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Recently, optical computing has emerged as a potential solution to computationally heavy convolution, aiming at
accelerating various large science and engineering tasks. Based on optical multi-imaging–casting architecture, we
propose a paradigm for a universal optical convolutional accelerator with truly massive parallelism and high
precision. A two-dimensional Dammann grating is the key element for generating multiple displaced images
of the kernel, which is the core process for kernel sliding on the convolved matrix in optical convolutional ar-
chitecture. Our experimental results indicate that the computing accuracy is typically about 8 bits, and this ac-
curacy could be improved further if high-contrast modulators are used. Moreover, a hybrid analog–digital coding
method is demonstrated to improve computing accuracy. Additionally, a convolutional neural network for the
standard MNIST dataset is demonstrated, with recognition accuracy for inference reaching 97.3%. Since this
architecture could function under incoherent light illumination, this scheme will provide opportunities for han-
dling white-light images directly from lenses without photoelectric conversion, in addition to convolutional
accelerators. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.472741

1. INTRODUCTION

A convolutional neural network (CNN), as “convolutional” im-
plies, involves extensive convolution operations among neigh-
boring layers, followed by batch normalization and nonlinear
activation for the expected performance [1–3]. Remarkably,
these massive linear matrix multiply–accumulate (MAC) oper-
ations account for more than 80% of the total number of deep
neural network (DNN) calculations [4]. However, the convo-
lution operation, which is unsuitable for modern advanced
electric serial processors, is becoming the biggest burden for
high-performance computing tasks, particularly for artificial
intelligence (AI) algorithms. Furthermore, as the scale of the
matrix increases, so does the computational overhead of con-
volution operations. It has been demonstrated that the amount
of computing power required to train state-of-the-art DNNs
doubles every 3.5 months [5], far exceeding that of traditional
electrical integrated circuits (EICs) following Moore’s law.
Although parallel electrical coprocessors such as graphics
processing units (GPUs) and tensor processing units (TPUs)
can accelerate the convolution calculation, it is still difficult
to handle millions of MAC operations in a fully parallel manner
for DNNs practically [6,7]. In contrast, it has been proven that

many MAC operations can be executed concurrently during a
single pass of light, and this may be the prime motivation for
the recent interest in optical computing [8,9]. Photonic solu-
tions for computing have been investigated for at least 70 years
[10,11]. However, compared with fast-growing EICs, the de-
velopment of optical computing gradually slowed in the late
2000s [12], owing to a lack of application-driven motivation
and adequate optical computing architectures.

Recently, due to the remarkable achievements in AI, there
has been renewed interest in attempting to improve computing
power, energy efficiency, and processing speed by exploiting
photonic or hybrid optical–electric processors rather than their
electronic counterparts [13–15]. Two mainstream optical com-
puting architectures have been rapidly developed. The first is
based on a planar waveguide on a two-dimensional (2D)
substrate [16–18], whereas the second is realized by multiple
cascading diffractive optical elements (DOEs) in three-
dimensional (3D) space [19,20]. However, planar architecture,
which includes Mach–Zehnder interferometers [16], microring
resonators [21,22], waveguide modulators [23], and acousto-
optical modulators [24], does not fully use the 3D inter-
connectivity of optics, whereas 3D architecture requires full
manipulation of the electromagnetic field with high precision,
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and fabricating large-sized and high-precision subwavelength
DOEs in 3D space will still be difficult [19,20].

Despite predictions that photonic processors could be at
least 10,000 times faster than state-of-the-art EICs [13,14],
the past schemes have not realized fully parallel convolution
computing compared with their electronic counterparts, par-
ticularly when high precision is required. Here, we propose
a new paradigm for a universal convolutional accelerator with
full parallelism and adequate precision based on optical multi-
imaging–casting architecture (OMica), capable of calculating
arbitrarily encoded hybrid analog–digital matrix convolutions.
The architecture can be viewed as the starting point for a new
roadmap for optical computing, with the potential for building
fully massively parallelized optical convolutional accelerators to
overcome the intrinsic computing power shortage and unsatis-
factory energy efficiency of EICs. Furthermore, the incoherent
illumination implies the possibility of handling white-light im-
ages directly from lenses without traditional photoelectric con-
version, promising to fully exploit the benefits of AI algorithms
or accelerate other practical applications where rapid big data
processing is desired.

2. PRINCIPLE OF OMICA

A. Optical Multi-Imaging–Casting Architecture
The OMica architecture, as depicted in Fig. 1, employs an in-
cident-modulated light (matrix A) and a spatial light modulator
(SLM) (matrix B), as well as a confocal 4f system with a dif-
fractive beam splitter (BS), and another focusing system with a
photodetector (matrix C). The planes of matrices A and B, the
confocal plane of the 4f system, and the plane of the detector
are all in a conjugated object–image relationship with each
other. When a BS, such as a Dammann grating (DG) [25–27],
is placed behind the plane of matrix A, the two pairs of imag-
ing–casting relationships mentioned above still hold. When the
DG is inserted, the optical signal carrying the information of
matrix A is duplicated into multiple diffraction orders, with
excellent uniformity due to the properties of DG. The different
diffraction orders inherently have different angular spectral
components (θ1 and θ2). However, they all carry the same in-
formation as matrix A, as shown in Fig. 1(c). This implies that
the multiplexing of matrix A is achieved over the spatial pat-
tern. When we pass a pinhole through one of the diffraction
orders in the confocal plane, the image corresponding to that
diffraction order can be seen clearly on the plane of matrix B
through lens L2 (as shown in Appendix A and Fig. 9). Because
these diffraction orders have different diffraction angles (θ1 and
θ2), the images of the diffraction orders on the plane of matrix
B are displaced when we sequentially pass each diffraction order
through the pinhole. Thus, as shown in Fig. 1(c), all images are
aligned by adjusting the distance d between the DG and matrix
A, according to a paraxial relation:

