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Ever-growing deep-learning technologies are making revolutionary changes for modern life. However, conventional
computing architectures are designed to process sequential and digital programs but are burdened with performing
massive parallel and adaptive deep-learning applications. Photonic integrated circuits provide an efficient approach
to mitigate bandwidth limitations and the power-wall brought on by its electronic counterparts, showing great
potential in ultrafast and energy-free high-performance computation. Here, we propose an optical computing ar-
chitecture enabled by on-chip diffraction to implement convolutional acceleration, termed “optical convolution
unit” (OCU). We demonstrate that any real-valued convolution kernels can be exploited by the OCU with a promi-
nent computational throughput boosting via the concept of structral reparameterization. With the OCU as the
fundamental unit, we build an optical convolutional neural network (oCNN) to implement two popular deep learn-
ing tasks: classification and regression. For classification, Fashion Modified National Institute of Standards and
Technology (Fashion-MNIST) and Canadian Institute for Advanced Research (CIFAR-4) data sets are tested with
accuracies of 91.63% and 86.25%, respectively. For regression, we build an optical denoising convolutional neural
network to handle Gaussian noise in gray-scale images with noise level σ � 10, 15, and 20, resulting in clean images
with an average peak signal-to-noise ratio (PSNR) of 31.70, 29.39, and 27.72 dB, respectively. The proposed OCU
presents remarkable performance of low energy consumption and high information density due to its fully passive
nature and compact footprint, providing a parallel while lightweight solution for future compute-in-memory
architecture to handle high dimensional tensors in deep learning. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.484662

1. INTRODUCTION

Convolutional neural networks (CNNs) [1–3] power enor-
mous applications in the artificial intelligence (AI) world,
including computer vision [4–6], self-driving cars [7–9], natu-
ral language processing [10–12], medical science [13–15],
etc. Inspired by biological behaviors of visual cortex systems,
CNNs have brought remarkable breakthroughs in manipulat-
ing high-dimensional tensor such as images, videos, and speech,
enabling efficient processing with more precise information ex-
tractions but much fewer network parameters, compared with
the classical feed-forward one. However, advanced CNN algo-
rithms have rigorous requirements on computing platforms,
which are responsible for massive data throughputs and com-
putations, which have triggered the flourishing development
of high-performance computing hardware such as the central
processing unit [16], graphics processing unit [17], tensor
processing unit (TPU) [18], and field-programmable gate array
[19]. Nonetheless, today’s electronic computing architectures
are facing physical bottlenecks in processing distribution and
parallel tensor operations, e.g., bandwidth limitation, high-

power consumption, and the fading of Moore’s law, causing
serious computation force mismatches between AI and the
underlying hardware frameworks.

Important progress has been made to further improve the
capabilities of future computing hardware. In recent years,
the optical neural network (ONN) [20–27] has received grow-
ing attention with its extraordinary performance in facilitating
complex neuromorphic computations. The intrinsic parallelism
nature of optics enables more than 10 THz interconnection
bandwidth [28], and the analog fashion of photonics system
[29] decouplings demonstrates the urgent need for high-
performance memory in conventional electronic architectures
and therefore prevents energy wasting and time latency from
continuous AD/DA conversion and arithmetic logic unit
(ALU)-memory communication, thus boosting computational
speed and reducing power consumption essentially.

To date, numerous ONNs have been proposed to apply
various neuromorphic computations such as optical inference
networks based on Mach–Zehnder interferometer (MZI) mesh
[30–32], photonics spiking neural networks based on an
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wavelength division multiplexing (WDM) protocol and ring
modulator array [33–35], photonics tensor core based on phase
change materials [36,37], and optical accelerator based on time-
wavelength interleaving [38–40]. For higher computation capa-
bilities of ONNs, diffractive optical neural networks [41–44]
have been proposed to provide millions of trainable connections
and neurons optically by means of light diffraction. To further
improve network density, the integrated fashion of diffractive
optical neural networks based on an optical discrete Fourier
transform [45], multimode interference [46], and metasurface
technologies [47–49] has been studied. However, these on-chip
diffraction approaches are limited by power consumption and
input dimensions, making them difficult to scale up for adapting
massive parallel high-order tensor computations. Here, we take
one step forward to address this issue by building an optical con-
volution unit (OCU) with on-chip optical diffraction and cas-
caded 1D metalines on a standard silicon on insulator (SOI)
platform.We demonstrate that any real-valued convolution ker-
nels can be exploited by anOCUwith a prominent computation
power. Furthermore, with the OCU as the basic building block,
we build an optical convolutional neural network (oCNN) to
perform classification and regression tasks. For classification
tasks, Fashion-MNIST and CIFAR-4 data sets are tested with
accuracies of 91.63% and 86.25%, respectively. For regression
tasks, we build an optical denoising convolutional neural net-
work (oDnCNN) to handle Gaussian noise in gray-scale images
with noise level σ � 10, 15, and 20, resulting in clean images
with average peak signal-to-noise ratio (PSNR) of 31.70, 29.39,
and 27.72 dB. The proposed OCU and oCNN are fully passive
in processing massive tensor data and compatible for ultrahigh
bandwidth interfaces (for both electronic and optical), being

capable of integrating with electronic processors to reaggregate
computational resources and power penalties.

