B1

(j � 4) and the A1 (j � 0) irreps. Hence, it is said that the
M0, the M4, the m1, the m2, and the m3 modes belong to
the A1, B1, E1, E2, and E3 irreps. This observation immedi-
ately confirms the prediction from the symmetry-matching
condition (see Appendix F.1). That is, the designed one-port
network excites the eigen electric fields belonging to the dimen-
sions of the A1, the B1, the E1, the E2, and the E3 irreps.
Further, by comparing Fig. 6 to Fig. 2, it is seen that the pro-
jected modes share the same topological features as the corre-
sponding eigen electric fields. For example, for the case j � 1,
both the projected modes and the eigen electric fields hold
a topological charge of −1. For the in-plane components,
i.e., E∥ (see Fig. 7), we focus on the polarization distributions
of the M4 and M0 modes and delay the discussions on the
m1, the m2, and the m3 modes to the two-port case. Since
the M4 and M0 modes belong to the A1 and B1 irreps, they
should demonstrate the topological charge of �1 and −3
as predicted by Eq. (5) and shown in Fig. 3 (we tailor the
geometry of the resonator so that the lowest-order q’s,
i.e., qL � qR � 0 are significant). This prediction is readily
verified by evaluating the topological charges of the in-plane
components of the M4 and M0 modes (see Fig. 7), respec-
tively. Lastly, by using the symmetry-matching condition as
an optimization criterion, we find the optimal length of
the microstrip line on the lower surface of the fifth layer,
i.e., rf 1 � 4 mm, so that, in contrast to Fig. 5, only the eigen
electric field belonging to the A1 irrep is excited at the M0 dip
(see the reflection coefficient S11 and the electric field in
Appendix G).

The one-port feeding network simultaneously excites the
two eigen electric fields belonging to the two dimensions of
the E1, the E2, and the E3 irreps. To selectively excite the eigen
electric field belonging to a specific dimension of the E1, the
E2, or the E3 irreps, the two-port feeding network is designed.
According to Eq. (6), we tune the geometric angle Δφ, and the
dynamic phase ψ (which is thus the length of the delay lineΔd )
to maximally excite the dimension indexed by j � 1 of the E1

irrep. By the use of Eq. (6), we can obtain Δφ � 90° and
ψ � −90° (N 1 � 1, N 2 � 0, and n � 2). The length of
the delay line, i.e., Δd , is calculated to be −27.5 mm so that
a −90° phase delay between two ports is achieved at 1.72 GHz,
where the linear mode m1 appears. This procedure can be ap-
plied to other indices j’s as well (see the caption of Fig. 8 for
the selected parameters of the two-port feeding networks cor-
responding to different indices j). The simulated out-of-plane
and in-plane components, i.e., Ez and E∥, are shown in Fig. 8.

Fig. 6. Projections of the electric fields at the five dips [in Fig. 5(a)] along the dimensions of the irreps of the D8 group. (a)–(e) correspond to the
dips m1, m2, m3, M4, and M0, respectively. In each subplot, the projections along the dimensions of the irreps (i.e., the vertical axis) are plotted
against the dimensions of the irreps (i.e., the horizontal axis). The insets illustrate the phase distributions of the Ez components of the projected
fields.

Fig. 7. Illustration of the (a) and (c) intensity and the (b) and
(d) polarization distributions of the in-plane components of the ex-
cited electric fields at the dips M4 and M0. The topological charges
are marked at the center of (b) and (d).

Research Article Vol. 11, No. 6 / June 2023 / Photonics Research 941



For the out-of-plane component, i.e., Ez , it can be observed
that the scalar vortex modes with topological charges of �1,
�2, and �3 (corresponding to the dimensions of the irreps
indexed by j � 1, 7, j � 2, 6, and j � 3, 5) are excited by
the designed two-port feeding networks. For the in-plane com-
ponents, i.e., E∥, the polarization distributions indexed by
j � 1, 2, 3 and j � 7, 6, 5 exhibit right-handed and left-
handed elliptical polarizations and hold C-point singularities
with topological charges �1 (see the EL, the ER , and the
Stokes fields in Appendix H). The resonant frequencies in
Fig. 8 are retrieved from the simulated reflection coefficient
S11 of each two-port feeding network (see Appendix I).

Comparing the frequencies in Fig. 8 to the ones in Fig. 5,
it can be observed that there are small frequency shifts. The
differences are due to the feeding networks: that is, in
Figs. 5 and 8, one-port and two-port feeding networks are used.
Finally, it is noted that for the A2 and B2 irreps, the correspond-
ing eigen electric fields cannot be excited by the designed one-
or two-port feeding system. More complex feeding systems are
needed (see discussions in Appendix F.2). As a caveat, it is
noted that Fig. 8 focuses on the near-field regime of the res-
onator, where both the out-of-plane and the in-plane compo-
nents of electric fields are significant. However, this is only to
validate the theoretical arguments in Section 2, i.e., Eqs. (1)
and (5), and to demonstrate that the symmetries of the reso-
nator indeed define the topological singularities in all three field
components. To be in line with the definition of in-plane
polarization singularities (see the end of Section 2), we plot
the electric field corresponding to the j � 7 case on different
cuts above the resonator in Appendix J. There, the out-of-plane
component is weak enough so that in-plane polarization singu-
larities can be properly defined.