s � l
f 1

f 2

tan θ, (1)

where s is a convolutional stride, f 1 and f 2 are focal lengths
of L1 and L2, respectively, and θ is the angle difference
between any two adjacent diffraction orders. According to

the grating equation, θm � arcsin�mλ∕Λ�, θm�1 − θm−1 ≈ θ,
and tan θ ≈ sin θ, Eq. (1) can be re-written as

s � d
f 2

f 1

λ

Λ
, (2)

where θm is the diffraction angle of the mth order of a DG, Λ is
the grating period, and λ is wavelength. Therefore, s can also be
adjusted to adapt to different convolutional strides by changing
d [Figs. 1(a) and 1(b)].

Because of the conjugation relationship and different angles,
the images of all diffraction orders are superimposed on the
matrix B plane with naturally shifted displacements when
the pinhole is removed. This means that the SLM can modulate
these shifted images simultaneously. That is, all multiplications
of multiple images of matrix A and matrix B can be imple-
mented in parallel. These multiplications are then summed
through L3 and separated from each other in the C plane due
to the angular spectrum differences. Therefore, the convolution
of the two matrices can be performed in parallel after the
light passes through the system once. This process is a perfect

Fig. 1. Schematic of the optical multi-imaging–casting architecture:
optical parallel convolution process with different convolutional strides
s1 (a) and s2 (b); (c) optical architecture principle of OMica, where the
beam splitter (BS) is a diffractive beam splitter; Oy is diffraction order
in the y direction (indicated by different line types), and θ is the angle
difference between any two adjacent diffraction orders in object space
(θ1 and θ2 are diffraction angles of Oy � 1 and Oy � 2 diffraction
orders, respectively); θ 0 is the angle difference in image space (θ 0

1 and
θ 0
2 are diffraction angles of Oy � 1 and Oy � 2 diffraction orders,
respectively); d is the distance between matrix A and BS, and l is
the distance between matrix B and the image of BS. a, b, and c
are spot arrays corresponding to different diffraction orders diffracted
from a BS. The imaging–casting system is composed of L1 and L2,
with focal lengths f 1 and f 2. L3 is a focusing lens with focal length
f 3. s is the lateral shifts of the image of diffraction orders of DG on the
SLM2 plane corresponding to the convolutional stride, and this con-
volutional stride could be tunable by changing the distance d [s1 and s2
correspond to different convolutional strides shown in (a) and (b)].
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optical implementation of mathematical convolution, i.e., C �
A ⊗ B, where “⊗” is the convolution operator. Owing to the
object–image conjugate configuration, the OMica proposed
here avoids the size trade-off of elements in the matrix between
spatial and frequency domains in the 4f optical convolutional
system [28,29], allowing massive parallelism with sufficiently
high accuracy to be realized. Moreover, because of the object–
image conjugate configuration, the OMica can work under
both coherent and incoherent light illumination. Thus, this op-
tical hardware allows it to handle white-light images directly
from lenses without traditional photoelectric conversion if ach-
romatic lenses are used as the projection system.

B. Negative Matrix Coding Method
In our proof-of-concept implementation, a homemade 2D
28 × 20 DG (see details in Appendix B) was inserted into a
4f system. Two amplitude-only SLMs (8-bit grayscale) are lo-
cated on the object and image planes of the 4f system, where
the two convolution matrices are loaded sequentially. In the
experiment, light intensity was used as the information carrier,
and the two SLMs were used to load the information of matrix
B and matrix A into the incident uniform light beam.
Therefore, in principle, only nonnegative matrices can be
loaded and calculated based on this hardware. To address this
limitation, a negative matrix encoding method for hybrid
analog–digital optical convolution computing was developed.
In a hybrid analog–digital framework, a grayscale matrix with

negative elements can be easily decomposed into one larger-
scale or several same-size negabinary digit (NBD) matrices
in spatial or temporal sequences, respectively [30,31]. In other
words, each decimal element in the original matrix can be con-
verted into NBD representation as follows:

�a�10 �
XdN∕ke

i�0

ci�−2k�i, (3)

where fc �N∕k�, c �N∕k�−1,…, c0g NBD is called ci bits, with
ci ∈ �0, 2 k − 1�; N is maximum bits of NBD, k is an integer,
and the operator “d·e” indicates rounding the number to the
nearest integer greater than it. Following this decomposition, a
grayscale matrix with negative elements is transformed into a
larger matrix spatially or several same-sized matrices in tempo-
ral series represented by dN∕ke nonnegative bits, allowing
these matrices to be loaded directly on the SLMs. The principle
of this encoding method is depicted schematically in Fig. 2.
Notably, there is a trade-off between computing precision
and computing power, which can be adjusted by varying
parameter k. A small k indicates that high precision with
low computing power will be achieved, whereas a large k in-
dicates high computing power with relatively low precision.
Therefore, this encoding method can improve computing pre-
cision to the same extent compared with pure-analog optical
convolution computing [30,31].