2. PRINCIPLE

Figure 1(a) presents the operation principle of 2D convolution.
Here, a fixed kernel K with size of H ×H slides over the image
I with size of N × N by stride of S and does weighted addi-
tion with the image patches that are covered by the kernel, re-
sulting an extracted feature map O with size of G × G, where
G � b�N −H �∕S � 1c (in this case, we ignore the padding
process of convolution). This process can be expressed in
Eq. (1), where O�i, j� represents a pixel of the feature map, and
m and n are related to the stride S. Based on this, one can sim-
plify the operation as multiplications between an H 2 × 1 vector
K̂ reshaped by the kernel and a G2 ×H 2 matrix Î composed by
image patches, as shown in Eq. (2):
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where Îm � �im;1, im;2,…, im,H 2 �, and m � �1, 2, …, G2� is a
corresponding image patch covered by a sliding kernel, and
Ô denotes the flattened feature vector. Consequently, the fun-
damental idea of optical 2D convolution is to manipulate
multiple vector-vector multiplications optically and keep their
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Fig. 1. Principle of optical image convolution based on OCU. (a) Operation principle of 2D convolution. A fixed kernel with size ofH ×H slides
over the image with size of N ×N by stride of S and does weighted addition with the image patches that are covered by the kernel, resulting in an
extracted feature map with size of G × G, where G � b�N −H �∕S � 1c. (b) Optical image convolution architecture with OCU. An image is first
flattened into patches according to the kernel size and sliding stride and then mapped into a modulation pattern confined with time and channel
number, which modulates a coherent laser via a modulation array. The modulated light is sent to OCU to perform optical convolution, whose
positive and negative results are subtracted by a balanced photodetector and reshaped by a DSP to form a new feature map. OMA, optical modulator
array; BPD, balanced photodetector; DSP, digital signal processor. (c) Details of OCU. H 2 waveguides are used to send a laser signal into a silicon
slab waveguide with size of L1 × L2, and layers of metaline are exploited successively with layer gap of L2, which are composed by well-arranged
metaunits. Three identical silica slots with sizes of w1 × w2 × h are used to compose one metaunit with gap of g, and the period of metaunits is p. The
phase modulation is implemented by varying w2. The transfer function of the diffraction in slab waveguide and phase modulation of metalines are
denoted as F and T. (d) The feedforward neural network abstracted from the OCU model. Red and blue boxes denote diffractions and phase
modulations of metalines; gray box represents intensitive nonlinear activation of complex-valued neural networks introduced by photodetection.
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products in series for reshaping to a new map. Here, we use on-
chip optical diffraction to implement this process, as described
in Fig. 1(b). The input image with size of N × N is first re-
shaped into flattened patches according to the kernel size H
and sliding stride S, which turns the image into a G2 ×H 2

matrix Î. Then, Î is mapped into a plane of space channels
and time, in which each row of Î is varied temporarily with
period of G2 and each column of Î (namely, pixels of a flattened
image patch) is distributed in H 2 channels. A coherent laser
signal is split into H 2 paths and then modulated individually
by the time-encoded and channel-distributed image patches, in
either amplitude or phase. In this way, one time slot with du-
ration of Δt contains one image patch with H 2 pixels in cor-
responding channels, and G2 of these time slots can fully
express image patch matrix Î. Then, the coded light is sent to
the proposed OCU to perform matrix multiplications as Eq. (2)
shows, and the corresponding positive and negative results are
detected by a balanced photodetector (BPD) to do subtractions
between the two. The balanced detection scheme assures the
OCU operates in a real-valued field. The detected information
is varied temporarily with symbol duration of Δt and then re-
shaped into a new feature map by a digital signal processor
(DSP). The principle is also applicable for images and kernels
that have nonsquare shapes.

The details of OCU are given in Fig. 1(c). Here, H 2 silicon
strip waveguides are exploited for receiving signals simultane-
ously from modulation channels, which diffract and interfere
with each other in a silicon slab waveguide with size of L1 × L2
before it encounters well-designed 1D metalines. The 1D met-
aline is a subwavelength grating consisting of silica slots with
each slot having a size of w1 × w2 × h, which is illustrated in the
inset of Fig. 1(c). Furthermore, we use three identical slots with
slot gap of g to constitute a metaunit with period of p to ensure
a constant effective refractive index of the 1D metaline when it
meets light from different angles, as demonstrated in our pre-
vious work [48,49]. The incoming signal is phase-modulated
from 0 to 2π by changing the length of each metaunit w2 but
with w1 and h fixed. Accordingly, the corresponding length w

�l�
2,v

of the vth metaunit in the l th metaline can be ascertained from
the introduced phase delay Δϕ�l�

v by Eq. (3), where n1 and n2
are the effective refractive index of the slab and slots, respec-
tively. After layers of propagation, the interfered light is sent
to two ports, which output positive and negative part of com-
puting results
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For more precise analysis, the diffraction in the slab wave-

guide between two metalines with U and V metaunits, respec-
tively, is characterized by a U × V matrix F�l� based on the
Huygens–Fresnel principle under restricted propagation con-
ditions, whose element f �l�

u,v, as shown in Eq. (4), is the diffrac-
tive connection between the uth metaunit located at �xu, yu�
of the (l − 1)th metaline, and the vth metaunit locates at

