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A photonic implementation of a wavelength meter typically applies an interferometer to measure the frequency-
dependent phase shift provided by an optical delay line. This work shows that the information to be retrieved is
encoded by a vector restricted to a circular cone within a 3D Cartesian object space. The measured data belong to
the image of the object space under a linear orthogonal map. Component impairments result in broken orthogo-
nal symmetry, but the mapping remains linear. The circular cone is retained as the object space, which suggests
that the conventional conic section fitting for the wavelength meter application is a premature reduction of the
object space fromR3 toR2. The inverse map, constructed by a learning algorithm, compensates impairments such
as source intensity fluctuation and errors in delay time, coupler transmission, and photoreceiver sensitivity while
being robust to noise. The simple algorithm does not require initial estimates for all parameters except for a broad
bracket of the delay; further, weak nonlinearity introduced by uncertain delay can be corrected by a robust golden
search algorithm. The phase-retrieval process is invariant to source power and its fluctuation. Simulations dem-
onstrate that, to the extent that the ten parameters of the interferometer model capture all significant impair-
ments, a precision limited only by the level of random noise is attainable. Applied to measured data collected from
a fabricated Si3N4 wavelength meter, greater than an order of magnitude improvement in precision compared
with the conventional method is achieved. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.473686

1. INTRODUCTION

Interferometric methods are extensively used in diverse appli-
cations, including inter alia optical communications coherent
receiver front ends [1] and spectral monitoring [2]; Bragg gra-
ting sensor interrogation [3]; laser intensity and frequency fluc-
tuation metrology [4,5]; and fiber optic sensing of temperature
[6], pressure [7], refractive index [8], and strain [9]. Common
interferometric architectures involving a Mach–Zehnder inter-
ferometer [10], Michelson interferometer [5,11], or Fabry–
Perot interferometer [12] are employed to convert a phase shift
provided by some sensing means to a measurable change in
light intensity. Mach–Zehnder interferometers (MZIs) formed
by circuits of planar waveguides and couplers are particularly
attractive for photonic integration.

The fundamental principle of a wavelength meter or fre-
quency discriminator is the use of an interferometer to measure
the phase difference between the original signal and a delayed
replica of the signal. The delay converts a change of frequency
to a change of relative phase between the original and replica
signals. The conventional MZI structure has a co-sinusoidal

response to the relative phase; hence, the sensitivity to small
frequency deviations varies over its period. In frequency dis-
criminator applications, it is necessary to maintain a quadrature
phase bias to maximize sensitivity and, in wavelength meter
applications, the loss of precision at null and peak bias points
is a concern.

To avoid this signal fading problem in passive structures,
Sheem introduced an MZI architecture using 3 × 3 couplers
to provide a three-phase output [13]. Koo et al. developed a
demodulation method that projects the three-phase output
onto quadrature phase components from which a continuous
phase is retrieved by a process involving differentiation, cross
multiplication, summation, and integration [14]. Jin et al. ap-
plied least-squares estimation to the digitized quadrature com-
ponents to recover the variation in amplitude and phase [15].
Todd et al. disclosed a Bragg grating sensor interrogation sys-
tem that projects the digitized three-phase output onto quad-
rature components from which the phase is retrieved via a
digital arctangent function [3]. Todd’s original method assumes
an ideal coupler. Todd et al. subsequently extended the method
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to incorporate nonideal coupler parameters, which involves a
weighted linear combination of outputs to which the digital
arctangent is applied [10]. Xu et al. applied the extended ap-
proach to laser phase and frequency noise metrology [5]. The
characterization of the impairments of a component in isolation
is often not possible consequently; it is Todd’s original method
that has become the conventional method of interferometric
data processing. Wu et al. showed that the conventional ap-
proach is superior to preceding methods for a high-power signal
in a severely noisy environment [16].

Kleijn et al. applied a nonlinear least-squares fitting pro-
cedure to calibration data provided by a 3 × 3 MMI based
MZI wavelength meter [17]. A total of 10 parameters are ex-
tracted: six coupler scattering magnitudes, three coupler phase
shifts, and one delay; which enable the compensation of uncer-
tain coupler transmission matrices, interferometer delay imbal-
ance, and photodetector responsivity. The convergence of the
fitting algorithm requires good starting points for all parame-
ters. Moreover, the parameter estimation requires knowledge of
the source power used during calibration and operation modes.
The sum of the output port powers of the interferometers is
used for this purpose, but this sum is only substantially inde-
pendent of the measurand for small impairments.