Fig. 2. Procedure of converting the original grayscale matrix with negative elements into encoded matrices of NBD. (a) The encoding matrices are
loaded into the OMica system to compute the convolution, with the experimental encoded convolutional result decoded into the original matrix.
(b) Original grayscale matrices A and B, and original convolutional results matrix C . (c) Larger encoded matrices A and B in spatial sequence and the
same size encoded convolutional results matrix C .
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Here, as an example, under the condition of k � 1, the en-
coding process of a grayscale matrix with negative elements
ranging from −2 to 5 is demonstrated step by step. As shown
in Figs. 2(b) and 2(c), the grayscale number for each element of
the original matrix to be encoded is expressed in multiple
NBDs after encoding. For example, the first element in the
original matrix A is written as −2 � 0 × �−2�2 � 1 × �−2�1�
0 × �−2�0. Therefore, the elements of the matrix are arranged
in rows after encoding, denoted as P1, P2, and P3. Each
element in the column direction is encoded with three
NBDs, denoted as Bit3, Bit2, and Bit1, as shown in Fig. 2(c).
Thus, the first element, −2, is expressed as {010} in the first
column of the encoded matrix, that is, c2 � 0, c1 � 1, and
c0 � 0. Subsequently, the converted matrices are loaded onto
the SLMs in spatial sequence for computing [Fig. 2(c)].
Notably, to avoid aliasing in a spatial sequence, some zero el-
ements should be inserted into the encoded matrix between
two adjacent rows or columns of the original high-bit matrix,

where the number of zero elements is dN∕ke − 1. Here, the
physical pixels of the SLMs will not be fully used because of
the redundant zero elements. The computational advantage
can be realized only by increasing the matrix scale, but doing
so will significantly slow down the system’s refresh rate because
the convolution must be performed among all bits of either
matrix A or B. Therefore, when the OMica is used for comput-
ing acceleration, a compromise should be struck between high
computing power and high computing precision by choosing
an appropriate parameter k.

3. EXPERIMENTAL RESULTS

A. Hybrid Analog–Digital Matrix Convolution
As an example, the hybrid analog–digital optical convolution of
two randomly generated 2-bit grayscale 3 × 10matrices, A1 and
B1, with elements in the range of 0 to 3, and two negabinary
3-bit grayscale 2 × 10 matrices, A2 and B2, with negative

Fig. 3. Experimental results of hybrid analog–digital matrix convolution for two groups of matrices based on spatial sequence encoding. The
subfigures from left to right are the light intensity distribution of the spot array denoting the convolution, theoretical convolutional values,
experimental convolutional results, error map between theoretical and experimental results, and decoded convolutional results, respectively, in
(a) matrices A1 and B1 and (b) matrices A2 and B2. The red cross marks the centroid positions of each spot.
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elements in the range of −2 to 5, is demonstrated, and the con-
volutional results are shown in Fig. 3. In each box, the light
intensity distributions of the spot arrays on the detected plane,
denoting the raw results of convolution, are shown in the first
subfigure of the first row. The theoretical results obtained by an
electric computer (full precision, 64 bit) are illuminated in the
second subfigure, and the experimental results before decoding
are shown in the third subfigure. The absolute error map is
shown in the first subfigure of the second row, which is defined
as follows:

AE � jC theo − C expj, (4)

where C theo and C exp are the theoretical and experimental con-
volutional results, respectively. “j · j” denotes the absolute oper-
ation. Additionally, the theoretical and experimental results of
the convolution after decoding are shown in the second and
third subfigures in the second row, respectively. It is demon-
strated that the overall trend of the experimental and theoretical
results of the convolution is consistent.

Figures 3(a) and 3(b) show the results of the convolution of
two matrices, A1, A2 and B1, B2, respectively. The mean values
of the absolute errors AE are 0.114 and 0.08, and it is seen that
the maximum values are approximately 0.239 and 0.145, re-
spectively, before decoding, indicating that the optical convolu-
tional architecture achieves high precision. It should be noted
that the former has a higher mean error before decoding than
the latter, owing to increased cross talk caused by relatively large
convolutional elements. Moreover, the two encoded matrices in
spatial coding methods are filled with zero elements to avoid
aliasing, which further reduces the cross talk and final error.
Because the maximum absolute errors for the two cases are all
less than 0.5, the correct convolutional results, with 100% ac-
curacy, can still be obtained after digitalization. Thus, the ex-
perimental light intensity distribution of the two cases precisely
reflects the values of the convolutional results.

B. High-Accuracy Matrix Convolution
As an example, the high-accuracy optical convolution of ran-
domly generated 8-bit grayscale 10 × 10 matrices A3 and B3

and 20 × 20 matrices A4 and B4 with elements in the range
of 0 to 255 is demonstrated. Figure 4 compares the experimen-
tal results of the optical convolution of matrices A3, A4 and
matrices B3, B4 with the theoretical results. In each box, the
light intensity distributions of the spot arrays on the detected
plane, denoting the raw results of convolution, are shown in the
first subfigure of all columns. The theoretical results obtained
using an electric computer (full precision, 64 bits) are high-
lighted in the second subfigure, and the experimental results
are shown in the third subfigure. The relative error is defined
as follows:

RE � jC exp − C theoj∕�jCmax − Cminj∕256�, (5)

where C exp represents experimental convolution, C theo repre-
sents theoretical convolution, Cmax represents the maximum
value of theoretical convolution, and Cmin is the minimum
value of theoretical convolution. Furthermore, “j · j” denotes
the absolute operation. This relative error indicates that the pre-
cision of 8 bits will be obtained if its value is less than one.

