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Computed tomography imaging spectrometry (CTIS) is a snapshot spectral imaging technique that relies on a
limited number of projections of the target data cube (2D spatial and 1D spectral), which can be reconstructed via
a delicate tomographic reconstruction algorithm. However, the restricted angle difference between the projections
and the space division multiplexing of the projections make the reconstruction suffer from severe artifacts as well
as a low spatial resolution. In this paper, we demonstrate super-resolution computed tomography imaging spec-
trometry (SRCTIS) by assimilating the information obtained by a conventional CTIS system and a regular RGB
camera, which has a higher pixel resolution. To improve the reconstruction accuracy of CTIS, the unique in-
formation provided by the zero-order diffraction of the target scene is used as a guidance image for filtering
to better preserve the edges and reduce artifacts. The recovered multispectral image is then mapped onto the
RGB image according to camera calibration. Finally, based on the spectral and the spatial continuities of the
target scene, the multispectral information obtained from CTIS is propagated to each pixel of the RGB image
to enhance its spectral resolution, resulting in SRCTIS. Both stimulative studies and proof-of-concept experi-
ments were then conducted, and the results quantified by key metrics, such as structural similarity index mea-
surement and spectral angle mapping have suggested that the developed method cannot only suppress the
reconstruction artifacts, but also simultaneously achieve high spatial and spectral resolutions. © 2023
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1. INTRODUCTION

Digital cameras are ubiquitous in our daily life. For instance,
they are the essential components of mobile phones and have
been designed to accommodate a range of functions, such as
photography, 3D time-of-fight (ToF) ranging and biometric rec-
ognition. As a sensing platform, more and more digital cameras
tend to be integrated into the mobile phones to unlock more
utilities. There are majorly two types of digital cameras, which
are monochromatic/gray cameras and RGB cameras. In the lat-
ter, a Bayer filter array is integrated with the camera sensor chip
to obtain three spectral channels. However, both types are
incapable of imaging the scene with more spectral channels,
i.e., multispectral imaging, which is crucial for a plethora of ap-
plications, such as combustion diagnostics [1–3], cancer detec-
tion [4], remote sensing [5,6], medical diagnostics [7,8],
pollution detection [9], and agricultural applications [10,11].
Because of this, multispectral imaging has attracted enormous
attention in the past decades. It essentially relates to the recovery

of a data cube �x, y, λ�. The conventional multispectral camera
relies on sequential sampling of the data-cube wavelength by
wavelength, point by point, or line by line. There are also multi-
spectral cameras that rely on Fourier transform infrared spectros-
copy [12]. However, all these approaches require a mechanical
scanning mechanism and, thus, suffer from a low temporal res-
olution. This disadvantage prevents the application of multi-
spectral imaging from dynamic processes, such as turbulent
combustion [13].

To overcome the aforementioned limitation, the so-called
snapshot spectral imaging techniques have been developed
based on which the data cube can be computationally recovered
from a 2D spatially and spectrally encoded image captured
within a single exposure. For example, Gehm et al. [14] pro-
posed the so-called coded aperture snapshot spectral imaging
(CASSI), which is established upon the theory of compressive
sensing and encodes the spatial and spectral information with a
combination of a random amplitude mask and a 1D disperser
(e.g., grating/prism). However, CASSI typically requires that

212 Vol. 11, No. 2 / February 2023 / Photonics Research Research Article

2327-9125/23/020212-13 Journal © 2023 Chinese Laser Press

https://orcid.org/0000-0001-8988-1868
https://orcid.org/0000-0001-8988-1868
https://orcid.org/0000-0001-8988-1868
mailto:cweiwei@sjtu.edu.cn
mailto:cweiwei@sjtu.edu.cn
mailto:cweiwei@sjtu.edu.cn
https://doi.org/10.1364/PRJ.472072


the spectral datacube is sparse in both the spatial and the spec-
tral domains. To relax the requirement for sparsity, Kittle et al.
[15] developed multiexposure CASSI that can significantly
improve the reconstruction accuracy at the cost of a reduced
temporal resolution. However, this would comprise the appli-
cability of CASSI to high dynamic scenarios. To improve the
reconstruction fidelity of a single snapshot, Arguello et al.
implemented an end-to-end model to design both a diffractive
optical element and a color-coded aperture to generate shift-
variant point spread functions (PSFs) so that the spatial–
spectral modulation can be enhanced [16]. To increase the
temporal resolution, Cao et al. [45] developed a hybrid camera
system to achieve video-rate multispectral imaging. An array of
dispersive spectrometers was created to uniformly and sparsely
sample the multispectral pixels of the scene. Those pixels were
then fused with a full RGB image of the same scene to recover
the complete multispectral image. Later, similar systems with
content-adaptive sampling were developed to increase system
flexibility and measurement accuracy [17,18]. However, such
systems rely on sparse spatial sampling and may encounter dif-
ficulties for scenes with complex spatial structures.

