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As a resonator-based optical hardware in analog optical computing, a microring synapse can be straightforwardly
configured to simulate the connection weights between neurons, but it faces challenges in precision and stability
due to cross talk and environmental perturbations. Here, we propose and demonstrate a self-calibration scheme
with dual-wavelength synchronization to monitor and calibrate the synaptic weights without interrupting the
computation tasks. We design and fabricate an integrated 4 × 4microring synapse and deploy our self-calibration
scheme to validate its effectiveness. The precision and robustness are evaluated in the experiments with favorable
performance, achieving 2-bit precision improvement and excellent robustness to environmental temperature fluc-
tuations (the weights can be corrected within 1 s after temperature changes 0.5°C). Moreover, we demonstrate
matrix inversion tasks based on Newton iterations beyond 7-bit precision using this microring synapse. Our
scheme provides an accurate and real-time weight calibration independently parallel from computations and
opens up new perspectives for precision boost solutions to large-scale analog optical computing. © 2023
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1. INTRODUCTION

Performing analog computation using optical hardware is an
emerging computing paradigm based on light propagation
for solving cutting-edge scientific issues such as deep learning
[1–7], reservoir computing [8–10], and Ising machine [11–13].
Complicated artificial intelligence (AI) systems can often be ab-
stracted into intuitive mathematical models and thus can be
represented by numerous vectors and matrices, such as layers
of neurons (represented as vectors) and synaptic weights (rep-
resented as matrices) in a neural network [14–16]. On the basis
of mathematical models, numerical linear algebra describes
methods for performing various operations, such as matrix-
vector multiplication (MVM) and matrix inversion, which
are capable of extracting and processing valuable information
from complicated mathematical models. Limited by Moore’s
law [17], microelectronic hardware represented by a central
processing unit (CPU) and a graphics processing unit (GPU)
is gradually approaching the performance limit of von
Neumann architecture. Optical hardware uses photons instead
of electrons to perform MVM and matrix inversion in an

analog manner, which can significantly speed up the compu-
tation and reduce energy consumption and provide a faster
and more energy-efficient analog computing platform to train
or implement state-of-the-art AI models.

Microring resonators (MRRs) are a type of fundamental de-
vices in photonic integrated circuits with the advantages of
compact footprint, high sensitivity, and reconfigurability.
Especially in optical neural networks, optical synapses based
on tunable MRRs [18–23] can perform weighted summation
of optical signals at different wavelengths to naturally complete
MVM in one operation and can be flexibly scaled by wave-
length division multiplexing (WDM) technology. Hence, this
architecture is also known as a photonic “broadcast-and-
weight” architecture [24]. In this architecture, the MRRs in the
optical synapse correspond to the elements in the matrix, and
the mapping between the transmittances of the MRRs and the
element values needs to be established in advance as a look-up
curve. In this way, each MRR can be straightforwardly config-
ured according to the look-up curve without using complex
algorithms such as singular value decomposition (SVD).
However, the resonant structure of the MRR makes its state
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easily affected by thermal cross talk and environmental pertur-
bations, which is equivalent to affecting the transmittance of
the MRR at specific wavelengths. In addition, overlapping
spectral responses between adjacent MRRs can also lead to
inter-channel cross talk of microring synapses. As a result,
the measured weight values of the MRRs will be different from
those in the pre-established look-up curve; thereby the preci-
sion of the analog computation will deteriorate.

To improve the analog computing precision of microring
synapses, integrated monitors are usually used to obtain the
state information of the MRR, and then the state of the MRR
is fine-adjusted by intelligent calibration algorithms based on
feedback control. On the one hand, different types of inte-
grated monitors for obtaining MRR state information have
been proposed recently, including the integrated temperature
sensor for detecting the local temperature of the MRR [25,26],
the in-resonator photoconductive heaters (IRPHs) for monitor-
ing the light intensity in waveguides [27,28], and the contact-
less integrated photonic probe (CLIPP) for measuring the
light-intensity-dependent change of the electronic conductivity
of the waveguide [29]. On the other hand, various novel
calibration algorithms have been demonstrated to realize weight
adjustment of the MRR and thus improve the precision of
analog computations, such as the dithering signal algorithms
[23,30], the feedback control algorithms for microring weight
banks [31,32], the state locking algorithms [33,34], and the
self-calibration algorithm based on finite impulse response
(FIR) filters [35].