Last but not least, it is worth mentioning that, since the one-
and the two-port feeding networks do not hold the D8 group
symmetries of the resonator, adding them as excitations indeed
breaks the symmetries of the resonator. This results in a split-
ting of the C-type polarization singularities in Fig. 8 (see details
in Appendix H). Especially, for the two-port feeding network
case, it has to be emphasized that the design rules in Eq. (6) aim
to maximally but not exclusively excite the eigen electric fields
belonging to a specific dimension of an Eh irrep. That is, the
feeding network can still excite eigen electric fields belonging to
other dimensions of the irreps but only in a parasitic manner.
To exclusively excite a specific dimension, a feeding network
that fully matches the symmetries of the resonator is needed.
This feeding network requires 16 ports and is envisaged in
Appendix F.2.

4. CONCLUSIONS

In conclusion, we systematically investigate the relation be-
tween the symmetries of an EM resonator and the topological
features of the in-plane polarization distributions supported by
the resonator. The relation is consolidated: 1) the morphologies
of polarization distributions are categorized by the irreps deter-
mined by the symmetries of the resonator, and 2) the topologi-
cal charges of the polarization distributions are directly linked
with the irreps through Eqs. (5) and (6). Although our discus-
sions focus on the relation between the in-plane electric fields
supported by the resonator, and the discrete rotation and reflec-
tion symmetries of a planar microwave resonator, the same
methodology can be applied to the discussions on the vector
fields defined on other spaces, e.g., the momentum space, and
the other types of symmetries, e.g., the translational symmetries
in a lattice. This line of reasoning can be very helpful in search-
ing for the symmetry origins of many photonic effects.

APPENDIX A: SYMMETRIES

1. CM Group and DM Group
In this work, we consider a planar metal resonator (we as-
sume that the planar resonator is positioned at z � 0 in the

Fig. 8. Illustration of the out-of-plane and the in-plane compo-
nents, i.e., Ez and E∥ of the excited fields in the two-port feeding
designs in Figs. 4(d)–4(f ). The fields are taken on a cut plane at
z � 20 mm. (a) and (b), (c) and (d), (e) and (f ) show the Ez and
the E∥ belonging to the two dimensions indexed by j � 1, 7 of the
E1 irrep, to the two dimensions indexed by j � 2, 6 of the E2 irrep,
and to the two dimensions indexed by j � 3, 5 of the E3 irrep, respec-
tively. For the case of j � 1 and j � 7, the lengths of the delay lines
Δd are chosen as −27.5 mm and 27.5 mm, so that −90° and 90° phase
delays between two ports are achieved at the targeted frequency
1.72 GHz (in the final simulation, 1.73 GHz). For the cases of
j � 2 and j � 6, the lengths of the delay lines are chosen as
−20.8 mm and 20.8 mm, so that −90° and 90° phase delays between
two ports are achieved at the targeted frequency 2.28 GHz (in the final
simulation, 2.30 GHz). For the case of j � 3 and j � 5, the lengths of
the delay lines Δd are chosen as −18.7 mm and 18.7 mm, so that −90°
and 90° phase delays between two ports are achieved at the targeted
frequency 2.54 GHz (in the final simulation, 2.56 GHz).
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x-y plane). Although the geometry of the resonator can be ar-
bitrary, it always holds M -fold rotational andM -fold reflection
symmetries. The symmetries form the DM group. The gener-
ators of the group [48] are r and s. r is a rotation of an angle
θ0 � 2π∕M with respect to the z axis, and s is a
reflection that makes an angle θ0∕2 with respect to the x axis
[see the rotation, the reflection, and the coordinate system
in Fig. 1(b) in the main text]. The elements of the group
are a set of rotations f1, r, � � � , rM−1g and a set of reflections
fs, sr, � � � , srM−1g. In the set of rotations, 1 is the identity op-
eration that keeps the resonator unchanged. Especially, the set
of the rotations forms an important subgroup, i.e., the CM
group and the DM group.

2. Irrep of the CM Group and the DM Group
Lying at the core of the group representation theory are the
irreps. The irreps are essentially matrices [48]. In this work,
we mark an irrep with the Greek letter Γ. In the following,
we specifically focus on the irreps of the CM and the DM
groups.

First, we look at the irreps of the CM group and consider
two cases: the odd M case and the even M case.

For an odd M , A labels a 1D irrep (that is, a scalar that
is a 1D matrix), while Eh (h is an integer spanning from 1
to �M − 1�∕2) labels a 2D irrep (that is, two dimensional
matrices).

For an even M , A and B label 1D irreps, while Eh (h is an
integer spanning from 1 to M∕2 − 1) labels a 2D irrep.