Figures 4(a) and 4(b) show the results of the convolution of
matrices A3, A4 and matrices B3, B4, respectively. It is demon-
strated that the overall trend of the experimental and theoretical
results of convolution is very consistent. After further assess-
ment, the mean values of the relative error RE are 0.424
and 0.39, and the maximum values are 2.258 and 1.293, re-
spectively. Also, from these error maps, one can see that the
relative errors for most of points [98.06% and 97.25% in
Figs. 4(a) and 4(b), respectively] are less than one, indicating
that the computing accuracy is very close to 8 bits, which is
high enough for most AI inference tasks and, at least, some
training tasks. Additionally, other examples of the experimental
results of larger-scale matrices were also demonstrated in the
appendix (see Appendix C).

4. OPTICAL CNN INFERENCE TASKS BASED
ON MNIST

With its ability to accelerate universal convolutional computa-
tion, this OMica could find applications in a variety of fields
where dense convolutions are involved, such as simulation of
optical imaging, multi-input multi-output systems, and train-
ing and inference of a CNN. As an example, we demonstrate
the inference tasks of recognition of handwritten digits based
on the OMica using the above-mentioned negative matrix cod-
ing method and hybrid analog–digital matrix convolution (see
details of CNN in Appendix D). Here, a binary neural network
(BNN) [32] is implemented as an example to test the robust-
ness and accuracy of the proposed optical hardware. For a
BNN, the input signal is a nonnegative binary (0 or 1) image,
and the kernel is a signed binary matrix (−1 or �1) [33]. Each
kernel of the BNN trained in advance is encoded into two iden-
tical-sized nonnegative matrices, one of which is a low-bit (pos-
itive) matrix and the other a high-bit (negative) matrix, as
shown in Fig. 5(a). Intuitively, it seems that two convolution
operations should be executed in the temporal sequence.
Remarkably, 10 original kernels need to be divided into 10
high-bit sub-kernels and the same low-bit sub-kernel because
the low-bit sub-kernels are the same. Furthermore, the first
high-bit sub-kernel and low-bit sub-kernel are the same with
unity transmittance. Thus, the total number of convolutional
kernels after encoding is still 10, implying that no additional
computational overhead incurs. Figure 5(b) shows the infer-
ence process of the CNN based on encoding low- and high-
bit kernels. The 10 encoded kernels are sequentially loaded
onto the SLM located at the input plane of matrix A, and
the binary input images with a scale of 28 × 28 are sequentially
loaded onto the SLM at the input plane of matrix B. When
light passes through the two SLMs in sequence and is then fo-
cused and separated by the focusing lens, the detector on the
focal plane captures the spot array denoting the convolutional
results. Finally, the original convolutional results are obtained
by decoding the corresponding low- and high-bit convolutions.
By adding the results of the positive and negative convolutions
and multiplying them by the weight −2, the final convolutional
results can be obtained.

Figure 5(c) shows the absolute error AE map between the
theoretical and experimental results of an input image of a
handwritten digit 7 convolved by the first kernel. Compared
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with the matrices in Fig. 4, the size of a standard input image of
handwritten digits is 28 × 28, whereas the size of the convolu-
tional kernel is nearly the same, and the average value of the
absolute errors is 0.405. This implies that it is possible to cal-
culate the optical convolution of larger-scale matrices using
OMica with high precision. The following pooling layer, non-
linear operations, and full connections are executed by a
classical electrical computer.

To validate the reliability and robustness of the system, we
performed blind testing for the first 1000 sets of MNIST im-
ages with serial numbers ranging from 1 to 1000. As shown in
Figs. 5(d) and 5(e), the experimental results indicate that
the optical convolutional accelerator achieved blind-testing

accuracy of up to 97.3%, whereas electrical computers achieved
recognition accuracy of 96.7% for the same test dataset. This
may be due to the computing error of the optical convolution
carrying characteristics of the input images, thus further
strengthening the feature extraction ability. It can be seen that
the error maps for different handwritten digits are highly cor-
related with the input image, as shown in Fig. 5(c) (see
Appendix E). By optimizing the kernel weights of the optical
convolutional system, direct training of the optical CNN is ex-
pected to yield better results than those of an electronic com-
puter. Based on this, the architecture can be effectively used as a
hardware accelerator with large computing power in vari-
ous DNNs.

Fig. 4. Experimental results of high-accuracy convolution for two groups of grayscale matrices. (a), (b) Randomly generated 8-bit grayscale
10 × 10 matrices A3 and B3, 8-bit grayscale 20 × 20 matrices A4 and B4, respectively. The subfigures from left to right show the light intensity
distribution of the spot array denoting the convolution, theoretical convolutional values, experimental convolutional results, error map between
theoretical and experimental results (the red circle indicates the computing accuracy at that point is less than 8 bit), and histogram of the error
distribution, respectively. The comparison of experimental convolutional results expands into one-dimensional (1D) vectors and theoretical convolu-
tional results.
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5. DISCUSSION