However, commercial integrated photonic foundries are
currently unable to provide special integrated optical monitors,
which makes it expensive to use them to obtain the state in-
formation of the MRR and requires a customized fabrication
process. In addition, high-speed information processing appli-
cations also impose extra requirements on the operation speed
of the calibration algorithm. Once anomalies in the microring
synapse are detected, the calibration algorithm needs to be ac-
tivated immediately to complete the calibration of the MRR
weights in a very short time. Although the proposed dithering
signal algorithms [23,30] and gradient descent algorithms
[36–39] can effectively calibrate and train the weights of syn-
apse, it still takes several seconds to complete the whole process
in the experimental demonstration.

In this paper, we propose a dual-wavelength synchroniza-
tion-based self-calibration scheme for real-time weight calibra-
tion of microring synapses to improve the precision of analog
optical computation. In this scheme, we can obtain the weight
of each MRR and perform real-time self-calibration by intro-
ducing an additional monitoring wavelength, and up to 2-bit
precision improvement is experimentally achieved. The main
wavelength and the monitoring wavelength are independent
of each other and are used for computation and self-calibration,
respectively, and thus our self-calibrating microring synapse al-
lows the real-time dynamic calibration of the MRRs while the
computational task is being performed. We tested the perfor-
mance of the self-calibrating microring synapse for real-time
monitoring and compensation of weight drifts caused by envi-
ronmental temperature variation. The result shows that our
scheme allows the transmission spectrum of the MRR to be

quickly restored to its correct position within a short time, even
after environmental temperature changes. Furthermore, we use
this integrated microring synapse to perform matrix inversion
tasks based on Newton’s iterative method, and the results show
an improvement in weighing precision from 5 bits to 7 bits,
which can meet the precision requirements of most matrix in-
version tasks. This work represents an important step of the
integrated optical hardware towards intelligent self-calibration
and high-precision analog computation.

2. PRINCIPLE AND DEVICE DESIGN

Figure 1 shows the conceptual diagram of the self-calibrating
microring synapse with dual-wavelength synchronization, in-
cluding the detailed working flow and the intermediate process
of visualization. Our scheme is designed for a microring syn-
apse system with multiple signal channels, and the number of
wavelengths is twice the number of the MRRs, with half as the
main wavelengths to perform the computing function of the
microring synapse itself, and the other half serving as the mon-
itoring wavelengths to simultaneously calibrate the weights of
the MRRs. Specifically, for one MRR in a microring synapse, in
addition to the main wavelength, we set a monitoring wave-
length fixed on the adjacent resonant peak of the main resonant
peak of the MRR, and the two are always separated by a con-
stant free spectral range (FSR). The monitoring wavelengths
enter each signal channel together with the main wavelengths
through the WDM and can be individually separated at the
microring synapse’s output port by a wavelength demultiplexer
(DeMUX) and then captured synchronously by a high-speed
optical power meter. Since the monitoring wavelengths and
the main wavelengths share the same optical path, each indi-
vidually separated monitoring wavelength can reflect the weight
of the corresponding MRR in real time.

The self-calibration process can be summarized as two steps.
The first step is to establish a mapping between the weights of
the microring synapse and the power of the monitoring wave-
length, and the second step is to adjust the microheater of the
MRR to calibrate its weights. In the first step, the main wave-
length is detected at the through (THRU) port and the drop
(DROP) port, and then the weight-voltage (W-V) lookup
curves can be established through differential processing. These
W-V lookup curves provide initial reference points for self-
calibration. At the same time, the corresponding power-voltage
(P-V) lookup curves can be established by separately detecting
the monitoring wavelengths at the THRU port. These P-V
lookup curves show the mapping between the power of the
monitoring wavelengths and the voltages applied to the MRRs,
and the voltages also determine the weights of these MRRs. It
should be noted that due to the synchronization of the dual
wavelengths, the optical power of the monitoring wavelength
and the weight of the main wavelength are synchronized, re-
sulting in one-to-one mapping, which is also the premise of
the validity of the proposed scheme. Next, we can obtain
the weight-power (W-P) lookup curves by the already estab-
lished W-V lookup curves and the P-V lookup curves, which
directly correspond the weight information carried by the main
wavelengths to the power of the monitoring wavelengths. The
subsequent self-calibration process will be based on the W-P
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lookup curves established here. For one MRR in a microring
synapse, there is a specific W-P lookup curve corresponding to
it, which includes a weight set, W �ref �:w�ref �

1 ,w�ref �
2 ,…,w�ref �

N ,
and a power set, P�ref �:p�ref �1 , p�ref �2 ,…, p�ref �N , where N is the
sample length. Each power, p�ref �n , n ∈ �1,N �, then uniquely
determines its corresponding weight, w�ref �

n , n ∈ �1,N �, of
the MRR.