The diagonal elements of the irreps are listed in Tables 1
and 2. It can be seen from the tables that the diagonal elements
of the irreps hold a general form, i.e., �εj�m. Here, ε is equal to
eiθ0 , with θ0 being defined as 2π∕M . m is an integer spanning
from 0 to M − 1 so that all the rotation operations are covered.
And j is an integer that gives an index to each dimension of
the irreps.

Second, we turn our focus to the DM group and again con-
sider two cases: the odd M case and the even M case. The
diagonal elements of the irreps of the DM group are shown
in Tables 3 and 4.

For an odd M , A1, A2 label two 1D irreps (that is, 1D ma-
trices), while Eh [h is an integer spanning from 1 to �M − 1�∕2]

labels 2D irreps (that is, two dimensional matrices). It can be
proven [48] that: 1) the A1 and the A2 irreps are originated
from the A irrep, and hence they inherit the index j � 0 from
the A irrep of the CM group; and 2) the Eh irrep of the DM
group is the same as the Eh of the CM group and thus the in-
dices stay the same.

For an evenM , A1, A2, B1, B2 label four 1D irreps, while Eh
(h is an integer spanning from 1 to M∕2 − 1) labels 2D irreps.
The A1 and the A2 irreps, and the B1 and the B2 irreps are
indexed by j � 0 and j � M∕2, respectively, because they stem
from the A and the B irreps of the CM group. The Eh irreps and
their indices are again the same as the ones of the CM group.

3. Concept of Projection Operators and Basis
Functions
It is remembered that the irreps are essentially matrices and
marked by the Greek letter Γ in this work. For the ith dimen-
sion (or the ith row) of an irrep Γ, a projection operator can be
defined,

PΓ
i � d �Γ�

N

X
R

Γ�
ii�R� · PR: (A1)

Take the irreps of the DM group as an example. On the left-
hand side of Eq. (A1), the superscript Γ of the projection op-
erator can be A1, A2, and Eh for the oddM case, and can be A1,
A2, B1, B2, and Eh for the even M case. The subscript i of the
projection operator is the dimension (or row) index. On the
right-hand side of Eq. (A1), N is the number of symmetries
in the group. For the DM group, N is equal to 2M . d �Γ�
is the dimension of the irrep Γ. The summation is done with
respect to R, that is, all the symmetry operations in the group.
For each symmetry operation R, there is a matrix Γ�R� and
Γii�R� is the diagonal element on the ith dimension (or
row/column) of the matrix. PR is the transformation operator
[48,49],

PRf �r� � f �R−1 · r�, PRf �r� � R · f �R−1 · r�: (A2)

Table 1. Diagonal Elements of the Irreps of the CM

Group (M Is an Odd Integer)

j rm

A j � 0 �εj�m
Eh 	h � 1, � � � , �M − 1�∕2
 j � h �εj�m

j � M − h �εj�m

Table 2. Diagonal Elements of the Irreps of the CM

Group (M Is an Even Integer)

j rm

A j � 0 �εj�m
B j � M∕2 �εj�m
Eh 	h � 1, � � � ,M∕2 − 1
 j � h �εj�m

j � M − h �εj�m

Table 3. Diagonal Elements of the Irreps of the DM

Group (M Is an Odd Integer)

j rm srm

A1 j � 0 �εj�m �εj�m
A2 �εj�m −�εj�m
Eh 	h � 1, � � � , �M − 1�∕2
 j � h �εj�m 0

j � M − h �εj�m 0

Table 4. Diagonal Elements of the Irreps of the DM

Group (M Is an Even Integer)

j rm srm

A1 j � 0 �εj�m �εj�m
A2 �εj�m −�εj�m
B1 j � M∕2 �εj�m �εj�m
B2 �εj�m −�εj�m
Eh 	h � 1, � � � ,M∕2 − 1
 j � h �εj�m 0

j � M − h �εj�m 0
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Equation (A2) defines the transformation rule when apply-
ing the transformation operator to a scalar and a vector
function.

Applying the projection operator in Eq. (A1) to an arbitrary
function leads to

PΓ
i f �r� � f Γ

i �r�, PΓ
i f �r� � f Γi �r�: (A3)

In Eq. (A3), the projection operator is applied to a scalar
function and a vector function, respectively. Since the projec-
tion operator is defined for the ith dimension (or row) of the
irrep Γ, the projected functions f i

Γ and f
i
Γ are said to belong to

the ith dimension (or row) of the irrep Γ. It can be proven [48]
that the projected functions belonging to different rows of an
irrep or belonging to different irreps are orthogonal and form a
basis for expanding a generic function. In this sense, the pro-
jected functions are also called “basis functions” [49]. Notably,
the effect of a transformation operator on a basis function be-
longing to the ith dimension of an irrep Γ is (see (3–23)
in Ref. [49]),

PRf Γ
i �r� � Γii�R�f Γ

i �r�, PRf Γi �r� � Γii�R�f Γi �r�: (A4)

As a note, as seen from Tables 3 and 4, for an Eh irrep, the
diagonal elements of the irrep are zero for reflection symmetry
operations. This indicates that the reflection symmetries play
no role in the construction of the projection operators corre-
sponding to the two dimensions (the two rows) of the irrep.
As a result, for a specific dimension of an Eh irrep, the projec-
tion operator and the basis function for the DM group are the
same as the ones for the CM group.