Motivated by the Lissajous figure traced by any pair of delay
interferometer outputs as the frequency is scanned, researchers
have applied a curve-fitting method developed by Fitzgibbon
et al. [18], which is a specific case of Bookstein’s conic-section
fitting method [19], to fit an ellipse [11] or squircle [20] to
extract phase-retrieval parameters from scattered data.
Recently, a 2 × 4 90° hybrid (e.g., a 4 × 4 MMI) based MZI
has been applied to the measurement of laser frequency fluc-
tuations [4], and Chen et al. demonstrated a parallel arrange-
ment of 4 × 4 MMI-based wavelength meters with waveguide
delay lines engineered to relax temperature sensitivity [21].

This paper re-examines the interferometric wavelength mea-
surement problem. An object vector composed of an in-phase,
quadrature phase, and input power component emerges in the
ideal case as a representation of the autocorrelation of the input
sequence to a discrete Fourier transform (DFT) representing
the interferometer output coupler. The vector belongs to a cir-
cular cone within an object space R3. Each point on the cone is
sent by an orthogonal map to a vector of interferometer egress
port photoreceiver outputs in an image space Rn, n ≥ 3. In the
nonideal case, intensity fluctuations of the source, impairments
of the waveguide delay line and interferometer couplers, and
sensitivity errors of the photoreceiver array and noise are con-
sidered. It is found that the circular cone is retained as the fun-
damental object on which the data to be retrieved are located.
The component impairments break the orthogonal symmetry,
but the map from the cone to the image space remains linear.
An information-retrieval problem is formulated for a known
delay as the construction using linear algebra only of a 3 × n
matrix representing the linear map that minimizes the sum
of the squared prediction error over a training data set. An un-
certain delay introduces nonlinearity, but a few iterations of a
golden search algorithm suffice to retrieve the delay parameter.
The method corrects the same comprehensive set of impair-
ments as Kleijn’s method while eliminating its deficiencies.

The algorithm is simple and robust. No parameter starting
points are required; only the time-delay parameter requires
bracketing over a broad interval. The calibration and phase
retrieval process is invariant to source power. The retrieval pro-
cess is naturally invariant to source optical power fluctuations
during data processing.

2. THEORY

A. Perfect Components
Figure 1(a) illustrates a dual MZI approach to eliminate signal
fading suffered by a single MZI architecture [22]. The signal is
split between two parallel MZIs that are notionally identical
with the exception that one MZI is biased in quadrature relative
to the other. Ideally, each MZI is lossless; consequently, the
intensities of their two output ports are complementary. The
difference in intensity between the two output ports of each
MZI provides a signed in-phase component and a signed quad-
rature-phase component of the phasor that describes the inter-
ference term. It is then straightforward to recover the phase
with a frequency-invariant sensitivity.

In its improved version, as illustrated in Fig. 1(b), the shar-
ing of a delay line between two MZIs guarantees that the two
delay lines in Fig. 1(a) are identical. The network of four 2 × 2
couplers and a π∕2 phase shift is recognized as an instance of a
4 × 4 DFT, which may be implemented alternatively using a
single 4 × 4 coupler. For example, multimode interference
(MMI) couplers with a uniform split ratio have transmission
matrices that are phase-permutation equivalent to a Fourier
matrix.

This rearrangement provides the motivation to consider
a general interferometer architecture consisting of a 1 × m

Fig. 1. (a) Schematic of a two-stage interferometer architecture con-
sisting of two parallel 2 × 2 MZI. The two MZIs, including the delay
lines represented by the circles, are notionally identical except for the
quadrature bias of the lower (blue) MZI provided by the π∕2 phase
shift. (b) Rearrangement of the architecture of (a). The notionally
identical arms of the two MZIs, excluding the phase shift, have been
brought forward and are now shared. The dashed subsystem block is
recognized as the decomposition of a 4 × 4DFT into a network of four
2 × 2 DFT blocks and a phase-shift element.
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uniform splitter and an n × n Fourier coupler interconnected by
m arms with imbalanced phase. The transmission matrix
F ∈ Cn×n of the output coupler maps a column vector
b ∈ Cn composed of the complex field amplitudes at its ingress
ports to a column vector c ∈ Cn composed of the complex field
amplitude at its egress ports:

c � Fb: (1)

Each datum is a vector with elements equal to the modulus
squared of the amplitude at each egress port, which can be iden-
tified with the diagonal of the outer product

C � cc†, (2)

which is related to the outer product B � bb† by

C � FBF †: (3)

The measured output port power vector p is then given by

p �
X

j�0, n−1

tr�FBF †eje
†
j �ej �

X
j�0, n−1

tr�BF †eje
†
j F �ej, (4)

where the basis vector ej has a unit element in position j and
zeros elsewhere. In the special case of a transmission matrix F
that is a Fourier matrix:

F � 1ffiffiffi
n

p

2
6664
w0 w0 … w0

w0 w1 … wn−1

..

. ..
. ..

