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Optical geometrical transformation is a novel and powerful tool to switch orbital angular momentum (OAM)
states in modern optics. We demonstrate a scheme to operate multiplication and division in OAM by Fermat’s
spiral transformation. The characteristics of the output beams in the case of integer and fraction OAM operations
are presented in detail. Additionally, the power weight of the output OAMmodes and the interference patterns of
the output beams are reported to confirm the expected ability of OAM mode conversion by Fermat’s spiral trans-
formation. We further investigate the evolution of OAM beams in operations theoretically and experimentally.
This work provides a practical way to perform an optical transformation mapping on OAM beams. It can find
application in optical communications with larger OAM mode numbers as well as quantum information in
high-dimensional systems. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.477439

1. INTRODUCTION

Light beams with a spiral phase wavefront and an annular in-
tensity profile carry orbital angular momentum (OAM). OAM
of lℏ per photon is a natural property of the beams comprising
a spiral phase structure exp�ilθ�, where l is the topological
charge, θ is the azimuthal angle, and ℏ is the reduced Planck’s
constant. Since the discovery of OAM of photons by Allen and
coworkers in 1992 [1], OAM beams have become the subject
of intense interest for a rich multiplicity of applications in both
classical and quantum optics, including optical manipulation
[2–4], optical communications [5,6], spin-OAM conversion
[7,8], OAM entanglement [9,10], quantum information
[11,12], and quantum key distribution [13,14]. After the reali-
zation of Laguerre–Gaussian (LG) modes as the initial OAM
beams [15], a wide variety of techniques have been applied to
generate OAM beams, such as spiral phase plates [16,17], mode
converters [18], computer-generated holograms [19,20], plas-
monic metasurfaces [21,22], and spatial light modulators. As
azimuthal orthogonal eigenmodes of light, OAM modes that
constitute a high-dimensional state space play a significant
role in optical communication systems [23–25]. As such, in
accordance with different l values, quantities of OAM multi-
plexing and demultiplexing schemes [26–29] have gained great
success in high-capacity OAM communication. However, these
schemes have difficulties scaling up to larger OAM mode

numbers due to the increase of diffraction loss and system
complexity.

In order to be more efficiently scalable to larger OAM mode
numbers, optical geometrical transformation schemes are
extremely beneficial to OAM mode conversion [30–32]. The
system compactness and high conversion efficiency have
prompted them to become a research hotspot in OAM mode
for both conversion and sorting during the past few years.
Initially, by means of the log-polar coordinate transformation
[33,34], multiplication and division were performed to
switch OAM states. Then, researchers implemented this
scheme to sort OAM modes more efficiently [35–37]. After
that, Ruffato et al. constructively presented the circular-sector
coordinate mapping to perform multiplication and division on
OAM beams in 2019 [38]. This completely different method
reduces the number of optical operations and the total number
of optical elements, improving optical efficiency.

Furthermore, according to a novel spiral transformation, re-
searchers proposed an effective scheme that is of major signifi-
cance in high-resolution and OAM mode sorting [39–41] to
accomplish OAM state conversion [42]. This scheme performs
logarithmic spiral transformation to operate multiplication and
division on OAM beams. Remarkably, the transformation
parameter is an arbitrary rational factor instead of a positive
integer one presented in the previous methods [34,38].
Nevertheless, the proposed spiral transformation scheme
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employed a particular kind of spiral, which is also the logarith-
mic spiral after mapping to the output plane.

In this paper, we propose Fermat’s spiral transformation on
OAM mode conversion, extending the logarithmic spiral to
Fermat’s spiral for the first time. It means that other spirals
can also be used to perform the transformation on OAM
modes, not limited to the spiral that has the same form before
and after mapping. Additionally, by dint of Fermat’s spiral
transformation, OAM multiplication and division are per-
formed in the case where the transformation parameter is an
integer or a fraction. The power weight and the interference
patterns of the output beams confirm the expected Fermat’s
spiral transformation on OAM mode conversion. Finally, a de-
signed optical experiment setup is demonstrated to verify the
proof-of-principle work. Meanwhile, we analyze and discuss the
evolution of input OAM beams during the optical Fermat’s
spiral mapping.