APPENDIX B: BASIS FUNCTIONS FOR THE CM
GROUP AND THE DM GROUP

1. CM Group
First, we focus on the CM group. We remember that, on the
one hand, all the dimensions (rows) of the irreps of the CM
group (see Section 2.A in the main text and Tables 1 and 2
in Appendix A) are indexed by unique integers, i.e., j’s; on
the other hand, by Eqs. (A1) and (A3), all the dimensions
(rows) of the irreps of the CM group uniquely define their cor-
responding projection operators and basis functions. Therefore,
the projection operators and basis functions can be labeled by
the same integers. Further, since j consecutively spans 0 to
M − 1, we can call the projection operator and the basis func-
tion labeled by a given integer j as the jth operator and the jth
basis function.

Then, we consider the jth basis function. Here, the jth basis
function, i.e., f j�r�, is a vector function where r is a point in the
x-y plane and has two components. In the following, we con-
sider the left and the right circular bases,

L̂ � 1ffiffiffi
2

p
�

1
�i

�
, R̂ � 1ffiffiffi

2
p

�
1
−i

�
: (B1)

The jth basis function can be expanded as

f j�r� � f L
j �r�L̂� f R

j �r�R̂: (B2)

In the above equation, f L
j �r� and f R

j �r� are the left and the
right circular components of the basis function. We apply a
rotation r, which is a rotation around the z axis by θ0 � 2π∕M,
to the jth basis function. On the one hand, Eq. (A2) leads to

PRf j�r� � R · f j�R−1 · r�
� R · 	f L

j �R−1 · r�L̂� f R
j �R−1 · r�R̂
: (B3)

By using the polar coordinate, i.e., r � �ρ, θ� and noting
that

R · L̂ � L̂e−iθ0 , R · R̂ � R̂eiθ0 , (B4)

Equation (B3) becomes

PRf j�r� � f L
j �ρ, θ − θ0�e−iθ0 L̂� f R

j �ρ, θ − θ0�eiθ0 R̂: (B5)

On the other hand, Eq. (A4) leads to

PRf j�r� � eijθ0 	f L
j �ρ, θ�L̂� f R

j �ρ, θ�R̂
: (B6)

We equate Eq. (B5) with Eq. (B6),

f L
j �ρ, θ − θ0� � ei�j�1�θ0f L

j �ρ, θ�, (B7)

f R
j �ρ, θ − θ0� � ei�j−1�θ0f R

j �ρ, θ�: (B8)

Further, we note that Eqs. (B7) and (B8) are invariant by
multiplying 1 on both sides of the equations,

f L
j �ρ, θ − θ0� � ei�j�1�qLM �θ0f L

j �ρ, θ�, (B9)

f R
j �ρ, θ − θ0� � ei�j−1�qRM �θ0f R

j �ρ, θ�: (B10)

In Eqs. (B9) and (B10), we have used �eiMθ0�qL �
�eiMθ0�qR � 1 where qL and qR are integers. More importantly,
the multiplication of 1 on both sides is more than a mathemati-
cal manipulation. Physically, Eqs. (B9) and (B10) are closely
related to the fact that multiple full-phase (from 0 to 2π) var-
iations can be accommodated within a period θ0. An ansatz for
f L
j �r� is

f L
j �ρ, θ� � uLj �ρ, θ�e−i�j�1�qLM �θ : (B11)

In the above equation, uLj is a periodic function of the azi-
muthal angle θ. This assumed form can be readily verified by
substituting Eq. (B11) in the left-hand side of Eq. (B7),

f L
j �ρ, θ − θ0� � uLj �ρ, θ − θ0�e−i�j�1�qLM��θ−θ0�

� ei�j�1�qLM �θ0 · uLj �ρ, θ�e−i�j�1�qLM�θ

� ei�j�1�qLM �θ0 · f L
j �ρ, θ�: (B12)

The above recovers the relation in Eq. (B9). Similarly, an
ansatz for f R

j �r� is
f R
j �ρ, θ� � uRj �ρ, θ�e−i�j−1�qRM�θ: (B13)

Again, uRj is a periodic function of the azimuthal angle θ.
Examining Eqs. (B11) and (B12) readily leads to the conclu-
sion that both the left component and the right component of
the jth basis function are scalar vortices. The topological
charges of the vortices are

l L � −�j� 1� qLM �, l R � −�j − 1� qRM�: (B14)

Thus, the topological charge of a polarization singularity in
the jth basis function is

I � 1

2
�l R − l L� � 1� �qL − qR�

M
2
: (B15)
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To be complete, the jth basis function in Eq. (B2) becomes

f j�r� � uLj �ρ, θ�e−i�j�1�qLM �θL̂� uRj �ρ, θ�e−i�j−1�qRM�θR̂:

(B16)

2. DM Group
Second, we look at the DM group. As discussed at the end of
Appendix A, since for a specific dimension (row) of the Eh ir-
rep, the basis function of the DM group is the same as the one
of the CM group; the conclusions for the basis functions cor-
responding to the Eh irreps of the CM group remain the same
for the Eh irreps of the DM group. We note that, for the DM
group, these unchanged basis functions are labeled by 1) when
M is odd, j spanning 1 to M − 1; and 2) when M is even, j
spanning 1 to M∕2 − 1 and M∕2� 1 to M − 1. Hence, we
only need to consider: 1) when M is odd or even, the j � 0
case (which labels the A1 irrep and the A2 irrep of the DM
group); and 2) when M is even, the j � M∕2 case (which
labels the B1 irrep and the B2 irrep of the DM group).