.

w0 wn−1 … w�n−1�2

3
7775;

w � exp�−i2π∕n�; F †F � I ,

(5)

where I is the identity matrix. The outer product B has the
representation

B �
X

j, k�0, 1, ���, n−1
bjb�k eje

†
k : (6)

Substituting Eq. (6) into Eq. (4) noting

e†kF
†epe

†
pFej � �e†pFek�†�e†pFej� �

1

n
wp�j−k� (7)

and collecting terms with j − k � qmod n, yields

p � Fρ; ρq �
1ffiffiffi
n

p P
j−k�qmod n

bjb�k : (8)

Equation (8) is a restatement in matrix/column vector form
of the familiar result that the modulus squared of the discrete
Fourier transform of a sequence is equal to the discrete Fourier
transform of the circular autocorrelation of the sequence. The
vector ρ ∈ Cn is the result of summing over the trailing diag-
onals of B � bb†. A vector b of lengthm generates 2m − 1 non-
zero trailing diagonals. The cyclic nature of the summation in
Eq. (8) does not come into play if zero padding leads to
n ≥ 2m − 1. The vector ρ may then be expressed by a total
of 2m − 1 real-valued components, which is the largest number
of knowable unknowns that may be recovered from the mea-
surement. For m � 2 and unit input power, the vector ρ takes
the form

ρ � 1ffiffiffi
2

p 1ffiffiffi
n

p
�
cos�θ�ρ1 � sin�θ�ρ2 �

ffiffiffi
2

p
ρ3

�
, (9)

where θ is the phase imbalance of the two arms, and fρ1, ρ2, ρ3g
are orthonormal vectors:

ρ1 �
1ffiffiffi
2

p

2
66664

0

1

0

1

3
77775, ρ2 �

1ffiffiffi
2

p

2
66664

0

i

0

−i

3
77775, ρ3 �

2
66664

1

0

0

0

3
77775;

�ρj, ρk� � δjk, (10)

where 0 is the null vector representing the zero padding. The
vector ρ contains all the information to be retrieved: the in-
phase term cos�θ�, the quadrature-phase term sin�θ�, and
the input power 1 appear as weights of its three orthonormal
components. The phase may be extracted by introducing the
real scalar coordinates

x � �ρ, ρ1�; y � �ρ, ρ2�; z � �ρ, ρ3�

⇒ �x, y, z� � 1ffiffiffi
2

p 1ffiffiffi
n

p
�
cos�θ�, sin�θ�,

ffiffiffi
2

p �
(11)

and evaluating the arctangent
θ � arctan�y∕x� (12)

interpreted in the four-quadrant sense. The coordinates �x, y, z�
satisfy

x2 � y2 −
1

2
z2 � 0, (13)

which defines a double-napped circular cone in R3.
The Fourier matrix preserves the inner product so that

p � 1ffiffiffi
2

p 1ffiffiffi
n

p
�
cos�θ�p1 � sin�θ�p2 �

ffiffiffi
2

p
p3
�
;

�pj, pk� � δjk, (14)

where fp1, p2, p3g are the transformed basis:

p1 �
ffiffiffi
2

p
ffiffiffi
n

p

2
666664

cos�φ0�
cos�φ1�

..

.

cos�φn−1�

3
777775
; p2 �

ffiffiffi
2

p
ffiffiffi
n

p

2
666664

sin�φ0�
sin�φ1�

..

.

sin�φn−1�

3
777775
;

p3 �
1ffiffiffi
n

p

2
666664

1

1

..

.

1

3
777775
; φp � p

2π

n
: (15)

Together, Eqs. (9) and (14) define a real orthogonal map
O∶R3 → Rn , n ≥ 3 such that

p � 1ffiffiffi
2

p 1ffiffiffi
n

p Ox; O �
h
p1 p2 p3

i
∈ Rn×3;

x �

2
64
x

y

z

3
75 ∈ R3: (16)

The transpose OT may be used to project the measured data
onto the 3D space R3 containing the circular cone. The image
p of the object x under the orthogonal map also lives on a cone.
The conic shape is a consequence of linearity, and the absence
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of deformation is a consequence of orthogonality. The invari-
ance of the cone to rotation about its axis corresponds to a
translation of the phase. The mirror symmetry in any plane
containing the axis or in the plane at the origin perpendicular
to the axis results in a reversal of the direction clockwise or
anticlockwise of increasing phase. A specific choice of coordi-
nate system and a calibration measurement are necessary to fix
the phase origin and direction.