2. METHODS

In the polar coordinate �r, θ�, the representation of Fermat’s
spiral is given by r2 � p2θ, where p > 0 is a constant scaling
factor for the spiral radius and θ ∈ �0, �∞� is the azimuth
angle. Note that Fermat’s spiral has two branches r � p

ffiffiffi
θ

p
and r � −p

ffiffiffi
θ

p
, which have central symmetry about the origin.

To perform a conformal mapping in the polar coordinate,
we assume that the input plane �r, θ� is located at z � 0 while
the output plane �ρ,φ� is located at z � d , where d is the dis-
tance between the two planes. Based on the geometric coordi-
nate mapping, an optical geometrical transformation satisfying
a conformal mapping can be written as [38,42]

ρ � a
�
r
b

�
−1∕n

, φ � θ

n
, (1)

where a and b are scaling parameters, and n > 0 denotes a
transformation parameter. To implement Fermat’s spiral trans-
formation on OAM beams, the spiral in the input plane is given
by

r � g

�
ffiffiffiffiffi
hθ

p
�n , (2)

where g > 0 and h > 0 are constant scaling factors for the spiral
radius,

θ � θ0 � 2mπ, m �
�
1

2π

�
g2∕n

hr
− θ0

��
,

θ0 ∈ �0, 2π�, (3)

where d:e means to take an integer value.
Substituting Eqs. (2) and (3) into Eq. (1), the mapping in

the output plane is obtained as ρ � ab1∕ng−1∕nh1∕2n1∕2φ1∕2. By
assuming that b � gn−n∕2 for simplicity, we derive Fermat’s
spiral as

ρ � ah1∕2
ffiffiffi
φ

p
, (4)

where

φ � θ0 � 2tπ, t �
�
1

2π

�
ρ2

a2h
− θ0

��
,

θ0 ∈ �0, 2π�: (5)

LG beams with a radial mode index of 0 have a complex
field amplitude given by [1]

LGl
0�r, θ� �

1

w0

�
r

ffiffiffi
2

p

w0

�jlj
exp

�
−
r2

w2
0

�
exp�ilθ�, (6)

where w0 is the radius of the beam waist. l is the azimuthal
index, which indicates that LG beams possess an OAM of
lℏ per photon. In the paraxial regime, with the help of the
stationary phase approximation on the Fresnel–Kirchhoff dif-
fraction integral, the transformation phase ϕ1�r, θ� in the input
plane can be calculated as [38,42]

ϕ1�r, θ� �
kab1∕n

d �1 − 1∕n� r
1−1∕n cos

�
θ −

θ

n

�
−
kr2

2d
, (7)

where k � 2π∕λ is the wavenumber. Substituting Eq. (3) into
Eq. (7), the transformation phase pattern can be obtained with
diverse n.

After the modulation of ϕ1�r, θ�, as the beams propagate for
a distance d before illuminating the correction phase, the field
can be written as

U 0
2�ρ,φ� �

−ik
2πd

exp�ikd �
Z

2π

0

Z �∞

0

U 1�r, θ�

× exp
�
ik
2d

�r2 � ρ2 − 2rρ cos�θ − φ��
�
rdrdθ,

(8)

where U 1�r, θ� � LGl
0�r, θ� exp�iϕ1�r, θ��. The correction

phase ϕ2�ρ,φ�, which compensates for both ϕ1�r, θ� and
the phase generated during the propagation in free space,
can be expressed as [38,42]

ϕ2�ρ,φ� �
kban

d �1 − n� r
1−n cos�φ − nφ� − kρ

2

2d
: (9)

In the same way, substituting Eq. (5) into Eq. (9), the cor-
rection phase pattern can be obtained with diverse n.