The so-called computed tomography imaging spectrometry
(CTIS) is another type of snapshot spectral imaging technique
that shares the same principle as X-ray CT, which is a commer-
cially mature technique and enjoys enormous amount of
reconstruction algorithms that have been developed during
the past half century [19–21]. However, CTIS suffers from
a low spatial resolution as the imaging sensor is divided into
an array of regions, each of which contains the projection of
the target data cube along a distinct angle. Also, there are severe
artifacts in the reconstruction due to the limited number of
projections and the minor angular difference between them.
This is also referred to as the missing-cone problem in the
literature [22].

In order to improve its performance, extensive efforts have
been devoted to either optimizing the optical components or
the reconstruction algorithms. In terms of optical components,
most researchers focused on the optimal design of the disperser
as it determines the number of projections, the angular differ-
ence, and the energy distribution among them. Descour [23]
distributed effectively the incident spectrum over the detector
array by designing the original disperser composed of three
cross cosine gratings, which had the problem of misalignment
between the gratings and low diffraction efficiency of the
higher-order projections. Volin et al. [24] fabricated a single
disperser, i.e., a computer generated hologram (CGH) for a
midwave infrared computed-tomography spectrometer to im-
prove the signal intensity of the higher orders and maintain
uniform irradiance. Later, Scholl et al. [25] used singular value
decomposition to optimize the diffraction efficiency of the dis-
perser and designed two CGHs, each of which works at both
the midwave and long-wave infrared ranges, resulting in the so-
called dual-band CTIS system. Kudenov et al. [26] improved
the spectral resolution and increased the light throughput into
each projection by applying the division of aperture method to
design a faceted radial disperser.

With respect to reconstruction algorithms, improving
reconstruction accuracy and convergence speed is the major

research interests. The most widely adopted reconstruction al-
gorithms so far are the multiplicative algebraic reconstruction
technique [27] and the expectation maximization (EM) [28],
which have advantages including easy implementation and fast
convergence [29]. Based on the noise source of the actual im-
aging system, Garcia and Dereniak [30] combined Poisson-
distributed photon noise in the image and signal-independent
system noise by using the standard maximum likelihood to de-
sign a mixed-expectation reconstruction technique that can
effectively mitigate the influence of noise. An et al. [31] devel-
oped the subspace constraint algorithm to improve the spectral
resolution of the reconstruction by reducing the nonuniqueness
of the pseudoinverse solution. Later, Vose and Horton [32] ex-
tended the research of Garcia and Dereniak [30] by assuming
that the system matrix has a shift-invariant structure to simplify
the calibration process of PSFs and converting the result of
the maximum likelihood estimator into an explicit closed
form, which significantly improves the reconstruction accuracy
and efficiency. Hagen et al. [33] proposed an optimized
reconstruction algorithm based on the spatial shift invariance
of the CTIS system, which greatly reduces the dimension of
the system matrix and realizes image reconstruction with a near
real-time response. Li et al. [29] developed a low-rank estima-
tion [34] method for CTIS reconstruction by dividing the 3D
data cube into numerous overlapping cubic patches, which can
improve effectively the spatial and the spectral qualities of the
reconstruction at the cost of increased computational complex-
ity. By applying superiorization and guided image filtering
(GIF) in the iterative process, Han et al. [35] effectively sup-
pressed the artifacts and improved the reconstruction quality
but failed to improve its spatial resolution. Wei et al. [36] pro-
posed a method based on the 3D low-rank constraint and the
tensor analysis to reduce the computational time and facilitate
real-time applications of multispectral imaging. Despite the
aforementioned progress, the severe artifacts caused by the lim-
ited number of projections and the inefficient utilization of the
sensor array due to space division multiplexing of the projec-
tions have not been effectively solved. Therefore, the limitation
in the spatial resolution and the severe reconstruction artifacts
remain key issues limiting the application of CTIS.

In this paper, we develop a super-resolution CTIS (SRCTIS)
by combining a conventional CTIS system and an RGB cam-
era. The former can reconstruct a multispectral data cube with a
low spatial resolution, and the latter can capture an RGB data
cube with a high spatial resolution. In order to effectively
assimilate the information of both data cubes, we first introduce
GIF into each iteration of the CTIS reconstruction process to
reduce severe artifacts due to the limited number of projections
and angle span. The multispectral data cube is then mapped
onto the RGB image through camera calibration. Finally, ac-
cording to the spectral and the spatial continuity of the sought
target, the multispectral information is propagated to each
RGB pixel by applying the spectral propagation algorithm to
obtain an image with a high resolution in both the spectral
and the spatial domains. Different from aforementioned hybrid
systems, which sample multispectral pixels at sparsely distrib-
uted locations, our hybrid system relies on CTIS which can
recover the multispectral information of all pixels within a
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continuous region. Thus, it can be applied to scenes with more
complex spatial structures. In addition, it can effectively avoid
the problem of metamerism. The details of the proposed tech-
nique along with the simulative studies and proof-of-concept
experiments are discussed in the following sections.