B. Imperfect Components
The optical system is equivalent to a parallel arrangement of n
copies of a single input and output port MZI terminated by
photoreceivers and driven by a perfect 1 × n splitter.
Consequently, the measurement at a selected egress port of
the output coupler is of the form

p � ja1 exp�iθ� � a2j2
� ja1j2 � ja2j2 � 2ja1jja2j cos�θ − ϕ�

⇒

p �
�
2ja1jja2j cos�ϕ� 2ja1jja2j sin�ϕ� 1ffiffi

2
p �ja1j2 � ja2j2�

�

×

2
64
cos�θ�
sin�θ�ffiffiffi

2
p

3
75, (17)

where a1 and a2 are the complex transmissions of the paths
from the input port through one or other of the interferometer
arms to the selected output port, excluding the phase contrib-
uted by the delay line and scaled by a real constant to account
for photoreceiver sensitivity. The impairments affect the power
bias ja1j2 � ja2j2, phase origin ϕ � arg�a1� − arg�a2�, and am-
plitude 2ja1jja2j of the recorded fringe patterns. The orthogo-
nal symmetry is broken, but the map remains linear, and the
circular cone is retained as the fundamental object on which the
data to be retrieved are located.

C. Learning Algorithm
A linear system that maps an input x ∈ Rm to an output
y ∈ Rn may be described by a matrix A ∈ Rn×m:

y � Ax: (18)

Suppose a sequence of measurements is made of pairs of
inputs and outputs associated by the system, which are as-
sembled into a collection of data D known as the training
set

D � f�xk, yk�jk � 1,N g: (19)

The task is to reconstruct A fromD. In practice, the training
set D is corrupted by measurement errors and noise, so the
problem is reformulated as finding an A that minimizes an error
function defined by

F�A� � 1

N
P

k�1, n
�yk − Axk, yk − Axk�, (20)

where �⋅, ⋅� denotes the Frobenius inner product. The Gâteaux
derivative of F evaluated on the tangent vector h is given by

DAF �h� � −2�h,Ryx − ARxx�, (21)

where

Ryx �
1

N

X
k�1,N

ykx
†
k ; Rxx �

1

N

X
k�1,N

xkx
†
k : (22)

Consequently, the error function is minimized by the choice

A � RyxR−1
xx : (23)

In general, A is not invertible if n > 3. However, the
Moore–Penrose inverse A� provides the minimum norm
least-squares solution of Eq. (18). In practice, the system is
overdetermined, which leads to the explicit expression

A� � �A†A�−1A†: (24)

An individual measurement y can be mapped to the object
space by evaluating

x � �A�y, e1�; y � �A�y, e2�; z � �A�y, e3�
(25)

and its phase retrieved using θ � arctan�x∕y�, where the arc-
tangent function is interpreted in the four-quadrant sense.
However, in experiments, there is no direct object space mea-
surement; only the frequency of the input is measured and
paired with the image space measurement. The object space
data are parameterized by the phase θ, which must be inferred
from the measured frequency ω using; if dispersion is ne-
glected, the relationship

θ � �ω − ω0�τ� θ0, (26)

where ω0 is some nominal reference frequency, τ is the inter-
ferometer delay imbalance, and θ0 is the phase at ω � ω0.

The phase bias θ0 is sensitive to fabrication process varia-
tions and hence uncertain. It acts as a rotation about the axis
of the circular cone on which the object samples live. The
group of rotations is a subgroup of the general linear group
to which A belongs. Consequently, the phase bias in
Eq. (26) may be dropped and its action as a rotation absorbed
into A.

The delay is robust to fluctuations of the ambient environ-
ment. It may be determined by design through accurate knowl-
edge of the physical path length imbalance and the group index
of the waveguide and refined by a measurement of the free-
spectral range (FSR) of the interferometer. The latter may
be done by applying a golden section search for the delay τ that
minimizes the residual error given by Eq. (20) after substitution
of Eq. (23).

3. RESULTS AND DISCUSSION

A. Simulation
A schematic of the conventional wavelength interrogation sys-
tem considered for validation of the proposed method and the
optical spectra at the three outputs are shown Figs. 2(a)
and 2(b). The Virtual Photonics Inc. (VPI) software package
has been used to derive these spectra. The unbalanced MZI
architecture consists of a 2 × 2 MMI input coupler and
3 × 3MMI output coupler with an ideal path length difference
between its two arms corresponding to a free spectral range
(FSR) of 50 GHz. For an ideal system, the outputs of the iden-
tical photoreceivers can be expressed as
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p �

2
64
p1
p2
p3

3
75 � 1ffiffiffi

2
p Kffiffiffi

3
p O

2
64
cos�θ�
sin�θ�ffiffiffi

2
p

3
75, (27)

where K is proportional to the input optical power and the
responsivity of the photoreceivers, and

O � 1ffiffiffi
3

p

2
664
−

ffiffi
3

pffiffi
2

p − 1ffiffi
2

p 1

0
ffiffiffi
2

p
1ffiffi

3
pffiffi
2

p − 1ffiffi
2

p 1

3
775; OTO � I : (28)