In the second step, our self-calibration goal is to make the
measured weights W closest to the target weights W �set� im-
prove the analog computing precision. To evaluate the proxim-
ity of the two weight sets, we define a figure of merit (FOM) as
the l2-norm between the measured one and the target one, as
expressed by

FOM � ∥W −W �set�∥2, (1)

where FOM ∈ �0,∞�, meaning the lower the FOM value, the
better proximity of the two weight sets. According to the W-P
lookup curves established in the first step, we can find the refer-
ence weight that is closest to the target weight and its corre-
sponding power value p�ref �closest of the monitoring wavelength.
The power meters will simultaneously record each individual
weight corresponding to p�ref �closest as a collection of the measured
weights, W :w1,w2,…,wN . To normalize the collection of
measured weights, the maximum positive weight in the collec-
tion can be temporarily assigned as wmax � 1 as the reference
for determining other synaptic weights of this channel. Note
that since the power of the monitoring wavelength is in one-
to-one correspondence with the weight of the MRR, we only
need to adjust the power of the monitoring wavelength to the

correct value, and the corresponding weight of the MRR will
naturally be in the correct position. During self-calibration,
p�ref �closest is taken as the starting position of the search, and the
binary search is used to search for the appropriate power value
near the starting position to minimize the value of the FOM. In
addition, each MRR has a different monitoring wavelength,
thus the weights of all channels can be monitored and adjusted
simultaneously, and the required search time does not increase
with the number of channels. The self-calibration procedure
stops when the number of iterations reached the limit or
the FOM is lower than the pre-defined threshold.

Figure 2 shows the design details of the microring synapse.
The device is designed on a silicon-on-insulator (SOI) platform
with a 220-nm-thick silicon and a 2-μm-thick buried oxide
layer, featuring a compact size of 2.6 mm × 2.0 mm. As shown
in Fig. 2(a), the MRR array consists of 4 four-MRR synapses,
and the radius of the MRRs in each four-MRR synapse is de-
signed to be gradual to avoid overlapping resonance peaks of
different MRRs. Figure 2(b) shows the micrograph of the
four-MRR synapse and the zoomed-in micrograph of an indi-
vidual MRR. Thermo-optic phase shifters made of TiN heaters
are used to tune the MRRs. Overall and detailed photos of the
packaged layout are shown in Fig. 2(c), in which both wire
bonding and vertical grating coupling have already been pack-
aged for electrical and optical input/output (I/O). In addition,
we specially designed a customed field-programmable gate array
(FPGA) circuit and a digital-to-analog converter (DAC) circuit
to achieve programmable voltages with 16-bit resolution to
supply accurate voltages to the MRRs. The thermo-electric
cooler (TEC) is mounted below the integrated microring syn-
apse to control the environmental temperature and will be used

Fig. 1. Conceptual diagram of the self-calibrating microring synapse with dual-wavelength synchronization. Monitoring wavelengths are added to
monitor and calibrate the synaptic weights, and a thermally insensitive mapping between the synaptic weights and monitoring wavelengths can be
established to provide accurate initial reference points for the parameter update procedure.
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in this work to test the robustness of the self-calibrating micro-
ring synaptic system. For a four-MRR synapse, four main
wavelengths and four monitoring wavelengths are used in
the experiment, corresponding to two adjacent sets of reso-
nance peaks in the spectrum, as shown in Fig. 2(d). Our
method only requires the monotonicity of adjacent resonance
peaks to be consistent to establish the one-to-one mapping and
does not require their transmission to be exactly the same.
Because as long as the monotonicity of two sets of adjacent
resonance peaks is consistent, the one-to-one mapping between
the main wavelengths and the monitoring wavelengths can be
established. Hence, when the power of the monitoring wave-
length is adjusted to the correct value, the weight carried by the
main wavelength will also be calibrated. Since all resonance
peaks are separated from each other, the MRRs of the microring
synapse can be independently configured, and thermal isolation
trenches are employed between each microring synapse of the
MRR array to minimize the thermal cross talk.