A. Computing Power Scalability
As shown in Fig. 1, even when the suitable distance d between
matrixA and theBS is adjusted tomatch the convolutional stride
s, each diffraction order of the BS involved in the convolution is
still imaged to the plane of matrix B. Therefore, it is possible to
greatly reduce the physical size of the matrix elements. Given
these conditions, the peak computing power of the optical con-
volutional architecture will reach 10 peta (1015) operations per
second (POPS) [34], which is even faster than the state-of-
the-art GPU, such as TITANRTX (Nvidia) [35], if a modulator
with a higher refresh rate (typically 10 kHz) is used, such as a
digital mirror device (DMD) or a specially designed micro–
electro–mechanical system. Furthermore, if other multiplexing
methods, such as polarization, wavelength, and spatial mode, are

used, then speeds at least 10 to 102 times faster than this estima-
tion can be achieved [36,37]. Therefore, based on the OMica,
the computing power for convolutionmay, in the near future, be
superior, or at least comparable, to that of the most powerful
supercomputer (peak performance of the top system, Frontier
[38] with Linpack Performance 1102 POPS), with larger-scale
and higher-updating-frequency devices.

B. Energy Efficiency Ratio
Additionally, the power consumption of the optical convolu-
tional system is significantly lower than that of an electronic
processor with the same computing power, even for such a bulk
optical system at present. This fully accounts for the operating
power consumption of the optoelectronic device and assumes
that the total power consumption of the entire optical convo-
lution computing system, including the light source, two

Fig. 5. Inference process for the convolutional neural network performed by OMica based on the MNIST dataset. (a) Execution of convolution
operation by encoding each original convolutional kernel into high-bit and low-bit kernels; (b) schematic of the optical convolutional architecture
performing CNN inference; (c) absolute error AE map comparing theoretical and experimental results of the convolution of a handwritten digit 7 as
an input; confusion matrix of blind-testing 1000 images from the MNIST dataset when matrix convolutions are executed by the optical hardware
(d) and by pure electric hardware (e). The purple box marks the first convolutional kernel to realize the whole process of encoding, convolution, and
decoding.
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modulators, and the detector, is less than 100W. Of course, the
power consumption of 100 W is meaningless for the MNIST
dataset. However, as the matrix size increases, along with the
aperture size and DG splitting ratio, etc., the increase in com-
puting power is proportional to N 4, whereas the increase in the
power consumption of this system is insignificant. Therefore, as
computing power continues to grow, the energy efficiency ratio
of this architecture will significantly outperform that of existing
electronic computing systems. Furthermore, if a more sensitive
detection device, such as a multiphoton counter, is used, power
consumption will be drastically reduced [39]. In contrast, a
powerful supercomputer is energy hungry, with power con-
sumption typically reaching 104 to 105 kW (Frontier’s power
is 21,100 kW). Evidently, the optical convolutional architec-
ture will consume far less power than supercomputers, whereas
its computing power for a specific task (convolution) could be
at least comparable to that of Frontier, the top supercomputer
this year.

C. Potential Applications
To the best of our knowledge, the OMica is the only optical
parallel acceleration solution that can produce both high-pre-
cision convolutional computers and AI hardware accelerators
with high recognition accuracy. Additionally, if an appropriate
distance d [Figs. 1(a) and 1(b)] is chosen, this OMica architec-
ture could realize not only convolutional layers but also pooling
layers and fully connected layers (all layers are linear convolu-
tion calculations). For AI algorithms, it has been demonstrated
that very high accuracy is not required [40] and that neural
networks can operate effectively with both low-accuracy and
fixed-point operations. Inference models function nearly as well
with 4−8 bits of precision and are trained with nearly 8−16 bits
of precision per computation [41]. Our results indicate that
computing accuracy is close to 8 bits, which is sufficiently ac-
curate for most AI inference applications. Moreover, if high-
contrast modulators, such as DMDs, are used, computing ac-
curacy could be improved even further, and the results obtained
from this optical accelerator would be sufficient for training
most AI models. Furthermore, when training the neural net-
work directly in this optical convolutional system, the physical
characteristics of the system itself are also trained, such as
alignment errors and cross talk, which are expected to further
improve the performance of the aforementioned neural
network.

Presently, only one kernel A and one input feature map B
are loaded onto these two SLMs. It is also possible to load
multiple kernels on the first SLM, allowing for parallel convo-
lutions among multiple kernels and multiple input channel fea-
ture maps by filling an appropriate number of zero elements
between any two adjacent kernels. By swapping the positions
of feature map B and kernel A, a CNN can be built, and the key
is to make full use of pixels to increase computing power. Also,
it is worth noting that considering the actual hardware scale, it
is often necessary to split and reorganize the input feature map
to further improve the hardware utilization, that is, to load dif-
ferent matrix combinations to the SLMs to execute the convo-
lution process.

Although these task-specific devices are not yet available,
the current CMOS technology, in principle, is adequate for

developing high-quality devices, such as SLMs and detectors,
for optical computing. This work presents a promising method
for building optical convolutional processors to overcome the
intrinsic shortage of computing power and unsatisfactory en-
ergy efficiency in traditional electrical processors. Furthermore,
the experimental results validate the benefits of optical convolu-
tional systems for various application scenarios, including com-
putationally intensive tasks and neuromorphic computing.