Equations (27) and (28) can be derived from Eqs. (14)–(16)
with appropriate allowance for phase permutation equivalence
of MMI and Fourier couplers; no adjustment of the proposed
data-processing method is necessary. Impairments due to im-
perfect couplers, photoreceivers, and interferometer arms break
the orthogonal symmetry, but the concept of the circular cone
as the fundamental object remains useful since all these impair-
ments are encompassed by the linear map A. Fluctuations
and noise will also be added by source power fluctuations,

photoreceiver, and quantization noise. These errors are accom-
modated by the least-squares fit of the system map to the train-
ing set and the Moore–Penrose inverse used for data processing.
The deviations from the ideal case will be small, and the port
data are clearly recognisable as a poly-phase fringe pattern. The
phase retrieved for a given linear map is robust to source power
fluctuations, as the linearity in input power of the system en-
sures that the object samples lie on the cone irrespective of
source power.

A MATLAB code was developed to evaluate the perfor-
mance of the learning algorithm in processing data generated
by a simulated wavelength meter subject to a variety of random
impairments. Simulation of a wavelength meter with perturbed
interferometer delay imbalance and arbitrary phase bias pro-
vides synthetic measured data for further data processing.
Impairments are added to the coupler transmission matrices
and to the responsivities to emulate fabrication process varia-
tions and component tolerances. A matrix L represents the in-
strument map where large perturbation is provided by the
different impairments discussed. Gaussian noise is added to
emulate thermal, RIN, quantum, and quantisation noise proc-
esses that occur during measurements made during the calibra-
tion and operation phases. To elucidate the robustness of the
proposed algorithm against impairments and noise, a process is
considered where it is perceived that 1000 instruments are
available from the same manufacturer. There will be differences
from instrument to instrument; however, for a tightly con-
trolled standard process, in practice, the variability would be
a small about a static but impaired “mean” instrument.
Design variations could move that mean closer to a perfect
“mean” instrument. Randomized impairments representing
this variability are applied in the simulation of these 1000 in-
terferometric instruments. Impairments of the couplers are in-
troduced by Gaussian-distributed real and imaginary parts of
transmission matrix components. Table 1 lists five cases where
the degree of impairment has been increased gradually by vary-
ing the symmetry-preserving and symmetry-breaking perturba-
tion parameters of the couplers. The impairments of the
delay-line delay time and photoreceiver responsivities follow
a Gaussian distribution; however, their standard deviations
are kept constant at σ � 5% and σ � 10%, respectively, in
all these cases.

After projecting these impairments, L has been generated for
an individual interferometer. The instrument is then trained
with an independent training set with associated additive

Fig. 2. (a) Schematic of a conventional wavelength meter system.
(b) Ideal optical spectra of the egress ports of the output coupler.

Table 1. Simulation Parameter for Impairment and Noise

Case Parameter

I Couplers Symmetry-preserving perturbation σ � 10%; symmetry-breaking perturbation σ � 1%
Noise σ � 4.08 × 10−3 mW (source power 1 mW)

II Couplers Symmetry-preserving perturbation σ � 20%; symmetry-breaking perturbation σ � 2%
Noise σ � 4.08 × 10−4 mW (source power 1 mW)

III Couplers Symmetry-preserving perturbation σ � 30%; symmetry-breaking perturbation σ � 3%
Noise σ � 4.08 × 10−4 mW (source power 1 mW)

IV Couplers Symmetry-preserving perturbation σ � 40%; symmetry-breaking perturbation σ � 4%
Noise σ � 4.08 × 10−3 mW (source power 1 mW)

V Couplers Symmetry-preserving perturbation σ � 50%; symmetry-breaking perturbation σ � 5%
Noise σ � 4.08 × 10−4 mW (source power 1 mW)

424 Vol. 11, No. 3 / March 2023 / Photonics Research Research Article



random noise. The signal-to-noise ratio (SNR) is varied be-
tween different cases. The training set is used to estimate
and refine the delay imbalance and thus obtain A via the pro-
posed learning method. The matrix A can, at best, inherit the
condition number of L; there is no data-processing method
able to retrieve information that is not present in the data.
Figure 3 depicts distributions of the condition number of L, A,
and the norm of the Moore–Penrose inverse A� for all cases.
It can be observed that the distributions of the condition num-
ber of A are well-bounded and follow almost exactly the dis-
tributions for L for all cases. For severe impairment and noise,
the condition number of A remains of the order of unity, which
explains how the linear mapping can approximate the orthogo-
nal mapping in the limited impairment case; consequently, the
inverse of A is well-conditioned and processed continuous re-
sults for the data. It is possible to generate extreme impairments
resulting in singular A and extreme condition numbers; how-
ever, these are outliers characterizing a poor fabrication run that
has destroyed the inherent DFT phase relationship of the cou-
plers. As these extreme cases are rare, they can be removed in
practice by adopting a quality-control procedure that discards
an interferometer with too severe impairment.