For the A1 irrep and the A2 irrep, the basis functions can be
obtained as

fA1
0 �r�� f 0�r��Psf 0�r�, fA2

0 �r�� f 0�r�−Psf 0�r�: (B17)

In Eq. (B17), the subscript of fA1
0 �r� and fA2

0 �r� emphasizes
that we are considering the case j � 0, and their superscripts A1

and A2 mark that fA1
0 �r� and fA2

0 �r� are the basis functions of
the A1 and the A2 irreps. Further, f 0 is the basis function in
Eq. (B16) when j � 0. Lastly, Ps is the transformation operator
[defined in Eq. (A2)] of the reflection operation s (which is
defined at the very beginning of Appendix A). s defines a re-
flection matrix,

s � s−1 �
�
cos θ0 sin θ0
sin θ0 −cos θ0

�
: (B18)

We note the following identities:

s−1 · r �
�
cos θ0 sin θ0
sin θ0 −cos θ0

�
·
�
ρ cos θ
ρ sin θ

�

�
�
ρ cos�θ0 − θ�
ρ sin�θ0 − θ�

�
, (B19)

s · L̂ �
�
cos θ0 sin θ0

sin θ0 −cos θ0

�
·
1ffiffiffi
2

p
�

1

�i

�
� 1ffiffiffi

2
p

�
1

−i

�
eiθ0

� R̂eiθ0 , (B20)

s · R̂ �
�
cos θ0 sin θ0

sin θ0 −cos θ0

�
·
1ffiffiffi
2

p
�

1

−i

�
� 1ffiffiffi

2
p

�
1

i

�
e−iθ0

� L̂e−iθ0 : (B21)

Therefore, Psf 0�r� in Eq. (B17) reads

Psf 0�r� � uL0�ρ, θ0 − θ�e−i�qLM�1��θ0−θ�R̂eiθ0

� uR0 �ρ, θ0 − θ�e−i�qRM−1��θ0−θ�L̂e−iθ0

� uL0�ρ, −θ�e�i�qLM�1�θR̂ � uR0 �ρ, −θ�ei�qRM−1�θL̂:

(B22)

Then, the basis functions in Eq. (B17) are

fA1
0 �r� � 	uL0�ρ, θ�e−i�qLM�1�θ � uR0 �ρ, −θ�ei�qRM−1�θ
L̂

� 	uR0 �ρ, θ�e−i�qRM−1�θ � uL0�ρ, −θ�e�i�qLM�1�θ
R̂,
(B23)

fA2
0 �r� � 	uL0�ρ, θ�e−i�qLM�1�θ − uR0 �ρ, −θ�ei�qRM−1�θ
L̂

� 	uR0 �ρ, θ�e−i�qRM−1�θ − uL0�ρ, −θ�e�i�qLM�1�θ
R̂:
(B24)

Since qL and qR are arbitrary integers, for example, we can
choose qL � −qR � q,

fA1
0 �r� � 	uL0�ρ, θ� � uR0 �ρ, −θ�
e−i�qM�1�θL̂

� 	uR0 �ρ, θ� � uL0�ρ, −θ�
e�i�qM�1�θR̂, (B25)

fA2
0 �r� � 	uL0�ρ, θ� − uR0 �ρ, −θ�
e−i�qM�1�θL̂

� 	uR0 �ρ, θ� − uL0�ρ, −θ�
e�i�qM�1�θR̂: (B26)

Based on Eqs. (B25) and (B26), we can identify the topo-
logical charges of the scalar vortices in the left circular and the
right circular components of the A1 irrep and the A2 irrep,

l L � −�1� qM �, l R � ��1� qM�: (B27)

Equation (B27) is completely in line with Eq. (B14) for the
CM group case.

For the B1 and the B2 irreps, the basis functions can be
obtained as

f B1

4 �r� � f 4�r� � Psf 4�r�, f B2

4 �r� � f 4�r� − Psf 4�r�:
(B28)

In Eq. (B28), the subscript of f B1

4 �r� and f B2

4 �r� emphasizes
that we are considering the case j � 4, and their superscripts B1

and B2 mark that f B1
0 �r� and f B2

0 �r� are the basis functions of
the B1 and the B2 irreps. Further, f 4 is the basis function in
Eq. (B16) when j � 4. The procedures are the same as the ones
for the A1 and the A2 irreps and will not be repeated here. The
result is that the topological charges of the scalar vortices in the
left circular and the right circular components of the B1 irrep
and the B2 irrep,

l L � −

�
M
2
� 1� qM

�
, l R � −

�
M
2
− 1� qM

�
:

(B29)

Again, Eq. (B29) is completely in line with Eq. (B14) for the
CM group case.