The device is characterized by the experimental set-up that
contains a C+L ASE light source (Amonics ALS-CL-15), a
versatile tunable laser (ID Photonics CoBrite DX4), a custom
programmable voltage source, an optical spectrum analyzer
(Yokogawa AQ6370C), a multi-channel optical power meter
(Luster OPM-1008), an optical tunable filter (Santec OTF-
350), and two wavelength selective switches (Finisar WSS).
The light polarization is controlled by a polarization beam split-
ter and a polarization controller before coupling into the grating
coupler of the device under test. The loss of each grating cou-
pler is measured to be around 3 dB at the central wavelength of
1550 nm.

3. RESULTS

In this section, we first experimentally validate the effectiveness
of the proposed self-calibrating microring synapse with dual-
wavelength synchronization, including two aspects: improved
computing precision and robustness to environmental temper-
ature changes. Next, we demonstrate the success of this self-
calibrating microring synapse for matrix inversion tasks.

A. Precision Test of the Two-MRR Synapse System
Precision is always an important index for analog computing
hardware, which determines its ability to deal with precision-
demanded problems. State-of-the-art microelectronic hardware
for AI computing, such as the Intel Loihi [40] and the Google
tensor processing unit (TPU) [41], has 8-bit precision or
higher. However, most optical synapses are limited to relatively
low precision, typically 2 bits lower than that of microelectronic
hardware, and thus there is an urgent need for an effective ap-
proach to improving the precision of optical hardware to meet
the growing demand for AI applications.

To show the effectiveness of the self-calibration scheme, we
first tested the precision performance of an individual MRR.
Before the self-calibration, we established the mapping between
the MRR weights and the optical power of the monitoring
wavelength, which is the W-P lookup curve mentioned above.
Then, a main wavelength and a monitoring wavelength are si-
multaneously injected from the input port to evaluate the per-
formance of the MRR. We swept the optical power of the
monitoring wavelength by tuning the voltages applied to the
TiN heater of the MRR to change the weights in equally spaced
increments within the [–1, 1] interval. Figure 3 shows the

Fig. 2. Detailed design of the integrated microring synapse. (a) The schematic structure of the 4 × 4 MRR array. Different colors correspond to
different wavelength channels. (b) The micrograph of the microring synapse cascading four MRRs and the zoomed-in micrograph of an individual
MRR. (c) The overall and detailed photos of the packaged layout. The integrated photonic core is wire bonded with a tailored printed circuit board
(PCB) and mounted on a thermo-electric cooler (TEC). The optical input and output (I/O) are through the fiber V groove on the top left. (d) The
measured output spectral response of the MRR synapse at the THRU and DROP ports.
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comparison of the calibrated weights and theoretical weights of
the individual MRR of the microring synapse. The blue dashed
line (corresponding to the left vertical axis) indicates the W-P
lookup curve established in advance, while the green dots (cor-
responding to the left vertical axis) represent the experimental
calibrated weights obtained by the MRR self-calibrating
scheme based on dual-wavelength synchronization. The error

between these two weight values is calculated and plotted as the
orange curve (corresponding to the right vertical axis). Results
show that the error is basically within 1% over the whole weight
range, [–1, 1], which confirms the effectiveness of our self-cal-
ibrating scheme.

To further verify the effectiveness of the self-calibration
scheme in a larger-scale situation, we then evaluate the perfor-
mance of the self-calibration scheme on the two-MRR synapse
system. Figures 4(a) and 4(b) show the error results on the heat
map before and after the self-calibration process, respectively.
The two MRRs in the microring synapse are tuned to
�w1,w2�,w1,2 ∈ �−1, 1� with equidistant weight points. In
the 9 × 9 heat map, each sub-square represents the error of
one weight combination, and its color shade represents the
magnitude of the error. The bit precision of the weights can
be calculated from the standard deviation of the measured error
marked on each sub-square of the heat map and then converted
into bit-precision expression by the equation from Ref. [23],

precision � log2

�
weightmax�1� − weightmin�−1�

standard�error�

�
: (2)

Figures 4(c) and 4(d) show the aggregation of the errors de-
rived from Figs. 4(a) and 4(b), respectively. The error points of
weights are calculated as Δw � w − wset, where w is the mea-
sured weight and wset is the set weight. The dashed and solid

Fig. 3. Comparison of the calibrated weights and theoretical
weights of the individual MRR of the microring synapse.