6. CONCLUSION

An optical convolutional accelerator for fully parallel universal
convolution computing was proposed, and a negative matrix
coding scheme with sufficiently high precision was demon-
strated. In principle, a suitable encoding scheme and the
OMica can be used to efficiently calculate the convolution
of an arbitrary bit matrix with massive parallelism and sufficient
accuracy. Moreover, convolution is universal, and the comput-
ing results obtained may be easily transferred to any other com-
puting platform. Our proof-of-concept experimental results
proved the feasibility of the optical convolution of 20 × 20 ma-
trices with an accuracy of about 8 bits. Furthermore, a BNN for
handwritten digit recognition tasks on the standard MNIST
dataset was constructed, and the inference process was demon-
strated based on this optical hardware. The results indicated
that the blind test recognition accuracy can reach 97.3%, which
is comparable with that predicted by pure electrical networks.
These proof-of-concept experimental results indicated that the
OMica could be used for massive parallelism, high-precision,
and high-efficiency AI accelerators, and this computing para-
digm has potential applicability in the construction of task-spe-
cific cloud computing centers or other AI computing centers.
By developing high-speed SLMs with higher contrast, optimiz-
ing a specially proposed projection imaging system, and setting
up a dedicated dot array lighting source, it is possible to build a
photonic coprocessor with higher computing power and lower
energy consumption than state-of-the-art supercomputers,
such as Frontier, based on the OMica. Additionally, the char-
acteristics of the imaging system itself suggest that the comput-
ing power of the system can be exponentially increased by
cascading multiple 4f systems and employing extra multiplex-
ing degrees of freedom. Thus, a hybrid optical–electrical com-
puter center or data center could be directly constructed.
Furthermore, because the optical hardware could work under
incoherent white-light illumination if an achromatic lens pro-
jection system is used, the OMica architecture allows it to han-
dle white-light images directly from lenses without traditional
photoelectric conversion.

In summary, the OMica is expected to be used in self-driv-
ing vehicles [42], machine vision [43], and other fields that re-
quire high computing power for real-time or quasi-real-time
data processing. This opens the door to increasing the comput-
ing power and energy efficiency of convolution by using high-
performance devices, such as larger-scale modulators with
higher updating frequencies and detectors or detector arrays
with wider dynamic ranges and higher sampling frequencies,
which would be superior to the most powerful supercomputers,
in the near future.
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APPENDIX A: EXPERIMENTAL SETUP AND
METHODS

Figure 6 shows a proof-of-concept experimental system based
on the OMica. Figure 7 shows photographs of the experimental
setup. Two large-scale matrices, A and B, are assumed to be two
convolved matrices and are loaded onto two modulators, SLM1

and SLM2, respectively. The convolutional matrix C is detected
by sCMOS1. The DG was removed before alignment, and the
monitoring camera was placed in the focal plane of L9. During
the alignment process, some specially designed patterns shown
in Fig. 8 are used. Subsequently, the DG is inserted before
SLM1, and the distance d 0 between the DG and SLM1 should
be adjusted carefully to make the lateral shift of the image cor-
respond to normalized convolutional stride size s � 1 [Eq. (1)].

We can then confirm this alignment by placing a single tun-
able iris on the focal plane of L6 to allow only one order to pass
through the iris aperture at a time. Noticeably, when the iris is
moved, the window slides along the moving direction, allowing
different diffraction orders to pass through the aperture in se-
quence. Here, as an example, one rectangular array of 8 × 8
square blocks [Fig. 9(a)] and one rectangular array of eight cir-
cular blocks [Fig. 9(b)] are loaded onto SLM2 and SLM1, re-
spectively. As shown in Fig. 9(c), matrix A markedly slides on
matrix B. In this case, the iris moves from left to right, and the
diffraction orders of (�1st,�1st), (−1st,�1st), (−3rd,�1st),
(−5th,�1st), (−7th,�1st), (−9th,�1st), (−11th,�1st), and
(−13th,�1st) are sequentially passed through the iris aperture.
Because of the cut-off effect of the square aperture located on
the conjugating plane of SLM2, we can observe that eight col-
umns of the rectangular array of circular blocks are changed to
one. Alignment between the two matrices is achieved if all cir-
cular blocks loaded on SLM1 are aligned with the square blocks
loaded on SLM2.

APPENDIX B: DESIGN AND MANUFACTURING
OF DAMMANN GRATING

Here, a simulated annealing algorithm is used to optimize the
structure of DGs. The normalized energy distributions of
1 × 20 and 1 × 28DGs with diffraction orders for ideal π phase
retardation are shown in Fig. 10. Under ideal conditions, the
efficiencies of 1 × 20 and 1 × 28 1D gratings were 81.93% and
82.38%, respectively, and the energy uniformity was less than
1%. The structure of a 2D DG can be easily obtained after the
orthogonal superposition of two crossing 1D gratings.

Fig. 6. Schematic of the optical convolution experimental system
using the DG. LED, light-emitting diode with wavelength λ �
450 nm; M1–6, reflective aluminum mirrors; AP1,2,3, aperture pin-
holes; L1–5, convergent lenses; L6, L7, L10, Fourier transform lenses;
PBS1,2,3, cube polarization beam splitters; SLM1, SLM2, reflected
liquid crystal SLMs; APA, aperture array; DG, Dammann grating;
BS, non-polarizing beam splitter; sCMOS1, scientific complementary
metal–oxide–semiconductor camera for detection; CMOS2, CMOS
camera for monitoring. I, II, III, and the plane of the square aperture
are one group of object–image conjugate planes. IV and V are other
groups of object–image conjugate planes. Plane V is the image plane of
the DG. d 0 is the characteristic distance corresponding to s � 1,
which can be adjusted to match the physical size of the matrix unit
of matrix B to the different stride size.