2. MATHEMATICAL FORMULATION AND
RECONSTRUCTION

A. Modeling of the Forward Process
Figure 1 illustrates the layout of the proposed SRCTIS system,
which includes two arms, i.e., a conventional CTIS system and
an RGB camera. The incoming spectral image is first filtered
with a filter to truncate the spectral information outside of the
target range. The image is then divided into two identical parts,
each delivered along one arm. The CTIS arm consists of an
objective lens, a collimation lens, a diffractive optical element
(DOE), and a gray camera. The objective lens collects the fil-
tered spectral image, and the collimation lens then converts the
image into planar waves. The DOE is used to diffract each in-
coming monochromatic planar wave toward a 3 × 3 point array.
The intensity distribution is uniform at the design wavelength.

Figure 2 illustrates the principle of SRCTIS for the gener-
ation of a data cube (i.e., a discretized version of the target spec-
tral image) with both high spatial and spectral resolutions. The
target data cube is diffracted toward the detector array along
nine viewing angles, forming the same number of 2D projec-
tions. This forward imaging process can be mathematically de-
scribed in a matrix form as

~g � H · ~f , (1)

where ~g is a vector with a length of M that contains all the
measured pixel values of the CTIS camera, ~f is the vector with
a length of N that contains all the voxel values of the sought
data cube, and H is an M × N weight matrix that linearly ap-
proximates the forward imaging process.

B. Reconstruction Algorithm
Typically Eq. (1) is an ill-posed linear equation system, which
can be solved with numerous mathematical techniques, such as
optimization, iterative reconstruction, and machine learning al-
gorithms. The gradient-based optimization methods are effi-
cient but can be easily trapped in local minima; and the
global optimizers, such as simulated annealing [37,38] and ge-
netic algorithms [39], suffer from formidable computational
costs. In addition, the machine learning algorithms usually re-
quire a large set of high-quality training data samples, which are
not readily available [40–42]. Due to the ease of implementa-
tion and good performance for limited-projection tomography,
a well-established iterative algorithm, i.e., the maximum like-
lihood expectation maximization (MLEM) [43], is adopted,
and its iteration process can be described as

f �k�1�
j �

PM
i�1

�
Hij

giP
N
l�1

Hil f
�k�
l

�
PM

i�1 Hij
f �k�
j , (2)

where the superscript k indicates the number of iterations, j
indicates the index of the voxel in vector ~f k, Hij indicates
an element of the weight matrix H at the ith row and jth col-
umn, and gi represents the ith element of vector ~g.

As can be seen from Fig. 2, the CTIS branch can recover
more spectral details but has a lower spatial resolution, whereas,
the RGB branch can capture more spatial information but with
only three broadband spectral channels. The assimilation of the
two data cubes can lead to the enhancement of the resolution in
both the spectral and the spatial dimensions. For this purpose,
we propose a hybrid algorithm that combines tomographic
reconstruction aided with GIF [44] and a spectral propagation
algorithm [45]. The first step of the method is a regular CTIS
reconstruction but with an additional GIF step added within
each MLEM iteration, and the corresponding flow chart is
shown in Fig. 3. The reconstructed multispectral data cube
is then mapped to the RGB data cube according to the geomet-
rical relationship established based on camera calibration.

Fig. 1. Schematic of the SRCTIS system. The input image is split into two by a beam splitter and collected by an RGB camera and a conventional
CTIS system, respectively. In the CTIS branch, after collimation, the input image is diffracted by the DOE and received by a gray camera.
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Finally, the spectral resolution of the RGB image is enhanced
by propagating the multispectral details mapped to the specific
RGB pixels to their contagious RGB pixels through the spectral
propagation algorithm, which is guided by the continuity in
both the spatial and the spectral domains. The continuity con-
dition plays a critical role for the successful implementation of
the method. However, the conventional CTIS reconstruction
usually suffers from severe artifacts mainly due to the insuffi-
cient number of projections and their minor angular difference,
which would jeopardize the continuity condition and under-
mine the subsequent propagation process. To mitigate the lim-
itations and take the full advantage of the information provided
by the zero-order diffraction of the CTIS system, a smoothing
operation, i.e., GIF is introduced into each iteration step to
better preserve the edge information in the spatial domain. The
filtered image q is regarded as the linear transformation of the
guidance image I in a local square window ωk (represented as a

set of pixel indices) of size 2r � 1 centered at pixel k [44] and
can be expressed as

qi � akI i � bk, ∀i ∈ ωk, (3)

where the size of filtered image q and the guidance image I is
m × n, i is the pixel index, ak and bk are the constant coeffi-
cients of the local square window and are determined by min-
imizing the difference between the input image p with a
dimension of m × n and the filtered output image q, which
can be calculated as

E�ak, bk� �
X
i∈ωk

��qi − pi�2 � εa2k �, (4)

ak �
1

jωk j
P
i∈ωk

�I ipi� − μkp̄k
σ2 � ε

, (5)

Fig. 2. Principle of SRCTIS for reconstruction of a data cube with both high spatial and spectral resolutions. First, the CTIS reconstruction and
an RGB image are obtained separately; then the CTIS multispectral pixels and the RGB image pixels are aligned by position calibration; and finally, a
spectral propagation algorithm is used to fuse the two images.