In conclusion, based on the above analysis, the relation
in Eq. (B14) is still valid for the DM group case. Therefore,
Eq. (B15) is a general formula for both the CM group and
the DM group cases.

APPENDIX C: SYNTHESIZED STOKES FIELDS

In the following, we evaluate the topological charges of polari-
zation singularities based on the Stokes field. The Stokes
parameters are defined as [17,52]
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S0 � I x � I y � jEx j2 � jEyj2, (C1)

S1 � I x − I y � jEx j2 − jEyj2, (C2)

S2 � I 45° � I−45° � 2Re�E�
x · Ey�, (C3)

S3 � ILCP − IRCP � 2 Im�E�
x · Ey�: (C4)

In the above equations, I x and I y, I 45° and I −45°, and ILCP
and IRCP are the intensities of the components of a polarization
state along x, y bases, 45°, −45° bases, and circular bases,
respectively. Based on Eqs. (C2) and (C3), a Stokes field,
i.e., S12, is synthesized as

S12 � S1 � iS2 � jS12jeiϕ12 : (C5)

The Stokes index is related to the phase of the Stokes field
in Eq. (C5),

σ12 �
1

2π

I
∇ϕ12 · ds: (C6)

The topological charge of a polarization singularity (a C
point or a V point) can be obtained from the Stokes index
in Eq. (C6), i.e.,

IC or IV � σ12
2

: (C7)

As an example, the magnitude and the phase of the syn-
thesized Stokes fields are plotted in Fig. 9 for the in-plane com-
ponents of the eigen electric fields belonging to the dimensions
of the irreps of the D8 group (see Fig. 3 in the main text). The
Stokes index and the topological charge can be directly read out
from Fig. 9.

We also apply the normalized Stokes field S3∕S0 to validate
the C points in Fig. 3. Different values of the S3∕S0 reflect
different local polarization states formed: when S3∕S0 � 1,
the polarization state is left circularly polarized; when 0 < S3∕
S0 < 1, the polarization state is left elliptically polarized; when
S3∕S0 � 0, the polarization state is linearly polarized; when

−1 < S3∕S0 < 0, the polarization state is right elliptically po-
larized; and when S3∕S0 � −1, the polarization state is right
circularly polarized [52].

Figure 10 demonstrates that the C-type polarization singu-
larities with different handedness are indeed formed in the
in-plane electric fields belonging to the E1, the E2, and the
E3 irreps (see Fig. 3 in the main text). To be specific, take

Fig. 9. Illustration of the magnitude distribution and the phase
distribution of the Stokes field S12 (corresponding to Fig. 3 in the
main text).

Fig. 10. Illustration of the normalized Stokes parameters S3∕S0
(corresponding to Fig. 3 in the main text).

Fig. 11. Illustration of the magnitude and phase distributions of the
EL and the ER components of the in-plane eigen electric fields for all
the irreps of the D8 group.
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the upper-left subplot in Fig. 10 as an example. S3∕S0 varies
from 0 at the boundary to −1 at the center, which suggests a
left-handed C point is formed. This result is consistent with the
polarization ellipse plot in the main text (see the right-most
subplot in the upper panel of Fig. 3). This conclusion applies
to the other subplots in Fig. 10 as well. However, it is worth
noting that in Fig. 10 there are singular points at the center of
the S3∕S0 plot for the E2 and the E3 irreps. This is due to the
fact that the null intensities of the in-plane electric fields appear
at the central points.

APPENDIX D: D8 GROUP CASE

In this appendix, we illustrate the left and the right components
of the in-plane eigen electric fields for the D8 group in Fig. 11.

APPENDIX E: D7 GROUP CASE

In this appendix, first, in parallel with Figs. 2 and 3 in the main
text, we demonstrate the eigen electric fields for the D7 group
case in Fig. 12 (the Ez component) and Fig. 13 (the in-plane
components). Here, we tailor the geometry of the resonator in
such a way that qL and qR are zero and thus according to Eq. (5)
in the main text, the topological charge of the polarization
singularity is 1. Second, we design another resonator, so that
qL � 0 and qR � −1 are selected. Again, by Eq. (5) in the main
text, a topological charge I � −5∕2 can be realized (see Figs. 14
and 15).

Fig. 12. Illustration of the magnitude and phase distributions of the
Ez component of the eigen electric fields corresponding to the irreps of
the D7 group.

Fig. 13. Illustration of the intensity and the polarization distribu-
tions of the in-plane components of the eigen electric fields corre-
sponding to the irreps of the D7 group.

Fig. 14. Illustration of the magnitude and the phase distributions
of two circular components of the in-plane eigen electric field corre-
sponding to the second dimension (row) of the E3 irrep (marked by
j � 4) of the D7 group. It can be observed that the ER and the EL
exhibit two scalar vortex modes with topological charge of −3 and 2,
respectively.