�xv, yv� in the l th metaline, cos θu,v � �xu − xv�∕ru,v,
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p
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the two metaunits, λ is working wavelength, j is the imaginary
unit, and η and Δψ are the amplitude and phase coefficients,
respectively. As for each metaline, the introduced phase modu-
lation is modeled by a V × V diagonal matrix T�l�, as expressed
in Eq. (5):
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To prove the accuracy of the proposed model in Eqs. (4)
and (5), we evaluate the optical field of an OCU with finite-
different time-domain (FDTD) method, as shown in Fig. 2(a).
Three metalines with 10 metaunits for each are configured
based on a standard SOI platform, the size of slab waveguide
between the metalines is 40 μm × 15 μm, the width and gap of
slots are set to be 200 and 500 nm, the period of metaunit is
1.5 μm, and a laser source is split to nine waveguides with
working wavelength of 1550 nm. We monitor the amplitude
and phase response of the diffracted optical field at Position A
of Fig. 2(a), which agree well with the proposed analytical
model in Eq. (4), as shown in Figs. 2(b) and 2(c). Phase modu-
lation of the metaline is also validated by monitoring the optical
phase response at Position B in Fig. 2(d), with the incident light
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Fig. 2. (a) Optical field of the OCU evaluated by FDTD method.
A monitor is set at Position A to receive the optical field of the incident
light. (b) Magnitude and (c) phase response of the optical field at
Position A (red solid curve) match well with the analytical model
(purple dash curve) in Eq. (5). (d) Optical field of the metaline with
incident light of a plane wave. A monitor is set behind the metaline
at Position B to obtain its phase response. (e) The analytical model
(purple dash curve) of Eq. (6) fits well with the FDTD calculation
(red solid curve).
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of a plane wave. Figure 2(e) shows an ideal match between the
FDTD calculation and the analytical model in Eq. (5).

Consequently, we conclude the OCU model in Eq. (6),
where M is the layer number of OCU and ROCU is the re-
sponse of the OCU when the input is a reshaped image patch
matrix Î . Besides, the numbers of metaunits in theM metaline
layers are all designed to be V , which leads to F�l�1� and T�l�

(l � 1, 2,…,M -2) are matrices with size of V × V .
Specifically, F�1� is a V ×H 2 matrix since H 2 waveguides
are exploited, and F�M � is a 2 × V matrix since we only focus
on the signals at two output ports:

ROCU �
�
F�M �T�M−1�

�YM−2

l�1

�F�l�1�T�l��
�
F�1�

�
· Î. (6)

Therefore, ROCU is a 2 × G2 matrix with column of R1 and
R2, which are 1 × G2 vectors, and the corresponding response
of balanced detection is described in Eq. (7) accordingly, where
⊙ denotes a Hadamard product, and κ is a amplitude coeffi-
cient introduced by the photodetection

RBPD � κfkR1⊙R	
1k − kR2⊙R	

2kg: (7)

Furthermore, the OCU and balanced detection model in
Eqs. (6) and (7) can be abstracted as a feedforward neural net-
work, as illustrated in Fig. 1(d), where the dense connections
denote diffractions, and the single connections are phase mod-
ulations introduced by metalines. The BPD’s square-law detec-
tion performs as a nonlinear activation in the network since the
phase-involved computing makes the network complex-
valued [50–52].

Note that it is rarely possible to build a one-to-one mapping
between the metaunit lengths and kernel value directly, be-
cause the phase modulation of metalines introduces com-
plex-valued computations while the kernels are usually real-val-
ued. However, the feedforward linear neural network nature of
OCU model facilitates another approach to implement 2D
convolution optically. Structural reparameterization [53–55]
(SRP) is a networking algorithm in deep learning, in which
the original network structure can be substituted equivalently
with another one to obtain same outputs, as illustrated in
Fig. 3. Here, we leverage this concept to create a regression

between the diffractive feedforward neural network and 2D
convolution. In other words, we train the network to learn
how to perform 2D convolution instead of mapping the kernel
value directly into metaunit lengths. More details are shown in
the following sections.

3. RESULTS

In this section, we evaluate the performance of OCU in differ-
ent aspects of deep learning. In Subsection 3.A, we present the
basic idea of 2D optical convolution with the concept of SRP;
we also demonstrate that the proposed OCU is capable of
representing arbitrary real-valued H ×H convolution kernel
(in our following demos, we take H � 3) and therefore imple-
menting a basic image convolution optically. In Subsection 3.B,
we use the OCU as a fundamental unit to build an oCNN,
with which classification and regression applications of deep
learning are carried out with remarkable performance.