Fig. 4. The calibration with dual-wavelength synchronization improves the precision of weighting in the two-MRR synapses. (a) The measure-
ment of the weighting precision before the self-calibration. (b) The measurement of the weighting precision after the self-calibration. The weighting
precision is evaluated at equally spaced weights on the heatmap. Each sub-square in the heatmap represents the weighting error of a measured weight,
and its shade represents the magnitude of the error. (c) and (d) are the weighting error for the evaluation in (a) and (b), respectively, calculated as
Δw � w − wset, where w is the measured weight and wset is the set weight. The dashed and solid circles correspond to different bit precisions to
provide an intuitive distribution of weight precision.
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circles correspond to different bit precisions to provide an in-
tuitive distribution of weight precision. Before calibration,
most of the test points are distributed in the 5-bit range, while
after calibration, most of the test points are clustered in solid
circles representing 7-bit precision, indicating that the precision
of the microring synapses can be improved from 5 bits to 7 bits,
and the error is significantly reduced.

B. Robustness Test against Temperature
Fluctuations
As a typical class of resonant devices, MRRs usually have a high
Q factor and high sensitivity to temperature variations, and
thus can be designed as temperature sensors [25,26]. However,
the temperature sensitivity of the MRR makes it difficult to
maintain the stability of the weights of the MRR when the
environmental temperature fluctuates, which leads to a serious
deterioration of the precision for analog optical computations.

To resolve this issue, we applied our self-calibration scheme
to the microring synapse and tested its robust performance
against temperature fluctuations. As shown in Fig. 5, the tested
weights consist of positive [Fig. 5(a)], zero [Fig. 5(b)], and
negative weights [Figs. 5(c) and 5(d)], respectively. The whole
test process contains three steps, including (I) origin, (II) tem-
perature changes, and (III) weight self-calibrating. In the
first step, we set the weights of the MRR to the target weights
(weights � 0.3, 0, −0.2, −0.5) according to the W-P lookup
curve pre-established at 20°C. In the second step, the environ-
mental temperature is gradually increased from 20°C to 20.5°C
using a thermo-electric cooler (TEC) module, and the weights
of the MRR are recorded simultaneously by power meters.

The curves in the II area of Fig. 5 show the weight deterioration
process caused by environmental temperature changes. The
third step is used to demonstrate the robust performance of
the self-calibrating microring synapse against environmental
temperature fluctuations. Due to the thermo-optical effect,
changes in temperature affect the transmittance of the MRR,
so the optical power of the monitoring wavelength is noticeably
abnormal. Such anomalies are quickly identified, and the self-
calibrating procedure is automatically activated and keep run-
ning. After a few dozen iterations at a temperature of 20.5°C,
which is different from the temperature of pre-established W-P
lookup curves, the weights of the MRR are successfully restored
to the target weight, indicating that the weights of the MRR
can be quickly corrected with a fast-converging training after
the environmental temperature changes. Our test range in-
cludes positive, zero, and negative weights, and the results dem-
onstrate the wide applicability of our self-calibration scheme
with dual-wavelength synchronization.

According to our experimental experience, current temper-
ature variation range is close to the maximum range of temper-
ature variations that our microring synapse and self-calibration
algorithm can support. If the temperature variation range is fur-
ther increased, the spectrum shift will be too large, which may
cause the main wavelength and monitoring wavelength to shift
out of the resonance peaks, and the microring cannot be cali-
brated back to the correct weight. Actually, the current tem-
perature variation range is much larger than the fluctuation
of the environmental temperature in usual experiments. As
shown in Fig. 5, the weight will change dramatically due to the

Fig. 5. Robust performance of the self-calibrating microring synapse against environmental temperature fluctuations. The tested weights consist
of positive, zero, and negative weights, including weight of (a) 0.3, (b) 0, (c) −0.2, and (d) −0.5.
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temperature variation, such as changing from 0.3 to 0.7, or
even from −0.5 to 0.4, which is generally impossible in the
usual experimental environment. Therefore, we believe that
the current temperature variation range can already verify
the effectiveness of our self-calibration scheme in terms of tem-
perature stabilization.