Fig. 3. Flowchart of the MLEM algorithm with GIF. After each MLEM iteration, GIF is applied to suppress the reconstruction artifacts.
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bi � p̄k − akμk, (6)

where jωkj is the total number of pixels in the local window ωk,
σ2 and μk indicate the variance and the mean of the guidance
image I in the window ωk, p̄k is the mean of the filtered image p
in the local window ωk, and ε is a regularization parameter,
which balances the posterior, i.e., the measurements and a pri-
ori information, i.e., smoothness condition. Generally, param-
eter ε regulates the pixel intensity variation at different areas
and affects the filtering effect of the image. Its value should
be larger than 0 and smaller than 1. As can be seen from
Eq. (4) when ε � 0, ak � 1, bk � 0, and E�ak, bk� � 0. In
this case, GIF does not work, and the output image is the same
as the original input. If ε > 0, ak is close to 0 and bk is close to
p̄k in an area with a small pixel intensity variation. In this case,
the function of GIF is equivalent to weighted mean filtering. In
an area where the pixel intensity varies significantly, ak is close
to 1, bk is close to 0, and the filtering effect is weak at this time,
which helps to maintain the edge. Under the condition of a
fixed window size as ε increases the filtering effect becomes
stronger. Thus, the value of ε should be determined according
to different application scenarios. In our case, we find the re-
constructions are good and insensitive to ε when it is selected
between 0.01 and 0.1. It can be seen from Eq. (3) that the
selection of the guidance image I directly affects the filtering
effect since the filtered image q is its linear transformation. The
edge information of q can be preserved as long as I contains
accurate edge information. The zero-order diffraction at the
center among the nine projections of CTIS is not sheared in
either the spectral or in the spatial domains. It is essentially
an image taken by a gray camera, which perfectly reserves de-
tailed edge information of the target scene, making it an ideal
guidance image. Thus, the reconstruction artifacts of CTIS that
causes edge smearing due to the limited projection angle span
can be suppressed to the maximum extent, significantly im-
proving the reconstruction quality.

The second step of the hybrid algorithm is to align the mul-
tispectral image recovered by the CTIS branch to the RGB im-
age. Considering the different magnifications of the two
branches, a pixel in the multispectral image essentially corre-
sponds to a certain area in the RGB image. To make an accurate
matching, we first approximately determine the center posi-
tions of the multispectral pixels on the RGB image according
to the camera calibration. Then, the squares, each centered at
those positions with a side length of magnification, are consid-
ered to be the corresponding area for each multispectral pixel in
the RGB image as indicated by a green square in Fig. 4(b).
Furthermore, we take the spectral angle mapping (SAM) [46]
as the quantitative indicator for positioning of the multispectral
pixels, which is commonly applied to measure the similarity
between two spectra. SAM treats the spectra as vectors whose
dimensions equal the number of spectral bands and can be
mathematically described as

DSAM � arccos

"
~S1 · ~S2

�~S1 · ~S1�1∕2�~S2 · ~S2�1∕2

#
, (7)

where ~S1 and ~S2 are two spectra represented as vectors.
In order to determine the exact position of the multispectral

pixel on the RGB image, we first convert the multispectral

spectrum into an RGB vector by integrating the spectrum over
the RGB camera response curves [see Fig. 4(a)]. Then, the re-
sulting RGB vector is used to calculate the SAM values for all
the RGB pixels within the green square. The position where the
SAM value is minimum is taken as the position of the multi-
spectral pixel in the RGB image. Figure 4(b) illustrates the dis-
tribution of the multispectral pixels on the RGB image. The
distribution of blue pixels represents the actual positions of
the CTISmultispectral pixels on the RGB image after matching
the pixel points. The yellow pixels represent the remaining
RGB pixels for which the multispectral information can be in-
ferred from the neighboring blue pixels based on the spectral
and spatial continuity conditions using a spectral propagation
algorithm [45].