A. Optical Convolution Functioning
As aforementioned, an OCU cannot be mapped from a real-
valued kernel directly since the phase modulation of metalines
makes the OCU model a complex-valued feedforward neural
network. Therefore, we need to train the OCU to “behave”
as a real-valued convolution model with the SRP method,
which is referred to as the training phase of OCU, as illustrated
in Fig. 4(a). We utilize a random pattern as the training set to
make a convolution with a real-valued kernel, and the corre-
sponding result is reshaped as a training label R̂. Then, we ap-
ply the training set on the OCU model to obtain a feature
vector RBPD and calculate a mean square error loss J with
the collected label. Through the iteration of a backward propa-
gation algorithm in our model, all the trainable parameters are
updated to minimize loss, and the OCU is evolved to the tar-
geting real-valued kernel, as shown in Eqs. (8) and (9), where
ΔΦ is metaline-introduced phase; it is also the trainable param-
eter of the OCU. Accordingly, images can be convolved with
the well-trained OCU; we term this process as an “inference
phase,” as presented in Fig. 4(b):

J � 1

2
·
XG2

i�1

kRBPD�ΔΦ��i� − R̂�i�k2, (8)

ΔΦ	 � arg min
ΔΦ

J�ΔΦ�: (9)

For proof-of-concept, a 128 × 128 random pattern (the
OCU’s performance receives almost no improvement with a
random pattern that is larger than 128 × 128) and eight unique
real-valued 3 × 3 convolution kernels are exploited to generate
training labels, and a 256 × 256 gray-scale image is utilized to
test the OCUs’ performance, as shown in Fig. 5. In this case, we
use three layers of metalines in OCU with L1 � 75 μm and
L2 � 300 μm; each metaline consists of 50 metaunits with
w1 � 200 nm, g � 500 nm, and p � 1.5 μm; further, the
number of input waveguides is set to be nine according to
the size of the utilized real-valued kernel. The training and in-
ference process of OCU are conducted with TensorFlow2.4.1
framework. From Fig. 5, we can see good matches between the
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Fig. 3. Concept of structural reparameterization in deep learning.
Network Structure 1 has a transfer function of F , which can be sub-
stituted equivalently by Network Structure 2, whose transfer function
is G. Accordingly, both structures have the same outputs y under the
same inputs of x.
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ground truths generated by real-valued kernels and the outputs
generated by OCUs with high peak signal-to-noise ratios
(PSNRs); moreover, the average PSNR between the two can
be calculated as 36.58 dB, indicating that the OCU can re-
spond as a real-valued convolution kernel with remarkable
performance.

B. Optical Convolutional Neural Network
With OCU as the basic unit for feature extraction, more
sophisticated architectures can be carried out efficiently to

interpret the hidden mysteries in higher dimensional tensors.
In this section, we build an optical convolutional neural net-
work (oCNN) to implement tasks in two important topics of
deep learning: classification and regression.

1. Image Classification
Figure 6 shows the basic architecture of oCNN for image clas-
sifications. Images with size of N × N × C are first flattened
into C groups of patches and concatenated as a data batch with
size of G2 × C ·H 2 according to the kernel size H ; then, they
loaded to a modulator array with total C ·H 2 modulators in
parallel. Here, C denotes the image channel number, and
N , G, and H are already defined in the principle section.
The modulated data batch is copied q times and split to q op-
tical convolution kernels (OCKs) by means of optical routing.
Each OCK consists of C OCUs corresponding to C data batch
channels, and the nth channel of the data batch is convolved by
the nth OCU in each OCK, where n � 1, 2,…,C . Balanced
photodetection is utilized after each OCU to give a subfeature
map FMmn with size ofG × G, wherem � 1, 2,…, q, and all C
subfeature maps in a OCK are summed up to generate a final
feature map FMm. For convenience, we term this process as an
“optical convolution layer” (OCL), as denoted inside the blue
dashed box of Fig. 5. After OCL, the feature maps are further
downsampled by the pooling layer to form more abstracted in-
formation. Multiple OCLs and pooling layers can be exploited
to establish deeper networks when the distribution of tensors
(herein this case, images) is more complicated. At last, the ex-
tracted output tensors are flattened and sent to a small but fully
connected (FC) neural network to play the final classifications.