C. Demonstration of Matrix Inversion Tasks
In the era of big data, where matrix inversion is an important
and fundamental linear algebra operation, modern AI models
are usually converted to linear algebra problems to support the
heavy workload. Compared to the MVM, matrix inversion is
more computationally complex and usually needs to be solved
by iteration-based methods. For an N × N matrix, the compu-
tational complexity of the matrix inverse is generally O�N 3�
and that of MVM is just O�N 2�, and thus matrix inversion
requires analog computing hardware to support higher compu-
tational precision and stability to ensure that high-precision
iterations can be performed smoothly. As an effective and
fast-convergence method for computing the matrix inversion,
the Newton’s iterative algorithm was first proposed several dec-
ades ago [42], and it has been widely used in industrial and
academic applications [43,44] and is also considered a bench-
mark for matrix inversion to compare with the performance of
the newly proposed algorithms [45]. The Newton’s iterative
method uses iterative numerical linear algebra to compute
the matrix inversion, which starts with an initial guess of
the solution matrix and updates the approximate solution in
iterations of the algorithm, further minimizing the difference
between the approximate solution and the target solution at
each step. The Newton’s iteration can be expressed as

X n � X 0 · �2 · I − A · X 0�, (3)

where X n is the target solution, X 0 is the approximate solution,
I is the identity matrix, and A ∈ R is the initial input matrix.
However, the iterative process is often accompanied by the ac-
cumulation of errors. Once the error is too large, the algorithm
cannot converge, and hence the computing precision is of great
significance for the Newton’s iterative method. To illustrate the
effect of the precision on Newton’s iterative method, we per-
form numerical simulations of the matrix inversion model
based on the Newton iteration at different weight precisions.
In each iteration, the Gaussian random noise is added to every
matrix element, and the intensity of Gaussian noise is set with
bit precision of 4 bits, 5 bits, 6 bits, 7 bits, and 8 bits, respec-
tively, to evaluate the impact of computing precision on the
feasibility of matrix inversion based on Newton’s iterative
method. Figure 6 shows the simulation results of Newton’s iter-
ative method for matrix inversion tasks with different bit pre-
cisions. The error function is designed to describe the difference
between the approximate solution and the correct solution.
The larger the error function is, the greater the difference be-
tween the approximate solution and the correct solution will
be, while a smaller error function indicates that the approxi-
mate solution and the correct solution are closer. The simula-
tion results show that the matrix inversion can be successfully
achieved by Newton’s iterative method only when the compu-
tational precision reaches 7 bits or more.

To further evaluate the practical precision performance of
the proposed microring synapse, we experimentally demon-
strate the Newton’s iteration-based matrix inversion task imple-
mented by the proposed microring synapse. The task is to
perform Newton iteration using optical hardware to calculate
the inverse matrix of the given initial matrix, and the schematic
of the computation flow is shown in Fig. 7(a). For an individual
Newton’s iteration, MVM operations are optically performed
by the photonic MRR synapses, and the subtraction operation
of the output values of the MRR synapses is electrically
executed on the customed FPGA circuit. Without loss of gen-
erality, we test several different initial matrices. The test results
show that matrix inversion in the real domain can be success-
fully implemented, and Fig. 7 shows the matrix inversion based
on Newton’s iteration for two different initial matrices
A1 ∈ R,A2 ∈ R,

A1 �
0
@ 1 −0.2 0.4

0.4 2 0.5
−0.3 0.6 2

1
A, (4)

A2 �
0
@ 2 −0.3 0.5

−0.2 1 0.4
0.4 0.6 2

1
A, (5)

where the theoretical inverse of A1 and A2 can be calculated as

A−1
1 �

0
@ 0.8755 0.1514 −0.2130

−0.2248 0.5017 −0.0805
0.1988 −0.1278 0.4922

1
A, (6)

A−1
2 �

0
@ 0.5692 0.2911 −0.2005

0.1811 1.2290 −0.2911
−0.1682 −0.4269 0.6274

1
A: (7)

Figure 7(b) shows the theoretical and experimental results
for the inversion of matrix A1, and the corresponding error dis-
tribution is shown in Fig. 7(c). Similarly, Fig. 7(d) shows the

Fig. 6. Simulation results of Newton’s iterative method for matrix
inversion tasks with bit precision of 4 bits, 5 bits, 6 bits, 7 bits, and
8 bits.
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theoretical and experimental results for the inversion of matrix
A2, and the corresponding error distribution is shown in
Fig. 7(e). In the whole computation flow, the self-calibration
procedure is employed to ensure that the computing precision
can meet the requirements of matrix inversion tasks. According
to the error distribution of matrix inversion, most elements
have absolute errors less than 0.1, and over 75% of the elements
have absolute errors less than 0.06. The results indicate that
the experimental values are in excellent agreement with the
theoretical values, and the matrix inversion based on
Newton’s iteration can be achieved by the microring synapse
with dual-wavelength synchronization.