Figure 3 also shows that the distributions of the norm of A�

are also well-bounded and close to unity. From linear algebra, it

can be inferred that the noise of the processed data (before cal-
culating the arctangent) is increased by no more than the norm
of the Moore–Penrose inverse of A; further, as this norm is
bounded (close to unity), it can be concluded that the processed
data are stable, i.e., small perturbations such as noise are not
significantly magnified.

To observe the effects of additive noise in the operation
phase as well, an interferometer with an arbitrary condition
number is chosen to be perturbed with impairment and cali-
bration noise setting of Case I, and the proposed method is
applied. After learning, the interferometer processes a test data
set. In the operation stage, additive Gaussian noise providing
SNR of 30 dB has been applied. Figure 4 shows the associated
simulation results. Figure 4(a) shows that the projection by the
Moore–Penrose inverse A� of the simulated measured data
[Fig. 4(b)] has an excellent match to the original object data.
Likewise, the mapping of the original object space by the linear
map A estimated from the training data provides an excellent fit
to the simulated output port fringe patterns shown in Fig. 4(b).
To judge the efficacy of the proposed algorithm, the conven-
tional method due to Todd et al., where impaired image space
data are processed by the orthogonal mapping of the perfect
interferometer, has also been applied [3]. It can be observed
from Fig. 4(a) that the conventional method results in poor

Fig. 3. Distribution of calculated condition number of L and A and norm of A� derived from the calibration simulations of 1000 interferometric
instruments using the proposed method. Different impairment and noise settings, as listed in Table 1, correspond to different cases: (a) condition
number of L, (b) condition number of A, and (c) norm of A� belong to Case I; (d) condition number of L, (e) condition number of A, and (f ) norm
of A� belong to Case II; (g) condition number of L, (h) condition number of A, and (i) norm of A� belong to Case III; (j) condition number of L,
(k) condition number of A, and (l) norm of A� belong to Case IV; and (m) condition number of L, (n) condition number of A, and (o) norm of A�

belong to Case V.

Research Article Vol. 11, No. 3 / March 2023 / Photonics Research 425



object sample estimation, which is reflected in the correspond-
ing retrieved-frequency plot shown in Figs. 4(c) and 4(d). A
substantial improvement in the accuracy of the retrieved fre-
quency is achieved by the proposed algorithm, as shown in
Figs. 4(c) and 4(d).

To make the comparison between the proposed and con-
ventional methods more evident, seven interferometers, after
going through the impairment and learning process, are se-
lected to have mappings with different condition numbers rep-
resentative of different static impairments and calibration noise.
Table 2 lists the corresponding parameters. Each interferometer
processes 100 test data sets. Figure 5 shows the mean error and
standard deviation of the distribution in estimating individual
frequency samples of each wavelength meter. It can be observed
from Figs. 5(a) and 5(c) that, even with the most severe impair-
ment setting, the estimation error processed by the proposed
approach is smaller than 0.4 GHz on average. The conventional
approach cannot achieve such performance even with the least
impairment and noise setting. It is evident from the mean
error and standard deviation in Fig. 5(d) that small inherent
impairments due to design flaw or fabrication limitation fol-
lowed by noise in the learning and measurement stages limit

the performance of the conventional approach and result in
failure in predicting the wavelength with reliable precision.

The simulation trials confirmed that:

1. The training and phase retrieval algorithms are invariant
to static source power and phase bias. The calibration and test
source powers may differ in value. The retrieved phase is nat-
urally invariant to fluctuations from sample to sample of the
test source power. The calibration process with a source power
monitor is also invariant to fluctuations from sample to sample
of the calibration source power.

2. The code functions with a training set containing as few
as four frequency samples providing 12 knowns to retrieve 10
unknown parameters.

3. In the absence of additive noise, the method fully cor-
rects all simulated impairments to machine precision provided
the golden section search accuracy parameter is small enough.
The loss of precision with increasing noise is graceful. The larg-
est contributor to the loss of precision is noise in the phase-
retrieval process. The loss of precision of the calibration process
due to noise is reduced by the averaging over the training set. It
is expected that the noise in most applications will be small
(SNR > 30 dB) given the modest photoreceiver bandwidth
requirement.

Fig. 4. (a) Correct object samples retrieved by the conventional method and object samples retrieved using the proposed method. (b) Output port
fringe pattern samples (marker) accompanied by the fitted fringe pattern (solid) provided by the proposed method. (c) Comparison between the
frequency measured using the conventional and proposed methods. (d) Comparison between the residual measured and source frequency using the
conventional and proposed methods. The wavelength meter simulated has an MZI architecture based on a 3 × 3 MMI output coupler with all
components impaired. The reference frequency is 193.4 THz (wavelength 1.55 μm).
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To confirm the generality of the proposed algorithm, an-
other wavelength meter with a 3 × 3 MMI coupler replaced
by a 4 × 4 MMI coupler has also been investigated. The result-
ing orthogonal map is

O � 1ffiffiffi
4

p

2
664
−1 1 1
−1 −1 1
1
1

1
−1

1
1

3
775; OTO � I . (29)

The conventional and proposed algorithms have been ap-
plied to the same set of impaired 4D image space data. The
results shown in Figs. 6(a) and 6(b) validate the superior accu-
racy of the proposed algorithm in comparison with the conven-
tional method.