We demonstrate the oCNN classification architecture on
gray-scale image data set Fashion-MNIST and colored image
data set CIFAR-4, which are selected from the widely used
CIFAR-10 with much more complex data distribution. We
visualize the two data sets with the t-distributed stochastic
neighbor embedding method in a 2D plane, as shown in
Fig. 7(d). For Fashion-MNIST, we use four OCKs to compose
an OCL for feature extraction and three cascaded FC layers
to give the final classification, assisted with the loss of cross
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Fig. 7. Classification results of oCNNs for (a) fashion-MNIST and (b) CIFAR-4 data sets. Accuracies of 91.63% and 86.25% are obtained with
oCNNs for the corresponding two data sets, which outperform their electrical counterparts with 1.14% and 1.75% respectively. (c) Classification
performance evaluations on both data sets with respect to two main physical parameters of OCU: the number of metaunit per layer and the number
of the exploited metaline layer. (d) 2D visualizations of the two applied data sets with t-distributed stochastic neighbor embedding (t-SNE) method.
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entropy. Here, in this case, each OCK only has one OCU since
gray-scale images have only one channel, and each OCU per-
forms as a 3 × 3 convolution. We use 60,000 samples as the
training set and 10,000 samples as the test set; after 500 epochs
of iterations, the loss of the training and test sets is converged,
and the accuracy of test set is stable at 91.63%, as given in
Fig. 7(a) attached with a confusion matrix. For CIFAR-4 data
set, a similar method is leveraged: an OCL with 16 OCKs is
carried out with each OCK consisting of three OCUs, accord-
ing to RGB channels of the image, and then three FC layers are
applied after the OCL. Further, each OCU also performs as a
3 × 3 convolution. Here, 20,000 samples are used as the train-
ing set and another 4000 samples as the test set; the iteration
epoch is set as 500. We also use cross entropy as the loss func-
tion. After iterations of training, the classification accuracy is
stable at 86.25%, as shown in Fig. 7(b), and the corresponding
confusion matrix is also presented. The OCU’s parameter we
use here is the same as the settings in Subsection 3.A.
Furthermore, we also evaluate the performances of electrical
neural networks (denoted as E-net) with the same architecture
as optical ones in both two data sets; the results show that the
proposed oCNN outperforms E-net with accuracy boosts of
1.14% for Fashion-MNIST and 1.75% for CIFAR-4.

We also evaluate the classification performance of the
oCNN, with respect to two main physical parameters of the
OCU: the number of metaunit per layer and the number of
the exploited metaline layer, as shown in Fig. 7(c). In the left
of Fig. 7(c), three metaline layers are used with the number of
metaunit per layer varied from 10 to 70; the result shows that
increasing the metaunit numbers gives accuracy improvements
for both data sets; however, the task for CIFAR-4 has a more
significant boost of 6.73% than the Fashion-MNIST of 2.92%
since the former has a more complex data structure than the
latter; therefore, it is more sensitive to model complexity.

In the right of Fig. 7(c), 50 metaunits are used for each metaline
layer, and the result indicates that increasing the layer amount
of the metaline also gives a positive response on test accuracy
for both data sets, with accuracy improvements of 1.45% and
1.05%, respectively. To conclude, the oCNN can further im-
prove its performance by increasing the metaunit density of the
OCU, and adding more metaunits per layer is a more efficient
way than adding more layers of the metaline to achieve this goal.

2. Image Denoising
Image denoising is a classical and crucial technology that has
been widely applied for high-performance machine vision
[56,57]. The goal is to recover a clean image X from a noisy
one Y, and the model can be written as Y � X �N, where
in general N is assumed to be an additive Gaussian noise.
Here, we refer to the famous feed-forward denoising convolu-
tional neural network (DnCNN) [58] to build its optical
fashion, termed as “optical denoising convolutional neural net-
work” (oDnCNN), to demonstrate the feasibility of the pro-
posed OCU in deep-learning regression.

Figure 8(a) shows the basic architecture of oDnCNN, which
includes three different parts (as follows). (i) Input layer: OCL
with q1 OCKs is utilized (details are presented in Fig. 6).
Each OCK consists of C in OCUs, which perform 3 × 3 × C in

2D convolutions, where C in � 1 for gray-scale images and
C in � 3 for colored images. Then, ReLUs are utilized for non-
linear activation. (ii) Middle layer: OCL with q2 OCKs is ex-
ploited; for the first middle layer q1, OCUs are used in each
OCK; for the rest of the middle layers, the number is q2.
ReLUs are also used as nonlinearity, and batch normalization
is added between OCL and ReLU. (iii) Output layer: only one
OCL with one OCK is leveraged, which has q2 OCUs.

With this architecture, basic Gaussian denoising with
known noise level σ is performed. We follow Ref. [59] to
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use 400 gray-scale images with size of 180 × 180 to train the
oDnCNN and crop them into 128 × 1600 patches with patch
size of 40 × 40. For test images, we use the classic Set12 data
set, which contains 12 gray images with size of 256 × 256.
Three noise levels, i.e., σ � 10, 15, and 20, are considerd
to train the oDnCNN and are also applied to the test images.
The oDnCNN we apply for this demonstration includes one
input layer, one middle layer, and one output layer, among
which eight OCKs are exploited for the input and middle layer,
respectively, and one OCK for the output layer. Similar physical
parameters of OCUs in the OCKs are set as the ones in
Subsection 3.A; the only difference is that we use only two
layers of metaline in this denoising demo. Figure 8(b) shows
the denoising results under test images with noise level
σ � 20. We evaluate the average PSNR for each image before
and after the oDnCNN’s denoising as 22.10 and 27.72 dB,
posing a 5.62 dB improvement of image quality; further, details
in red boxes show that clearer textures and edges are obtained at
the oDnCNN’s output. More demonstrations are carried out
for noise level σ � 10 and 15, and the performances of E-net
are also evaluated, as presented in Table 1. The results reveal
that the oDnCNN provides 3.57 and 4.78 dB improvements of
image quality for σ � 10 and σ � 15, which is comparable
with the E-net’s performance. Our demonstrations are limited
by the computation power of the utilized server, and
the overall performance can be further improved by increasing
the metaunit density of the OCUs.