Fig. 7. Photographs of the experiment system of OMica. (a) Entire
optical system; (b) SLM mounted on a 4D manual stage for loading
kernel A, (c) SLM mounted on a 4D manual stage for loading matrix
B, and (d) enlarged part of the sCMOS1 detector and monitoring
CMOS2 camera.

Fig. 8. Typical patterns loaded onto two SLMs for alignment.
(a) Alignment pattern and (b) square array pattern.
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Figure 11 depicts the intensity distributions and diffractive
angles versus diffraction orders for a 20 × 28 2D DG. It can be
seen that the normalized energy corresponding to each diffrac-
tion order is approximately 0.12% of the incident light energy
(without considering the interface reflection and other losses).
Furthermore, the angle distribution versus diffraction order
shows that the maximum diffraction angle is approximately
3.78°. This implies that the paraxial condition is approximately
maintained in this situation. In our experiment, the grating
period was designed to be 225 μm in both directions, and
the feature size was approximately 2.47 μm. Fused silica was
chosen as the substrate, and the grating sample was fabricated

using lithography and ion etching. The diffractive pattern in
the far field is captured in the focal plane of a Fourier lens,
and the intensity map is shown in Fig. 11(c). The intensity
distribution for this spot array was estimated by calculating
the accumulation of the intensity around the centroid for each
spot. The results indicate that the uniformity of the fabricated
20 × 28 DG was approximately 5%. This level of uniformity
had almost no negative effect on the final computed results
after calibration.

APPENDIX C: CONVOLUTIONAL RESULTS FOR
TWO 8-BIT GRAYSCALE 180 × 224 LARGE
MARTRICES

In principle, the OMica can achieve high computing power due
to its true parallel processing capabilities. Furthermore, the con-
volution of two 180 × 224 matrices was also demonstrated in
the analog framework. The theoretical and experimental re-
sults, as well as the experimental detection of the light distri-
bution of the convolution, are shown in Figs. 12(a)–12(c). The
relative errors defined above are shown in Fig. 12(e). The mean
errors for the five groups of data computed using OMica hard-
ware were 10.87, 10.93, 11.12, 11.17, and 11.48, respectively.
This low precision was mainly caused by the alignment error.
This alignment error could be significantly reduced using piezo
actuators with resolutions in the nanometer range. Under this
condition, a matrix scale of ∼200 × 200 indicates that the peak
computing power reaches 3.2 × 109 MAC operations when
light passes through the system once.

APPENDIX D: CONFIGURATION OF THE CNN

The configuration of the CNN model used in our experiment
for demonstration of the handwritten digit recognition based
on the MNIST dataset is shown in Fig. 13. It can be seen that
this CNN network contains five layers: convolutional layer,
pooling layer, nonlinear activation layer, and two fully con-
nected layers. To achieve a higher recognition rate while avoid-
ing overfitting, we set the learning rate to 0.05 and the training
batch size to 50. The number of epochs was set to four to avoid
overfitting. The activation function for the first layer was the
rectified linear unit (ReLU) function, and 10 9 × 9 convolu-
tional kernels with binary element values of −1 or �1 were
used. Owing to its simple derivative formation, the training
speed of the ReLU function is faster than that of the sigmoid
and tanh functions when the kernel weights are trained based
on the backpropagation algorithm. Because the derivative is not
zero, it can effectively address the vanishing gradient problem
and further reduce overfitting. The average pooling method was
selected for the pooling layer because all the information in the
feature map can be obtained on average without losing too
much information. Because the image is processed through bi-
narization in advance, the foreground and background infor-
mation in the feature map maintains a high resolution after
average pooling. The first fully connected layer had 200 nodes,
and the activation function was chosen as the ReLU function.
The last fully connected layer had 10 nodes, and the activation
function was selected as the sigmoid function. Because the sig-
moid function is used in the final layer for classification tasks,

Fig. 9. Experimental results for demonstration of kernel sliding. (a),
(b) Images loaded onto two SLMs. (c)–(j) Images captured by the
monitoring CMOS2 camera as the iris moves from left to right,
allowing only one diffraction order to pass through its aperture in
sequence.

Fig. 10. 1 × 20 (a) and 1 × 28 (b) DG beam splitting order normal-
ized energy distribution.
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we chose the cross-entropy loss function to avoid the vanishing
gradient problem. For the 60,000 training set, the total training
time of the CNN network was approximately 3 min (Intel Core
i7-4790 CPU at 3.60 GHz), and the recognition accuracy on
the 1000-sample test set was 96.7%. The recognition accuracy
on the 10,000-sample test set was 96.3%.

Here, we divide the 60,000 training samples into two parts:
training set and validation set. The learning curve is shown in
Fig. 13. The difference between the true and predicted values is
defined as the error, and the loss is the average of the errors
of all samples. The loss function used in this network is the
cross-entropy loss function, H �p, q� � Pn

i�1 p�xi� log 1
q�xi� �

−
Pn

i�1 p�xi� log q�xi�, where p�x� is the predicted probability,
and q�x� is the experimental probability. The loss of the train-
ing set decreases demonstrably as the number of training
batches increases. Additionally, the decreasing trend of the
losses of the validation and training sets is almost coincidental,
indicating the good fitting ability of the model.

It can also be observed from Fig. 14 that the loss curve of the
training set drops rapidly until it fluctuates slightly near a stable
value. Additionally, the validation and training set losses are
slightly different, indicating that the model has some generali-
zation ability. The accuracy of the validation set gradually
reaches a stable value as the number of samples increases, in-
dicating that no overfitting effect occurs in this model.