The spectral propagation algorithm takes into account not
only the distance between the pixels in the spatial domain,
but also the distance in the RGB domain. Since each RGB
pixel has three values, the spectral propagation is conducted
for each of the RGB channels. As illustrated in Fig. 4(b), as-
suming the spatial dimension of the RGB image is p × q
and that of the corresponding multispectral image is
m × n × L (m < p, n < q, L ≫ 3), then, the multispectral infor-
mation of a specific pixel (i.e., a yellow one) in the RGB image
can be calculated from the neighboring multispectral pixels
(i.e., blue pixels) as

~Sij �
X

c∈R,G,B

P
k∈Ωgσr �dRGB

k �gσs �d
xy
k � · ρkc · ~S

c
kP

k∈Ωgσr �dRGB
k �gσs �d

xy
k �

, (8)

where ~Sij represents the vector of the spectrum corresponding
to pixel �i, j� in the RGB image, k indicates the multispectral
pixels within the neighborhood Ω centered on pixel �i, j�, and
gσ denotes the Gaussian operator with a standard deviation σ
and zero mean where the subscripts r and s denote the RGB
and geometric space, respectively. dRGB

k and dxy
k , respectively,

represent the Euclidean distance between two pixels �i, j�
and k in the RGB vector space and the geometric space. ρkc
denotes the weighting factor which represents the ratio of the
corresponding value in a given color channel (indicated by the
subscript c) between pixels �i, j� and k (e.g., ρkG � Gi,j∕Gk for
the green channel) and is applied to match the intensity of
the two pixels at different channels. For each channel, ~Sck is
calculated as

~Sck � ~Sk ⊗ ~wc for c � r, g , b, (9)

where

wc
λ �

qcλP
cq

c
λ

, (10)

and ~Sk is the spectrum of pixel k in Ω, qcλ represents the cor-
responding transmission of the filter c at wavelength λ, wc

λ rep-
resents the relative response efficiency of filter c, and ⊗
represents the elementwise multiplication. The complete spec-
trum vector, i.e., ~Sij can be obtained by summing the three
channels after obtaining multispectral data for each channel.

Based on the above spectral propagation principle, it is ob-
vious that the spectral information transferred from each multi-
spectral pixel to the target RGB pixel is determined by the
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spatial distance between them, the similarity of RGB vectors,
and the intensity difference between the two pixels in the cor-
responding channel. The spatial distance and the RGB vector
difference determine the weight factors gσs �d

xy
k � and gσr �dRGB

k �
in Eq. (8). The larger the spatial distance is, or the greater the
RGB vector difference is, the smaller the corresponding weight
factor would be, indicating that the spectral difference between
the target RGB pixel and the multispectral pixel is greater, and
the spectral component of the corresponding multispectral
pixel propagating to the RGB pixel is smaller. When the multi-
spectral pixel is very close to the target RGB pixels, their spec-
tral information is very similar due to the continuity of the
spectral domain, and it is unlikely that there is the metamerism
problem. When the multispectral pixel is far away from the
target RGB pixel, although there may be the metamerism prob-
lem, the corresponding weight factor gσs �d

xy
k � is very small due

to the long spatial distance, which means that the spectral in-
formation of the multispectral pixel contributes little to the
spectral information of the target RGB pixel. Thus, our method
can effectively avoid the metamerism problem and the corre-
sponding registration artifacts.

3. RESULTS AND DISCUSSION

To demonstrate the reliability and superiority of our proposed
SRCTIS system, we compare it to the conventional CTIS sys-
tem with both numerical simulations and proof-of-concept ex-
periments. In this paper, MLEM is adopted to invert the 2D
CTIS diffraction patterns to recover a multispectral data cube,
which has a low spatial resolution. To illustrate the effectiveness
of GIF in suppressing the reconstruction artifacts of CTIS as
well as the capability of SRCTIS in obtaining multispectral im-
ages with a high spatial resolution, we took the reconstructions
from MLEM, MLEM with GIF (denoted as MLEM_GIF),
and SRCTIS for comparison. In addition to qualitative analysis,
we performed a detailed comparison between the algorithms in
terms of quantitative image quality metrics, such as SAM, aver-
age normalized root-mean-square error (RMSE) [47], average

peak signal-to-noise ratio (PSNR), and average structural
similarity index measurement (SSIM) [47]. SAM quantifies
the similarity between two spectra, and a smaller SAM value
indicates a better spectral fidelity. RMSE is adopted to quantify
the difference between the ground truth and the reconstructed
data cube. A smaller RMSE suggests a closer reconstruction to
the ground truth. On the other hand, PSNR and SSIM are
mainly used to quantify the consistency between the spatial de-
tails of the reconstruction and that of the ground truth. PSNR
is a quantitative indicator commonly used to evaluate quality of
image reconstruction, and SSIM reflects the similarity between
the ground truth and the reconstruction by fully considering
the image composition, such as brightness, contrast, and
structure.