B. Fabrication and Experiment
To evaluate the efficacy of the proposed data-processing
method, experimental data are provided by a photonic inte-
grated circuit wavelength meter with a 3 × 3 MMI-based
MZI circuit architecture fabricated on the CMOS-compatible

Si3N4 photonic integration platform provided by LioniX
International. Their TriPlex technology offers a variety of pla-
nar waveguide structures based on alternating silicon nitride
and silicon dioxide films [23]. Among them, only the asymmet-
ric double strip (ADS) waveguide is offered by their multipro-
ject wafer (MPW) service. The development of an on-chip
wavelength meter on Si3N4 was motivated by research on a
compact high-resolution wideband spectrometer [24]. To meet
the specifications such as low loss, low dispersion, <1 GHz
resolution, whole C band operation, and compact size for the
spectrometer, ADS technology on Si3N4 was chosen as the
most suitable option. Figure 7 shows the micrograph of the
fabricated circuit. The MZI architecture consists of a Y-junc-
tion as the input coupler and a 3 × 3 MMI as the output cou-
pler with a path length difference between its arms of 3393 μm.
The associated FSR for the ADS waveguide is ∼49.69 GHz at
the reference wavelength 1.55 μm (193.4 THz). Each input
and output waveguide is terminated via a spot size converter
(SSC) and an attached optical fibre which are not shown in
Fig. 7. The ADS waveguide is optimized for TE mode propa-
gation; thus, polarization-maintaining fibers with principal

Table 2. Simulation Parameter Applied for Operation

Case
Impairment and Calibration

Noise Setting
Condition Number of

Chosen A Additive Noise in the Operation Stage

A Case I 1.2456 Gaussian distribution; noise-equivalent optical power of −30 dBm
B Case II 1.8982 Gaussian distribution; noise-equivalent optical power of −20 dBm
C Case III 2.9186 Gaussian distribution; noise-equivalent optical power of −30 dBm
D Case IV 4.4648 Gaussian distribution; noise equivalent optical power of −30 dBm
E Case V 11.0627 Gaussian distribution; noise-equivalent optical power of −20 dBm
F Case V 7.6899 Uniform distribution; noise-equivalent optical power of −30 dBm
G Case V 10.6547 Uniform distribution; noise-equivalent optical power of −20 dBm

Fig. 5. Mean residual between estimated and original frequency using the (a) proposed and (b) conventional methods; standard deviation of the
calculated residual between estimated and original frequency using the (c) proposed and (d) conventional methods. The reference frequency is
193.4 THz (wavelength 1.55 μm).
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axes aligned with the chip are employed. A tunable laser
(Agilent 81680A) capable of tuning over the whole C-band
with 3 pm wavelength step is used as the optical input. The
input power is fixed at 0 dBm. The wavelength response of
the circuit is measured for a desired wavelength span around
1.55 μm. The output is detected by an optical power sensor
(Agilent 81632A) and recorded by a light-wave measurement

system (Agilent 8164A). The optical spectral data are collected
and processed off-line by the proposed data-processing method.
The experiment has been conducted in a centrally temperature-
controlled laboratory environment.

Figures 8(a)–8(c) depict the experimental results associated
with a frequency span of one FSR with center vacuum wave-
length 1550 nm. The learning algorithm is independent of the
choice of training set center wavelength or number of FSRs
spanned. Once a training set is chosen, the linear mapping
is optimized for the wavelength span bounded by that set.

The raw data collected from the three output ports of the
3 × 3 MMI coupler are shown by the markers in Fig. 8(a). An
excellent fit is provided by A shown by the solid line fringe
pattern in Fig. 8(a). Figure 8(b) depicts an almost linear rela-
tionship between the original frequency recorded by the power
sensor and the measured frequency; the residual error is limited
to �0.2 GHz. It can be observed in Fig. 8(c) that the predic-
tion of the conventional method can deviate significantly from
the original frequency; the maximum residual error observed
over the FSR is ∼3 GHz. It is a realistic assumption that
the wavelength estimation will be performed over the same
span as the training data; thus, A has already been calculated.
To demonstrate the generalization ability of the learning algo-
rithm, the linear mapping A constructed using the training set
over the FSR centered at wavelength 1550 nm is used to re-
trieve the frequency using test data over an adjacent FSR.
Figures 8(d)–8(f ) show that the maximum residual error of
the proposed approach increases only slightly to ∼0.8 GHz,
which may be expected, as A is not optimized for this test data
set but remains substantially superior in precision compared
with the conventional method.