Fig. 15. Illustration of the magnitude and the phase distributions of
the Stokes field S12, and the intensity and the polarization distribu-
tions of the in-plane eigen electric field corresponding to the second
dimension (row) of the E3 irrep (marked by j � 4) of the D7 group.
It can be observed that the Stokes field S12 exhibits a scalar vortex with
a topological charge of −5, and thus the in-plane eigen electric field
carries a polarization singularity with a topological charge of −5∕2.
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APPENDIX F: SYMMETRY-MATCHING
CONDITION

1. One-Port Feeding Network
Since the length of the microstrip line (which is 4 mm) on the
third layer is significantly smaller than the smallest operating

wavelength (which is around 80 mm) of the resonator, the mi-
crostrip line can be seen as an electric dipole. Then, the electric
field radiated by such a dipole is evaluated and projected to the
irreps of the D8 group (see Fig. 16). It is readily found that the
incident field generated by the microstrip line has nonvanishing
projections along the A1, the B1, the E1, the E2, and the E3

irreps. Thus, the one-port feeding network can excite the cur-
rents, and their scattered fields belong to these irreps.

2. Multiport Feeding Networks
Two multiport networks which are used to excite the A2 and
the B2 irreps are illustrated in Fig. 17 and Fig. 18, respectively.

APPENDIX G: OPTIMIZATION OF THE ONE-
PORT NETWORK FOR THE MAXIMAL
EXCITATION OF THE M0 MODE

By using the symmetry-matching principle from our previous
work [47,51], we find, when rf 1 � 4 mm [see the definition
of this parameter in Fig. 4(b) of the main text], only the electric
field belonging to the A1 irrep, i.e., the M0 mode, is excited
(see Fig. 19 for the reflection coefficient and the field).

APPENDIX H: FURTHER DISCUSSIONS ON
FIGS. 7 AND 8

First, we plot the EL and the ER components of the in-plane
electric field in Fig. 20 and the Stokes field S12 in Fig. 21. In the

Fig. 16. Projections of the electric field radiated by the electric dipole
oscillating at 1.72 GHz along the dimensions of the irreps of the D8

group. The projections along the dimensions of the irreps (i.e., the
vertical axis) are plotted against the dimensions of the irreps (i.e., the
horizontal axis). The insets illustrate the phase distributions of the Ez
components of the projected fields. Notably, here for the sake of com-
pactness, we only demonstrate the projected fields at the first resonant
point (i.e., 1.72 GHz). For other resonant frequency points (e.g., 2.28,
2.54, 2.63, and 3.78 GHz), similar behaviors can be observed as well.

Fig. 18. Illustration of the spatial configuration of a 16-port feeding
system to excite the eigen electric field belonging to the B2 irrep.

Fig. 19. Illustration of the simulated reflection coefficient S11 and the excited electric field. (a) shows the reflection coefficient. The magnitude
and the phase of the out-of-plane component, i.e., Ez , are plotted in (b) and (c), while the intensity and the polarization distributions of the in-plane
components, i.e., Ejj, are plotted in (d) and (e).

Fig. 17. Illustration of a spatial configuration of a 16-port feeding
system to excite the A2 irrep.
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two figures, the columns marked by A1 and B1 correspond to
Fig. 7, while the columns marked by E1, E2, and E3 correspond
to Fig. 8.

Second, we evaluate the normalized Stokes field S3∕S0 (see
Fig. 22) to study the C-points in Fig. 8 in more detail. In the
following, we focus on the plot in the column marked by
E1�j � 7� in Fig. 21, and similar discussions apply to other
plots. The plot demonstrates a similar trend to the plot in

the column marked by E1�j � 7� in Fig. 10. That is,
S3∕S0 varies from 0 at the boundary to −1 at the center.
However, the plot in Fig. 10 demonstrates a perfect circular
shape, while its counterpart in Fig. 21 shows a deformed ellip-
tical shape. Further, at the center of the plot in Fig. 21, S3∕S0 is
not exactly equal to −1.

Fig. 20. Illustration of the simulated magnitude and phase distri-
butions of the EL and the ER components of the in-plane electric
fields. The figure includes eight columns. The columns marked by
A1�j � 0� and B1�j � 4� correspond to Fig. 7 in the main text.
The rest of the columns correspond to Fig. 8 in the main text.
The figure includes two subplots. In each subplot, there are two pan-
els. The upper panel and the lower panel correspond to the EL and the
ER components of the in-plane eigen electric fields, respectively. The
first row and the second row of the upper (lower) panel are the mag-
nitude and the phase distributions of the EL (ER) component of the
in-plane electric fields. All the phase distributions are zoomed-in plots
in the squares encircled by white lines in the B1�j � 4� column.