4. DISCUSSION

Feedback weight calibration is essential to a microring synapse
system with stability and dynamic operation ability. In our
scheme, the concepts of monitoring wavelength and dual-wave-
length synchronization are first proposed and demonstrated for
the weight calibration of the microring synapses. Since the
monitoring wavelengths and the main wavelengths used for
computations are separated by one FSR and do not overlap,
they are independent of each other, and changes in the ampli-
tude of the input signal modulated by the intensity modulators
do not affect the monitoring of the MRR weights. The MRR
weight information carried by the main wavelengths can be ob-
tained based on the synchronized monitoring wavelengths and
the pre-established mapping. Table 1 summarizes the compari-
son of our weight monitoring scheme with three mainstream
schemes in terms of several metrics.

Compared with previous works, our scheme has several
advantages.

(1) Computation and weight monitoring are implemented
simultaneously and independently of each other. Based on the
spectral characteristics of the MRR and the dual-wavelength
synchronization, the optical power of the monitoring wave-
length is in one-to-one correspondence with the MRR weight
and will not be affected by the amplitude of the modulated
input signal.

(2) Immunity to temperature fluctuations. Temperature
fluctuations do not change the relative position and synchro-
nization of the main wavelengths and the monitoring wave-
lengths, and thus the W-P mapping is naturally insensitive
to temperature fluctuations, which fundamentally determines
the advantage of this scheme in robust performance against
temperature fluctuations.

(3) Significant precision improvement and fast conver-
gence. Our scheme is an optoelectronic hybrid closed-loop
feedback system that operates without human intervention.
The real-time feedback and efficient binary search enable 2-
bit precision improvement and fast convergence for weight
self-calibration.

(4) Flexible scalability for the potential of large-scale micro-
ring synapses. On the one hand, each MRR only needs one
additional “plug-and-play” monitoring wavelength, which
can support the weight monitoring function under the premise
of compatibility with the existing architecture. On the other
hand, compared with the monitoring schemes based on power
splitters, the proposed scheme does not induce extra power loss.

Although our scheme achieves a precision improvement of
2 bits, it still falls short of the current highest precision record.
Admittedly, the main limitation of our present work is the lack
of the entire optical link consisting of the laser load, the inten-
sity modulators, the radio frequency signal, the microring syn-
apse, and the power meters. In particular, our scheme requires a

Fig. 7. Matrix inversion based on Newton’s iteration for two different initial matrices. (a) The implementation of an individual Newton’s iteration
expressed by Eq. (3). (b) The theoretical and experimental results for the initial matrix A1. (c) The error distribution of the inverse of A1. (d) The
theoretical and experimental results for the initial matrix A2. (e) The error distribution of the inverse of A2.
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constant interval between the monitoring wavelength and the
main wavelength, and hence the wavelength instability of the
laser will lead to errors. We believe that with the realization of
the entire optical link monitoring, our scheme will be able to
achieve precision comparable to the current state-of-the-art
records.

5. CONCLUSION

In summary, we propose and demonstrate a self-calibration
scheme with dual-wavelength synchronization, featuring the
monitoring wavelengths independently parallel from computa-
tions and a thermally insensitive W-P mapping for the weight
calibration of the microring synapses. To boost the calibration
speed, on-demand FPGA circuits are designed to replace bulky
instruments, while feedback control and fine-tuning of the
MRRs are performed based on binary search algorithms and
W-P mapping. We test the integrated microring synapse in
terms of the precision improvement of the synaptic weights
and the robustness against temperature fluctuations to evaluate
the practical effectiveness of the scheme. As an optoelectronic
hybrid closed-loop feedback control, this scheme supports fast-
converging parameter update and iteration, which enables 2-bit
precision improvement for the microring synapse. Moreover,
our scheme is immune to the environmental temperature fluc-
tuations, and the weights can be corrected within 1 s after the
temperature changes 0.5°C. In addition, we demonstrate
Newton iterations beyond 7-bit precision realized by MRRs
and perform matrix inversion tasks in the real-value domain.
Our self-calibration scheme paves the way for analog optical
computing, especially overcoming the environmental vulner-
ability of resonator-based architectures, such as microring syn-
apses, to perform high-precision computational tasks on optical
hardware.
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Grabska-Barwińska, S. G. Colmenarejo, E. Grefenstette, T.
Ramalho, J. Agapiou, A. P. Badia, K. M. Hermann, Y. Zwols, G.
Ostrovski, A. Cain, H. King, C. Summerfield, P. Blunsom, K.
Kavukcuoglu, and D. Hassabis, “Hybrid computing using a neural net-
work with dynamic external memory,” Nature 538, 471–476 (2016).