For numerical validation, we randomly selected 30 represen-
tative scenes with distinct spatial and spectral features from
three data sets, i.e., cave dataset [48], hyperspectral images
for local illumination in natural scenes 2015 dataset [49],
and ICVL hyperspectral dataset [50]. The scenes in these data-
sets all have spectral resolutions of 10 nm but have different
spectral ranges of 400–700 nm, 400–720 nm, and 400–
1000 nm, respectively. The spectral range of the selected scenes
is tailored to be 420–700 nm, and a wavelength step of 5 nm is
achieved by linear interpolation in the spectral dimension.
To mimic the practical situations, we artificially added
Gaussian noise to the simulated CTIS projections to obtain
an SNR of 25–50 dB. The dimension of the reconstructed data
cube is assumed to be 250 × 250 × 57. All the simulations were
implemented with Intel visual FORTRAN and ran on a work-
station equipped with Intel Xeon CPU E5-2630 v4. Figure 5
compares the reconstructions of MLEM and MLEM_GIF
from both qualitative and quantitative perspectives. Figure 5(a)
qualitatively presents the spatial details of both the reconstruc-
tions and the corresponding ground truths of different scenes
for which only the image at 460 nm is shown to better
illustrate the anti-artifact function of GIF at a specific spectral
band. Visually, the multispectral images reconstructed by

Fig. 4. (a) Calibrated RGB response curves; (b) projection of the CTIS multispectral pixels on the RGB image. The yellow pixels have unknown
multispectral but known RGB details, and the blue pixels have both known RGB and multispectral details.

Research Article Vol. 11, No. 2 / February 2023 / Photonics Research 217



MLEM_GIF are closer to the ground truths in spatial details
and do not have obvious artifacts and noise in contrast to that
reconstructed from MLEM. From a quantitative point of view,
MLEM_GIF has larger PSNR and SSIM values and a smaller
SAM value compared with MLEM, indicating that the appli-
cation of GIF can effectively improve reconstruction fidelity.
In order to assess the performance of GIF in suppressing arti-
facts under different noise levels, we further analyzed the var-
iations of the quantitative image quality metrics of MELM and
MLEM_GIF when the noise level changes from 25 to 50 dB
as shown in Fig. 5(b). Overall speaking, the reconstruction
quality of MLEM_GIF is consistently better than that of
MLEM under different noise levels, specifically, the PSNR
and SSIM values of MLEM_GIF are larger, and the RMSE and
SAM values are smaller compared with those of MLEM. As the
noise level increases, the reconstruction quality of MLEM_GIF
maintains at a high level, whereas, that of MLEM decreases
significantly. Thus, GIF can effectively suppress artifacts and
is robust against the noise.

For the need of SRCTIS simulation, we further constructed
2D diffraction patterns and the high-spatial-resolution RGB
image for the CTIS and the RGB branch, respectively. On
one hand, we down-sampled the multispectral data cubes of
size 1000 × 1000 × 57, obtained from the database by moving
average method [51] to a size of 200 × 200 × 57. Then, the 2D
diffraction pattern is simulated according to the diffraction
efficiency and diffraction angle of the DOE, and 25-dB
Gaussian noise is then added to the pattern to better simulate
the practical scenarios. On the other hand, the high-spatial-
resolution (1000 × 1000 pixels) RGB image is simulated by in-
tegrating the multispectral image over the spectral response curve
of each RGB channel. The size of the multispectral images re-
constructed by MLEM and MLEM_GIF is 200 × 200 × 57,

whereas the size of SRCTIS is 1000 × 1000 × 57. Thus,
SRCTIS can enhance the spatial dimension of the reconstructed
data of MLEM and MLEM_GIF by 25 times.

Figure 6 shows the spatial details of both the reconstructions
from different algorithms and the corresponding ground truths.
In order to better compare the spatial details among MLEM,
MLEM_GIF, and SRCTIS, all reconstructions are integrated
over each of the RGB channels and then presented in the
RGB form, and the local details are enlarged and placed in
the upper left corner of each image. In the CTIS branch, as
the input image is diffracted toward nine different angles after
passing the DOE; the spatial resolution is essentially sacrificed
for an improved spectral resolution. Therefore, it can be seen
from Fig. 6 that MLEM reconstruction obviously loses consid-
erable spatial details compared with the ground truth, and the
relatively lower PSNR and SSIM values further suggest its re-
duced reconstruction quality in the spatial dimension from a
quantitative point of view. For MLEM_GIF, although it can
effectively suppress the artifacts in the CTIS reconstructed im-
age and improve the reconstruction quality, it basically has the
same discretization with MLEM and cannot increase the spatial
resolution of the reconstructed image. On the contrary, as can
be clearly seen from the local magnification of images recovered
by SRCTIS, they have almost identical spatial details to the
ground truth, which is far superior to MLEM and
MLEM_GIF. It is worth noting that when calculating the
quantitative image quality metrics, SRCTIS takes the original
image with a spatial size of 1000 × 1000 as the reference,
whereas, MLEM and MLEM_GIF take the down-sampled im-
age with a spatial size of 200 × 200 as the reference. Although
the PSNR and SSIM values of the SRCTIS reconstructed
images are slightly smaller than those of MLEM_GIF, they
are still larger than those of MLEM as can be seen from

Fig. 5. (a) Ground truth and the corresponding reconstructions of different scenes (denoted in sequence from left to right as “flowers,” “oil
painting,” “cloth,” and “toys”) from MLEM and MLEM_GIF with the quality metrics PSNR/SSIM/SAM labeled at the bottom of each recon-
structed image; (b) the relationships between the noise level and the different reconstruction quality metrics.
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Fig. 6, suggesting that SRCTIS effectively preserves the spatial
details of the RGB images.