Fig. 21. Illustration of the magnitude [abs�S12�] and the phase
[angle�S12�] distributions of the Stokes field S12. Similar to
Fig. 20, the figure consists of eight columns. The columns marked
by A1�j � 0� and B1�j � 4� correspond to Fig. 7 in the main text.
The rest of the columns correspond to Fig. 8 in the main text. Further,
in the column marked by E1�j � 7�, a white dashed circle and two
solid circles mark three loop paths. And, in the same column, a black
square denotes a square region where the intensity and the polarization
distributions in Fig. 23 are plotted. Additionally, in the columns
marked by E1�j � 1�, E2�j � 2�, and E2�j � 6�, the arrows point
at the C-points whose topological charge is 1/2. Lastly, all the phase
distributions are plotted in the square encircled by the white line in the
column marked by B1�j � 4�.

Fig. 22. Illustration of the normalized Stokes parameters S3∕S0 cor-
responding to Fig. 8 in the main text. Two white arrows point at the
locations where the S3∕S0 equals 1.
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These differences can be further understood by looking at
the scalar vortices in the left and right components, i.e., EL and
ER , of the in-plane fields. The EL and the ER related to the plot
in the column marked by E1�j � 7� in Fig. 10 are plotted
in the column marked by E1�j � 7� in Fig. 11. The EL
and the ER related to the plot in the column marked by
E1�j � 7� in Fig. 21 are plotted in the column marked
by E1�j � 7� in Fig. 20. By comparing the EL and the ER
components in Figs. 11 and 20, it is observed that both results
demonstrate a topological charge of 0 in ER and a topological
charge of −2 in EL (in Fig. 11, the topological charges are exact;
in Fig. 20, the topological charges are approximate). However,
by comparing with the results in Fig. 11, the scalar vortex mode
in the ER component in Fig. 20 does not demonstrate a maxi-
mum in the magnitude right at the center. Also, its phase dis-
tribution does not exhibit an annular shape. Further, the scalar
vortex in the EL component in Fig. 20 does not exhibit a do-
nut-like distribution in magnitude. Nor does it form a perfect
phase singularity at the center.

The main reason for the imperfection is due to the use of the
two-port feeding network that breaks the symmetries of the
resonator. The symmetry breaking further leads to a splitting
of the C-points. To see the splitting, still focus on the columns
marked by E1�j � 7� in Fig. 21 and in Fig. 22. From the phase

distribution of the S12 in Fig. 21, it can be observed that along
the white dashed loop path (denoted by a white dashed circle in
Fig. 21), the winding number is 2, i.e., the topological charge
carried by the scalar vortex in S12 is 2; however, along one of
two white solid loop paths (denoted by two white solid circles
in Fig. 22), the phase-winding number is 1, i.e., the topological
charge is 1. This result suggests that the C-point carrying topo-
logical charge of 1 is split into two C-points with topological
charge of 1/2 at the central region. The distribution of the
S3∕S0 in Fig. 22 further demonstrates that there are two points
(pointed by two white arrows in Fig. 22) where the S3∕S0
equals 1, i.e., at the two points the local polarization states
are circular polarizations. We further plot the intensity and
polarization distributions (see Fig. 23) of the in-plane electric
field corresponding to the column marked by E1�j � 7� in
Figs. 21 and 22. Figure 23 confirms the above observation on
the splitting. As shown in Fig. 23(b), two C-points and one
(quasi-)L line are found in the central region of the plot.
Such a splitting has also been observed in previous literature
[53,54], in which other perturbation mechanisms break the

Fig. 23. Illustration of the Ejj in the black square in Fig. 21.
(a) Intensity; (b) polarization distribution. In (b), the black lines de-
note the streamlines of the local polarization states, from which it
can be observed that there are two C-points with a topological charge
of 1/2, as pointed at by the green arrows, and one (quasi-)L line.

Fig. 24. Reflection coefficients S11 of different two-port feeding networks. The reflection coefficients S11 in (a)–(f ) correspond to (a)–(f ) in Fig. 8
of the main text. The design parameters of the two-port feeding networks can be found in the caption of Fig. 8 of the main text.

Fig. 25. Illustration of the out-of-plane and the in-plane compo-
nents of the electric field radiated by the resonator in Fig. 4 of the
main text. Here, the electric fields are plotted at 1.73 GHz on two
cut planes. (a) z � 0.5λ and (b) z � λ (where λ is the vacuum wave-
length corresponding to 1.73 GHz), and the electric fields belong to
the E1�j � 7� irrep. In (a) and (b), the intensities of the Ez are nor-
malized by the maximal intensities of the Ejj, respectively. “Pol. Mor.”
is the abbreviation of “polarization morphology.”
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rotational symmetries and further lead to the splitting of the
C-points [54].

APPENDIX I: REFLECTION COEFFICIENTS FOR
DIFFERENT TWO-PORT FEEDING NETWORK
DESIGNS

The reflection coefficients corresponding to Fig. 8 in the main
text are shown in Fig. 24.

APPENDIX J: ELECTRIC FIELDS ON DIFFERENT
z CUTS ABOVE THE RESONATOR

The in-plane and the out-of-plane components of the electric
field radiated by the resonator in Fig. 4 are illustrated in Fig. 25.
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