4. DISCUSSION

A. Computation Throughput and Power Consumption
The operation number of a 2D convolution composes the pro-
duction part and accumulation part, which can be addressed by
the kernel size H as shown in the first equation in Eq. (10).
Consequently, for a convolution kernel in CNN, the operation
number (OPs) can be further scaled by input channel C , as
shown in the second equation in Eq. (10). Here, Oconv and
Okernel denote operation numbers of a 2D convolution and
a convolution kernel in a CNN:

Oconv � 2 ·H 2 − 1 OPs,

Okernel � C · Oconv OPs: (10)

Consequently, the computation speed of an OCU can be
calculated by the operation number Oconv and modulation
speed r of OMA; the speed of an OCK with C input channels
can be also acquired, by evaluating the number of operations
per second (OPS), referred to as computation throughput. The
calculations are presented in Eq. (11), where Socu and Sock

represent the computation throughput of OCU and OCK,
respectively:

Socu � Oconv · r OPS,

Sock � C · Socu OPS. (11)

From Eq. (11), we can see that the computation throughput
of the OCU or OCK is largely dependent on modulation speed
of OMA. Meanwhile, a high-speed integrated modu-
lator has received considerable interest, in terms of new device
structure or new materials, and the relative industries are also
going to be mature [60]. Assuming that the modulation speed
is 100 GBaud per modulator, for an OCU performing 3 × 3
optical convolutions, the computation throughput can be cal-
culated as �2 × 3 × 3 − 1� × 100 � 1.7 TOPS. For instance, in
the demonstration in the last section, 16 OCKs are utilized to
classify the CIFAR-4 data set, which contains three channels for
each image; therefore, the total computation throughput of the
OCL can be addressed as 3 × 1.7 × 16 � 81.6 TOPS.

Because the calculations of OCU are all passive, its power
consumption mainly comes from the data loading and photo-
detection process. Schemes of a photonics modulator with
small driving voltage [61–63] have been proposed recently
to provide low power consumption; further, integrated photo-
detectors [64,65] are also investigated with negligible energy
consumed. Therefore, the total power of an OCU with equiv-
alent kernel size ofH can be calculated as Eq. (12), where Eocu,
Edri, and Edec are the energy consumptions of OCU, data driv-
ing, and detection, respectively; Eb is the utilized modulator’s
energy consumption; Pd is the power of the photodetector;
B denotes the symbol or pixel number; and D is the sym-
bol precision. Assuming that a 100 GBaud modulator and a
balanced photodetecor with energy and power consumption
of 100 fJ/bit and 100 mW are used for a 4K image with more
than 8 million pixels and 8-bit depth for each, the total energy
consumed by a 3 × 3 optical convolution can be calculated
as �3 × 3� × �8 × 106 × 8 × 3 × 100 × 10−15� � 0.1 × �8 × 10−6∕
�100 × 109�� � 1.808 × 10−4 J.

Emod � H 2 · �B · D · C · Eb�,
Edet � Pd · �B∕r�,
Eocu � Emod � Edet: (12)

B. Data Preprocessing
As with most electronic integrated circuits, the photonic inte-
grated circuits we rely on in our manuscript are basically 2D
circuit planes; therefore, as with its electronic counterparts, our
OCU can only read 2D information by preprocessing it to
1D-shape data. The preprocessing method we use in our OCU
is generalized matrix multiplication (GeMM) [66], which is
widely adopted by the state-of-the-art electronic integrated
computing architectures such as Tensor Core of NVIDIA
Ampere [67], Huawei Davinci [68], Google TPU [69], and
the cross-bar array of a memristor [70]. The idea of GeMM
is to transform high-order tensor convolutions into 2D matrix
multiplications (referred to as “im2col operation”) so that com-
putation can be performed in parallel. The benefit from using
GeMM is that it makes the storage of data in memory more
regular and closer to computational cores to further shorten

Table 1. Performance Comparisons of the Proposed
oDnCNN and E-net in Average PSNR, with Noise Level
σ � 10, 15, and 20

Noise Level Noisy (dB) oDnCNN (dB) E-net (dB)

σ � 10 28.13 31.70 30.90
σ � 15 24.61 29.39 29.53
σ � 20 22.10 27.72 27.74
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the computation latency and reduce the impact of a bandwidth
wall. This benefit also facilitates optical tensor computing ar-
chitecture for loading data from memory with higher efficiency.

However, GeMM reshapes and duplicates tensor data con-
tinually; it also increases memory usage and additional access
drastically. The consequence of this drawback is that more
memory spaces are required to store high-order tensors and ac-
cordingly increase electronic system complexity. Even so, the
relative computation performance of OCU is still unaffected
compared with electronic ones since GeMM is applied on
both architectures. In the long run, however, optimization
for GeMM is crucial. Considerable studies have been done
in GeMM optimizations [71–73]; some photonic solutions
[36,74,75] are also carried out by transferring data manipula-
tion from memory to photonic devices.