Figure 9 shows the frequency estimation error observed for a
total span of 950 GHz. Recorded data contained in one FSR
around the center frequency depicted in Fig. 5 are taken as the
training set. After each calibration, recorded test data aligned to
the respective FSR are processed by the system. It can be ob-
served that, over the total 950 GHz span, the residual error is
limited to �0.35 GHz.

Although the precision achieved experimentally is over one
order of magnitude greater than the conventional method, it is
not as great as that achieved in simulations where precision is
only limited by noise. This indicates that performance is lim-
ited by weak impairment mechanisms not captured by the
model. Observations point to phenomena involving reflections
and a mixed polarization state to explain the current limit to the
precision. A learning algorithm based on a model (a priori
knowledge) with numerous parameters risks overfitting the data
at the expense of generalization ability. The current model is
parsimonious and comprehensive. Consequently, rather than
increasing the complexity of the model, it is preferable that
the interferometer meets the assumptions of the model. If suf-
ficient care is taken to avoid spurious reflections and to main-
tain the state of polarization by improved component and
circuit designs, the only deviations would be due to the finite
bandwidth of the components and the dispersion of the
waveguide. It is only errors of the cone inferred by the data
processor from a data set that will propagate to subsequent
phase measurements.

Fig. 6. (a) Correct object samples retrieved by the conventional
method and object samples retrieved using the proposed method.
(b) Comparison between the residual measured and source frequency
using the conventional and proposed methods. The wavelength meter
simulated has an MZI architecture based on a 4 × 4MMI output cou-
pler with all components impaired. The reference frequency is
193.4 THz (wavelength 1.55 μm).

Fig. 7. Micrograph of the fabricated on-chip wavelength meter.
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Fluctuations in the calibration source power during the train-
ing set collection can misplace data off the circular cone and
thereby impair construction of the linear map leading to error
in the phase retrieval. The resolution of this issue, if significant,
is to monitor the calibration source power to correctly scale the
length of each object vector sample. For n � 3, the 1 × 2 input

splitter may be replaced by a 3 × 3 input coupler. This has the
merit of a symmetric architecture more robust to fabrication pro-
cess variations, and the otherwise unused central egress port of
the input coupler may monitor the input power. It is only nec-
essary that the measurement is proportional to the input power; a
precise value of responsivity is not required.

To evaluate long-term stability, an experiment was per-
formed in which training and test data sets were collected with
time intervals of several hours, and the results showed signifi-
cant long-term stability. The prototype featured no input
power monitoring, temperature sensor, or control mechanism.
Thus, an experimental study to assess long-term stability with
proper temperature control and input power monitoring is left
to a future endeavor. Nevertheless, it is expected that the prin-
cipal source of drift is the temperature sensitivity of the bias
phase of the interferometer. This can be corrected by collecting
training set data over a range of temperatures as measured by an
on-chip temperature sensor. It is expected that the differences
between estimated linear maps corresponding to different
temperatures will be a rotation. Moreover, the rotation angle
or, equivalently, the phase bias is expected to be linear in
the temperature range [21]. Consequently, knowledge of the
temperature coefficient is enough to compensate for tempera-
ture drift.

Fig. 8. (a) Recorded output port intensity (markers) from the three output ports of the 3 × 3 MMI coupler and the fit provided by the proposed
algorithm (solid). (b) Frequency offset retrieved from the power sensor data by the conventional and proposed approaches versus the original
frequency. (c) Residual error in calculating the frequency over the desired frequency span. For the following figures, the test data processed
are extracted from the adjacent FSR to the data used for training. (d) Recorded output port intensity (markers) from the three output ports
of the 3 × 3 MMI coupler and the fit provided by the proposed algorithm (solid). (e) Frequency offset retrieved from the power sensor data
by the conventional and proposed approaches versus the original frequency. (f ) Residual error in calculating the frequency over the desired frequency
span. The reference frequency is 193.4 THz (wavelength 1.55 μm).

Fig. 9. Residual error in calculating the frequency over the desired
frequency span for different reference frequencies.
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4. CONCLUSION

In conclusion, this work has analyzed an interferometer with
three or more polyphase outputs. The theoretical analysis
has informed the formulation of a machine learning and
data-processing method that corrects for imperfections of the
interferometer components. The simulations demonstrate that
a precision limited only by the level of random noise is attain-
able to the extent the model of the interferometer captures all
significant impairments. The experimental observations using
an MZI-based Si3N4 wavelength meter demonstrate an order
of magnitude reduction in frequency estimation error com-
pared with the conventional method. The maximum residual
error is limited to �0.35 GHz over a 50 GHz FSR.
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