In addition to the spatial details, we also randomly selected
three points (marked A, B, and C) from different scenes as
shown in Fig. 6 to assess the spectral reconstruction quality,
and the relevant results are presented in Fig. 7(a). As can be
seen, the spectra reconstructed by MLEM deviate significantly
from the ground truth (indicated by a large SAM value) and are
accompanied by considerable noise. However, the recon-
structed spectra of MLEM_GIF closely approximate the
ground truth, and the SAM value is also far less than that of
MLEM, further suggesting that GIF cannot only suppress the
artifacts, but also improves the spectral quality. For SRCTIS,
although the SAM value is slightly reduced compared with
MLEM_GIF after propagation, the recovered spectrum of
SRCTIS is basically consistent with that of MLEM_GIF and
in good agreement with the ground truth. The quality of the
spectrum is much higher than that of MLEM. Figure 7(b)
presents the quantitative image quality metrics and the compu-
tational time corresponding to the reconstruction results of 10

different scenes with a noise level of 25 dB. It can be seen that
in all cases, the quantitative metrics of the multispectral images
obtained by SRCTIS are similar to those of MLEM_GIF and
are better than that of MLEM, fully demonstrating the supe-
riority of SRCTIS. In terms of computational time, it can be
seen that SRCTIS only needs slightly longer computational
time than MLEM_GIF.

In order to further validate the effectiveness of SRCTIS, we
built a hybrid system according to the layout shown in Fig. 1
for a proof-of-concept experimental demonstration. A long-
wave pass filter with a cutoff wavelength of 425 nm and a
short-wave pass filter with a cutoff wavelength of 650 nm are
combined to tailor the spectral information of the target scenes.
The DOE is a binary phase element, etched into a layer
(thickness of ∼410 nm ) of spin-coated S1813 photoresist
(MicroChem) on 1.5-mm thick borosilicate glass substrate us-
ing a custom-built massively parallel-write photoplotter
[52,53]. The light efficiency of the CTIS branch and the
RGB branch is 30.23% and 48.38%, respectively. The scenes
were displayed on a monitor to make it convenient to switch

Fig. 6. Comparison of the spatial details of different scenes (denoted in sequence from top to bottom as “lilies,” “ruined house,” and “roof”)
reconstructed fromMLEM,MLEM_GIF, and SRCTIS. The enlarged images in the upper left corner, respectively, represent randomly selected local
areas in the corresponding scene.
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between different images and measure the corresponding
ground truths with a spectrometer (Ocean Optics HR4000).
The spectrometer used to collect the ground truth [denoted by
the dark solid line in Fig. 9(c)] is the Ocean Optics HR4000. In
this proof-of-concept experiment, the wavelength step of the
images captured by the CTIS branch is 5 nm, and the spatial
size is 174 × 174 pixels. The images produced by SRCTIS have
a spatial dimension of 947 × 947 pixels, and the spectral reso-
lution and range are the same as the CTIS reconstruction
results.

We quantitatively analyzed the spatial and spectral resolu-
tions of SRCTIS, and the corresponding results are shown
in Fig. 8. In order to assess the spatial resolution of these meth-
ods, a USAF 1951 resolution test chart was adopted in our ex-
periment. The spatial resolution of CTIS, SRCTIS, and the
simple up-scale of CTIS using the nearest-neighbor interpola-
tion (NNI) [54], and the RGB camera were compared against

each other using the modulation transfer function (MTF) as
shown in Fig. 8(a). As can be seen from the figure, the MTF
of NNI largely overlaps with that of CTIS, suggesting that the
direct application of a simple up-scale method [54] cannot im-
prove the spatial resolution. Also, the MTF of SRCTIS is very
close to that of the RGB camera, indicating that SRCTIS can
effectively inherit the spatial resolution of the latter. These re-
sults imply that SRCTIS has a significant advantage in spatial
resolution over conventional CTIS. According to the Rayleigh
criterion and taking 20% contrast as the threshold, the spatial
resolutions of CTIS, SRCTIS, NNI, and the RGB camera are
determined to be 1.63 lp/mm, 6.46 lp/mm, 1.63 lp/mm, and
6.77 lp/mm, respectively. In addition, to quantify the spectral
resolution, these methods were tested by reconstructing a uni-
form square region whose spectrum contains two adjacent
peaks that are separated with different spacing. Figures 8(b)
and 8(c) present the reconstructed spectra with minimum spac-

Fig. 7. (a) Spectra for randomly selected points (marked A, B, and C) in Fig. 6 from the ground truth, MLEM, MLEM_GIF, and SRCTIS
reconstructions, respectively; (b) quantitative image quality metrics and computational time for reconstructing 10 scenes with a discretization of
200 × 200 × 57 under 25-dB noise.
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ing between the peaks that CTIS and SRCTIS can resolve, re-
spectively. The peaks are assumed to be resolved if the valley
between the peaks is smaller than 50% of the peak values.
The results show that the spectral resolutions of SRCTI and
CTIS are similar, i.e., 12 nm and 10 nm, respectively.
Thus, SRCTIS can achieve a much better spatial resolution
and a slightly lower spectral resolution than CTIS.