C. Scalability of OCU
In this work, the proposed OCU is a prototype with the sim-
plest form, i.e., one OCU represents one kernel. Based on this,
performing N optical convolutions in parallel requires N pro-
totypes, as shown in Fig. 9(a), where each kernel size is assumed
as H ×H . This prototype OCU can be scaled up intrinsically
by simply diffracting light from the final metalines layer to the
OCU’s output facet, since the optical diffraction broadcasts in-
formation densely and produces a spatially-varied electrical field
at the OCU’s output facet; in addition, this field can be further
multiplexed to train and perform multiple convolutions in par-
allel at different spatial position of the output facet, as shown in
Figs. 9(b) and 9(c). In this case, we refer to the OCU as spatial-
multiplexed. Assume N convolutions are expected to perform
in one space-multiplexed OCU, with each kernel having size of
H ×H ; then, the fitting target of this OCU is a matrix K with
size of H 2 × N , whose column Ki is a 1 ×H 2 kernel vector,
where i � 1, 2,…,N . Note that, for space-multiplexed OCU,
the number of metaunits and metalines layers may increase

with the number of the spatially performed convolutions, be-
cause OCU’s representative space evolves from a single kernel
(vector) to multiple kernels (matrix), which makes the training
of space-multiplexed OCU difficult. Besides, physical limita-
tions such as insertion loss, crosstalk, and signal-to-noise ratio
must also be considered carefully with the scaling. Therefore,
the extent of OCU’s spatial scaling requires a thorough evalu-
ation to find a trade-off between the benefits and losses.

D. Superiority of OCU
In recent years, significant efforts have been made in exploring
high-performance computing with integrated photonics; we
also find, however, that bottlenecks impede the practical appli-
cations of these optical computing schemes, the leading
obstacle of which is the issue of scalability brought by the uti-
lized photonic devices and techniques, which were supposed
to power the positive development of optical computing.
Coherent interference and WDM technique are the two
most used approaches in the optical computing world. Even
though both techniques are highly reconfigurable and program-
mable, their scalabilities remain limited. The Mach–Zehnder
interferometer (MZI) enabled coherent interference scheme
[13,32,76] is based on singular value decomposition, which
facilitates the implementation of the matrix operation naturally
and has a bulky size compared with other silicon photonic pro-
cessors. In Ref. [13], 56 thermo-optical MZIs are used to
implement a 4 × 4 matrix multiplication with the areas of
each MZI of around 174 μm × 66 μm; in Ref. [32], a 6 × 6
complex-valued matrix multiplication is realized with a chip
size of 0.53 mm × 1.46 mm. In addition, these sizes would
be larger if high-speed modulation is further applied. As for
the WDM-based optical computing scheme, microring resona-
tors (MRRs) are often used for wavelength manipulation
[35,36,74,77], which have a much greater compact footprint
and lower power consumption than MZIs. Nonetheless, MRRs
are sensitive to environment variations such as temperature and
humidity fluctuation, which shift the MRRs’ resonance wave-
length drastically. Therefore, feedback control circuits and
algorithms are intensively applied to stabilize the MRRs’ reso-
nance wavelength, especially in the case of high-speed modu-
lation, causing significant downsides of system complexity and
power consumption. For other WDM schemes such as time-
wavelength interleaving [40], a multiwavelength source brings
considerable energy consumption, a dispersive medium re-
quired platform from other materials such as silicon nitride, and
on-chip dense WDM MUXers and DeMUXers, which face
challenges from crosstalk and bandwidth steering. Further,
synchronization of multiple-weight bank modulators remains
tricky to address.

In contrast, diffraction-based OCUs have two benefits in
accelerating computations optically. (1) Natural parallel com-
puting architecture. Optical diffraction enables dense connec-
tions between two adjacent layers and produces fruitful
information at the output facet by broadcasting inputs spatially,
laying a solid foundation for large-scale parallel computations.
Most importantly, these connections are built up simultane-
ously and passively, with simple physical implementations
and speed of lightwave. (2) More powerful representation
ability. This benefit comes from the compact footprint of a
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photonic neuron facilitated by 1Dmetalines, which are subwave-
length gratings with each unit of hundreds of nanometers in
width and up to 2 to 3 μm in length. The compact size of a
photonic neuron creates a larger parameter space than other in-
tegrated approaches since the number of trainable photonic neu-
rons is greater in the same area, making the mathematical model
of an OCUmore powerful to represent diverse and multiple lin-
ear transformations with the support of structural reparameteri-
zation. Based on the above two benefits, we believe the OCU
has greater performance in scaling up computations, and we list
more detailed comparisons with representative works in terms
of footprint, computation density, and power consumption in
Table 2. Notably, since different architectures have distinct
modulation schemes for input and weight loading, we only
evaluate computation density that is normalized by modulation
speed, termed “operation density.” The definition of operation
density and power efficiency is given by Eqs. (13) and (14).

Operation density � Operation number �OPs�
Total area of photonic chip �mm2� ,

(13)

Power efficiency�Computation throughput �TOPS�
Power consumption �W� . (14)

E. Networking with Optical Tensor Core
Today’s cutting-edge AI systems are facing a double test of com-
putation forces and energy cost in performing data-intensive ap-
plications [80]; models like the ResNet50 [81] and VGG16 [82]
are power-hungry in processing high-dimensional tensors such as
images and videos, molecular structures, time-serial signals, and
languages, especially when the semiconductor fabrication process
approaches its limitations [83]. Edge computing [84–86], a dis-
tributive computing paradigm, is proposed to process data near
its source to mitigate the bandwidth wall and further improve
computation efficiency, which requires computing hardware
and has low run-time energy consumption and short com-
puting latency. Compute-in-memory (CIM) [87–89] has re-
ceived considerable attention in recent years since it avoids
long time latency in data movement and reduces intermediate
computations, thus showing potential as an AI edge processor.