42. V. Pan and J. Reif, “Fast and efficient parallel solution of dense linear
systems,” Comput. Math. Appl. 17, 1481–1491 (1989).

43. Y. Wang and H. Leib, “Sphere decoding for MIMO systems with
Newton iterative matrix inversion,” IEEE Commun. Lett. 17, 389–
392 (2013).

44. C. Tang, C. Liu, L. Yuan, and Z. Xing, “High precision low complexity
matrix inversion based on newton iteration for data detection in the
massive MIMO,” IEEE Commun. Lett. 20, 490–493 (2016).

45. Y. Zhang, W. Ma, and B. Cai, “From Zhang neural network to Newton
iteration for matrix inversion,” IEEE Trans. Circuits Syst. I Reg. Papers
56, 1405–1415 (2009).

46. S. Saeedi and A. Emami, “Silicon-photonic PTAT temperature sensor
for micro-ring resonator thermal stabilization,” Opt. Express 23,
21875–21883 (2015).

356 Vol. 11, No. 2 / February 2023 / Photonics Research Research Article

https://doi.org/10.1038/s41377-022-00717-8
https://doi.org/10.1038/s41377-022-00717-8
https://doi.org/10.1126/science.1079567
https://doi.org/10.1364/OE.20.013560
https://doi.org/10.1364/OE.20.013560
https://doi.org/10.1109/JSTQE.2019.2945540
https://doi.org/10.1038/s41928-021-00661-2
https://doi.org/10.1038/s41928-021-00661-2
https://doi.org/10.1109/JLT.2021.3076070
https://doi.org/10.1109/JLT.2021.3076070
https://doi.org/10.1007/s12200-022-00009-4
https://doi.org/10.1007/s12200-022-00009-4
https://doi.org/10.1364/OPTICA.446100
https://doi.org/10.1364/OPTICA.446100
https://doi.org/10.1109/JLT.2014.2345652
https://doi.org/10.1364/OE.22.003098
https://doi.org/10.1364/OE.24.009501
https://doi.org/10.1364/OE.24.009501
https://doi.org/10.1109/JLT.2017.2769962
https://doi.org/10.1109/JLT.2017.2769962
https://doi.org/10.1364/OPTICA.6.000084
https://doi.org/10.1109/JLT.2020.3008001
https://doi.org/10.1109/JLT.2020.3008001
https://doi.org/10.1109/JLT.2013.2294564
https://doi.org/10.1109/JLT.2013.2294564
https://doi.org/10.1364/OE.26.026422
https://doi.org/10.1364/OE.26.026422
https://doi.org/10.1063/1.5144121
https://doi.org/10.1109/JSTQE.2016.2551943
https://doi.org/10.1364/OE.25.016040
https://doi.org/10.1364/OE.25.016040
https://doi.org/10.1038/s41566-022-01020-z
https://doi.org/10.1515/nanoph-2019-0310
https://doi.org/10.1515/nanoph-2019-0310
https://doi.org/10.1021/acsphotonics.9b01673
https://doi.org/10.1021/acsphotonics.9b01673
https://doi.org/10.1109/JSTQE.2019.2943347
https://doi.org/10.1109/JSTQE.2019.2943347
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1038/nature20101
https://doi.org/10.1016/0898-1221(89)90081-3
https://doi.org/10.1109/LCOMM.2013.010313.121837
https://doi.org/10.1109/LCOMM.2013.010313.121837
https://doi.org/10.1109/LCOMM.2015.2514281
https://doi.org/10.1109/TCSI.2008.2007065
https://doi.org/10.1109/TCSI.2008.2007065
https://doi.org/10.1364/OE.23.021875
https://doi.org/10.1364/OE.23.021875

	XML ID funding