Figure 9 compares the reconstruction results from different
algorithms and the ground truths. Figure 9(a) shows the spatial
details of different scenes (denoted in sequence as “hills, sail-
boat, landscape painting, and blueberries) reconstructed from
different algorithms. The high-resolution RGB images cap-
tured by the RGB branch are shown in the RGB form, and
the reconstruction results of MLEM, MLEM_GIF, and
SRCTIS are compared at the 610-nm wavelength band to fully
illustrate the superiority of SRCTIS in the spatial domain. The
exposure times for the four scenes are 13 ms, 9 ms, 13 ms, and
12 ms, respectively, and the corresponding SNRs are 26.85 dB,
29.99 dB, 29.62 dB, and 30.23 dB, respectively. It can be seen
that the artifacts in the reconstructed image of MLEM_GIF are
greatly suppressed compared to MLEM by applying GIF in the
iterative reconstruction process, which once again verifies the

advantage of GIF. It is worth noting that there are also the mo-
saiclike artifacts in the MLEM reconstruction, which are caused
by dividing the target scene into 5 × 5 regions and using differ-
ent PSFs for each region in order to improve the quality of the
spectral reconstruction. Nevertheless, it can be seen from the
results of MLEM_GIF and SRCTIS that this problem can
be also effectively suppressed by GIF. For SRCTIS, the rich
spatial details of the high spatial resolution RGB image are fully
inherited. As can be seen from Fig. 9(a) that the spatial details
of the reconstruction from SRCTIS are far richer than those
from MLEM and MLEM_GIF. Moreover, a few reconstructed
slices from SRCTIS at different wavelength bands of the hills
scene are presented in Fig. 9(b), and the images are exhibited in
colors corresponding to respective wavelengths.

In addition, the reconstructions from SRCTIS also have a
higher spectral fidelity compared with those fromMLEM. Four
random points (marked A, B, C, and D) in different scenes as
shown in Fig. 9(a) are selected and their corresponding spectra
are shown in Fig. 9(c). It can be seen that, although the
SRCTIS results are derived based on the MLEM_GIF recon-
structions, the spectral information is not severely impaired by
the propagation process and closely approximates the ground
truth. Compared with MLEM, its spectra can better capture
the variations and peak positions of the real spectrum.
These results firmly suggest that SRCTIS can effectively inherit
the spectral details of CTIS reconstructions optimized by GIF.

4. CONCLUSIONS AND OUTLOOK

In this paper, a super-resolution CTIS, which was capable of
capturing images with both high spatial and spectral resolu-
tions, has been developed and verified by both numerical sim-
ulations and proof-of-concept experiments. In the SRCTIS
system, the complementary information was collected from
both the CTIS and the RGB branches. For the CTIS
reconstruction, we took full advantage of the zero-order pattern
as the guidance image for filtering within each iterative step to
effectively suppress the reconstruction artifacts and improve the
reconstruction quality. After mapping the multispectral infor-
mation reconstructed to the RGB image, which had a finer spa-
tial resolution, we further propagated the multispectral
information to each pixel in the RGB image based on the con-
tinuity condition in both the spectral and the spatial dimen-
sions. The results from both the simulative and the proof-
of-concept experiments suggested that SRCTIS can inherit
the advantages of both the CTIS and the RGB branches
and fulfill the high-quality reconstruction performance.
Compared with the conventional CTIS system, the SRCTIS
system could not only effectively suppress artifacts, but also
greatly improve the spatial resolution, whereas, maintaining
a high spectral fidelity.

Finally, we would like to point out some future research di-
rections to further improve our method. The optimization of
DOE effectively improved the intensity uniformity between
different diffraction orders at the entire working wavelength
range and improved the transmission efficiency of DOE, so
as to obtain a more stable and well-behaved weight matrix
and reduce the impact of noise to make reconstruction more
accurate. In addition, the application of super-resolution and

Fig. 8. Quantitative comparison of different algorithms in terms
of spatial and spectral resolutions. Panel (a) presents the modulation
transfer functions corresponding to CTIS, SRCTIS, CTIS with the
nearest-neighbor interpolation, and the RGB camera; panel (b) presents
the reconstructed spectrum of CTIS where the reference spectrum con-
tains two peaks at 495 nm and 505 nm, respectively; panel (c) presents
the reconstructed spectrum of SRCTIS where the reference spectrum
contains two peaks at 493 nm and 505 nm, respectively.
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denoising neural networks in CTIS reconstruction effectively
improved the efficiency as well as simplified the structure of
the entire optical system.
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