However, reloading large-scale weights repeatedly from DRAM
to local memory also weakens energy efficiency significantly.
Notably, the proposed OCU can be regarded as a natural CIM
architecture because the computations are performed with the
optical flow connecting the inputs and outputs with the speed
of light; more importantly, its weights are fixed at the metaunits;
therefore, the data loading process is eliminated.

Consequently, from a higher perspective, we consider a gen-
eral networking method with multiple OCUs and optoelectri-
cal interfaces, by leveraging the idea of network rebranching
[90], to build an optoelectrical CIM architecture, as shown
in Fig. 10. The idea of rebranching is to decompose the model
mathematically into two parts (i.e., trunk and branch); by fix-
ing the major parameters in the trunk and altering the minor
ones in the branch, the network can be programmed with low
energy consumption. The trunk part, which is responsible for
major computations of the model, has fixed weights provided
optically, referred to as the optical tensor core (OTC). The laser
bank is exploited as the information carrier and routed by op-
tical I/O to multiple optical tensor units (OTUs), and tensor
data in the DRAM are loaded into OTUs by high-speed
drivers. The OTUs contain a modulator array, OCUs, and a
balanced PD array, and manipulate tensor convolutions pas-
sively; the calculation results are read out by DSPs. The branch
part, which is a programmable lightweight electrical network, is
responsible for reconfiguring the whole model with negligible
computations. With this structure, big models can be per-
formed with the speed of the TOPS level, but almost no power
is consumed, and time latency is also shortened since fewer
weights are reloaded from the DRAM. This scheme is prom-
ising for future photonics AI edge computing.

Technologies for the implementation of OTC are quite
mature these days. The DFB laser array [91,92] can be applied
as the laser bank, which has been widely used in commercial
optical communication systems; further, an on-chip optical fre-
quency comb [93–95] can provide an even more compact and
efficient source supply with the Kerr effect in a silicon-nitride
waveguide. Integrated optical routing schemes have been pro-
posed recently based on the MZI network [96–98], ring mod-
ulators [99–102], and MEMS [103–105], with low insertion
loss and flexible topology. Integrated modulators with ultrahigh
bandwidth and low power consumption are also investigated
intensively based on MZ [106] and ring [63] structures, with

Table 2. Comparison of State-of-the-Art Integrated Photonic Computing Hardwarea

Works Footprint (mm2)b Matrix Dimension Operation Density (OPs=mm2) Power Efficiency (TOPS/W)

MZI mesh [13] 0.68 4 × 4 28∕0.68 � 41.17 —
MZI mesh [32] 0.77 6 × 6 66∕0.77 � 85.71 —
Cascaded MZI [76] 9.33 5 × 5 (convolution) 49∕9.33 � 5.25 —
MRRs [35] 0.38 4 × 2 12∕0.38 � 31.58 —
WDM� PCM [36] 6.07 9 × 4 63∕6.07 � 10.37 0.4
MRRs� delay lines [74] 0.81 3 × 3 (convolution) 17∕0.81 � 20.98 —
MRRs� TWI [77] 1.31 2 × 2 (convolution) 6∕1.31 � 4.58 1.52 × 10−3
Diffractive cell [45] 2.36 10 × 10 190∕2.36 � 80.51 0.11
This work 0.088 3 × 3 (convolution) 17∕0.088 � 193.18 0.37c

aPCM, phase change material; TWI, time-wavelength interleaving.
bTotal area of photonic chip is considered.
c10 Gbit/s modulators with power of 51 mW for each [78] and receivers with power of 2.97 mW [79] are used for the estimation.
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diverse material platforms, including SOI [60], lithium niobate
[107], and indium phosphide [108]. High-speed photodetec-
tors with high sensitivity, low noise, and low dark current based
on either silicon or III-V materials have also been studied and
massively produced for optical communications [109] and mi-
crowave photonics [110] industries. The existing commercial
silicon photonics foundries [111,112] are capable of fabricating
metasurfaces with a minimum linewidth smaller than 180 nm
via universal semiconductor techniques, showing potential for
future pipeline-based production of the proposed OCU.

5. CONCLUSION

In this work, we propose an optical convolution architecture,
OCU, with light diffraction on a 1D metasurface to process
large-scale tensor information. We demonstrate that our
scheme is capable of performing any real-valued 2D convolu-
tion by using the concept of structural reparameterization. We
then apply the OCU as a computation unit to build a convolu-
tional neural network optically, implementing classification and
regression tasks with extraordinary performances. The pro-
posed scheme shows advantages in either computation speed
or power consumption, posing a novel networking methodol-
ogy of large-scale but lightweight deep-learning hardware
frameworks.
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