APPENDIX E: INPUT-RELATED CROSS TALK

Figure 15 shows the distribution of relative errors between the
experimental convolutional results and theoretical convolu-
tional results for different digital inputs. These error maps
are clear characteristic of the input numbers. This may be
due to optical cross talk between different pixel channels.
Optical cross talk is an important factor that limits the im-
provement of optical computing accuracy. However, for the
AI algorithm, if training of the deep learning network model

Fig. 11. Intensity and angle distribution of 20 × 28 2D DG. (a) Simulation result of intensity distribution versus different orders; (b) simulation
result of diffraction angle versus diffraction order; (c) intensity map of the spot array captured in the experiment (the cross represents the centroid);
(d) experimental results of normalized intensity distribution versus diffraction order.

Fig. 12. Experimental convolutional results for 180 × 224 matrices. (a)–(c) Theoretical convolutional results, experimental convolutional results,
and experimental detection light distribution, respectively; (d) partially enlarged view of the experimental light spot on (c); (e) error distribution;
(f ) proportion of experimental light intensity distribution.
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is directly based on an optical computing system, then the op-
tical cross talk may help improve the recognition accuracy of
the system. This result has implications for developing optical
AI accelerators with high recognition accuracy.

APPENDIX F: SUMMARY OF DIFFERENT
OPTICAL CONVOLUTIONAL ARCHITECTURES

Table 1 shows a summary of various mainstream optical convo-
lutional architectures (OIU, optical interference unit; MRs, mi-
croring resonators; OFC, optical frequency comb; PCM, phase
change materials; D2NN, diffractive DNN). It has been shown
that precision of only about 4−5 bits is achieved for most pho-
tonic accelerators reported, although they work well for most
artificial learning tasks after retraining with noise. However, it
has been verified empirically that for most neural networks, in-
ference models work nearly just as well with 4−8 bits of preci-
sion, while training with nearly 8−16 bits of precision per
computation [41]. This is one important reason why most pho-
tonic accelerators have been used only for inference tasks. Besides
artificial neural networks, the OMica provides the ability for ac-
celerating universal convolution computation, and thus could
find applications in many other fields, such as simulation of op-
tical imaging, and multi-input multi-output systems.

Compared with the most popular scheme involving planar
waveguides on a 2D substrate [17,18,22,24], the scheme of
multiple cascading DOEs inherently takes full advantage of
the 3D connection ability of optics. Thus, it can achieve higher
computing power in a single computing step. Recently, Xu et al.
realized a type of photonic convolutional accelerator based on
optical frequency combs [17], whose computing power is as
high as tera operations per second (TOPS). The use of optical
frequency combs to realize multi-wavelength light sources is
remarkable progress. However, the scalability of this architec-
ture is still limited by the number of channels of the optical
frequency combs. Mario et al. [29] proposed an optical system
that performs fast updating of optical neural networks based on
two amplitude-only DMDs, where one amplitude-only DMD
is located at the Fourier transform plane of the other. Although
the mapping relationship between the input images and the
recognition digits can be successfully established using this
method, the computing results are essentially not standard
convolutions. Therefore, this method cannot be used for

Fig. 13. Schematic of the CNN architecture.

Fig. 14. Learning curve of the CNN.

Fig. 15. Typical error maps between convolutional results obtained
from the optical hardware and that of an electrical computer with the
full precision of different input handwritten digits (from 0 to 9) for
these 10 convolutional kernels after encoding.
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high-precision universal convolution computing. Moreover, it
is difficult to align the two DMDs pixel by pixel. Because of the
Fourier transform, the relationship between input and filter
planes, realizing large-scale optical networks will be difficult.
Recently, Zhou et al. [44,45] demonstrated a reconfigurable
scheme for realizing 3D architecture with multiple cascading
DOEs, using two programmable modulators and a DMD,
as well as another pure-phase SLM, for amplitude and phase
modulation, respectively. Because of the coherent working
mode, micrometer-sized pixels, alignment error between the
DMD and SLM, and alignment errors between different layers,
achieving high computing precision is difficult. Therefore, rec-
ognition is drastically degraded without adaptive training.
Although this scheme performs well after adaptive training,
it cannot be used for universal convolution computing because
of its low precision.

In contrast, because of the object–image conjugate relation-
ship, a CMOS monitoring camera can be added to the conju-
gating plane of two SLMs, making it simple to align two SLMs
with a monitor camera. Additionally, an incoherent light source
could be used in this architecture to prevent sensitivity and
speckle noise. More importantly, this configuration makes it
possible to handle images directly from a lens under white-light
illumination, which is very challenging for all mainstream
architectures, to the best of our knowledge.

Therefore, the convolutional accelerator enabled by the
OMica can be used to compute universal matrix convolution,
and the results obtained by the hybrid optical–electrical
hardware can be easily transferred to any other computing
platform, including photonic, hybrid optical–electrical, and
traditional electric processors or coprocessors. Because of its

universality, this architecture can be used for building task-
specific cloud computing centers, or some other AI accelerating
centers, as well as the present bulk optical system. In the future,
with the advancement of nonlinear optical elements, a scheme
based on the OMica could also be integrated into pure pho-
tonic accelerators by combining planar waveguides [46,47],
metasurfaces [48–50], and advanced modulator arrays, etc.
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