After propagating through ϕ2�ρ,φ�, the final output field in
the output plane is derived as

U 2�ρ,φ� � U 0
2�ρ,φ� exp�iϕ2�ρ,φ��: (10)

Applied to an optical geometrical transformation, the con-
cept of Fermat’s spiral transformation from a geometric model
to a physical one is outlined in Fig. 1. Figures 1(a1), 1(a2),
1(c1), and 1(c2) depict the geometry of the spiral mathemati-
cally. Meanwhile, Figs. 1(b1), 1(b2), 1(d1), and 1(d2) depict
the corresponding physical patterns. The transformation
parameter is n � 8∕5 in Figs. 1(a1), 1(a2), 1(b1), and 1(b2)
and n � 4∕5 in Figs. 1(c1), 1(c2), 1(d1), and 1(d2). It can
be seen from Figs. 1(a1) and 1(c1), which are described by
Eq. (2), that the transformation phase profiles in Figs. 1(b1)
and 1(d1) show a spiral shape. However, Figs. 1(a2) and 1(c2)
depict a branch of Fermat’s spiral described by Eq. (4).
Accordingly, the correction phase profiles in Figs. 1(b2) and
1(d2) show the shape of Fermat’s spiral. More importantly,
the spiral pitch of Fermat’s spiral decreases as the number of
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spiral loops increases, as presented in Figs. 1(a2) and 1(c2). The
inward-running spiral is mapped to the outward-running spiral
in the spiral transformation. Thus, by means of Fermat’s spiral
transformation, the intensity profile of the output beams theo-
retically exhibits a more typical donut-like shape than that in
the logarithmic spiral transformation.

3. THEORETICAL ANALYSIS

In this section, we perform analyses of multiplication and di-
vision on OAM beams by Fermat’s spiral transformation. The
parameters involved are w0 � 1 mm, λ � 632.8 nm, d �
80 mm, and h � 0.002 with a � 5 mm, g � 0.07 mm for
the multiplication while a � 7 mm, g � 0.3 mm for the
division.

Here, we demonstrate the simulation results of Fermat’s spi-
ral transformation on vortex beams in the case of integer and

fraction OAM operations in Figs. 2 and 3, respectively. The
final output beams are obtained by using a 4f system to spa-
tially filter the beams that propagate after two phase masks. In
Fig. 2(a), the input OAM states are l � −6, −4, �4, �6.
Figure 2(b) displays the multiplication results with n � 2 while
Fig. 2(c) displays the corresponding intensity and phase pro-
files. One can clearly see that, after performing an operation
on LG beams, the OAM states of the output beams are
l � −12, −8, �8, �12. In the other aspect, Fig. 2(d) displays
the division results with n � 1∕2 while Fig. 2(e) displays the
corresponding intensity and phase profiles. It is also evident
that the OAM states of the output beams are l � −3,
−2, �2, �3 after performing an operation.

Then, we turn to realize fraction OAM operations, of which
numerical simulations are reported in Fig. 3. Figure 3(a) exhib-
its input vortex beams. After performing fraction OAM oper-
ations, Fig. 3(b) displays the output beams while Fig. 3(c)
displays the corresponding intensity and phase profiles. In
Figs. 3(a1) and 3(a2), input LG beams carry the topological
charge l � −3, �3, respectively. After performing an OAM
multiplication with n � 5∕3, the output OAM states are
l � −5, �5, as shown in Figs. 3(b1), 3(b2), and 3(c1)–(c4).
On the other hand, input LG beams carry the topological
charge of l � −6, �6 in Figs. 3(a3) and 3(a4), respectively.
The output OAM states are l � −4, �4 after performing an
OAM division with n � 2∕3, as shown in Figs. 3(b3), 3(b4),
and 3(c5)–(c8).

Next, Fig. 4 presents two phase masks for several transfor-
mation parameters n that are applied to OAM operations in
Figs. 2 and 3. The transformation phase that maps the input
intensity pattern into a Fermat’s spiral one is depicted in

Fig. 1. Schematic illustration of Fermat’s spiral. (a), (c) Geometric pat-
tern. (b), (d) Phase distribution. (a1), (b1) Transformation phase and
(a2), (b2) correction phase with n � 8∕5. (c1), (d1) Transformation
phase and (c2), (d2) correction phase with n � 4∕5.

Fig. 2. Numerical simulations of Fermat’s spiral transformation on
vortex beams in the case of integer multiplication and division.
(a) Input LG beams with l � −6, −4, �4, �6. (b) Output beams
while n � 2. (c) Corresponding intensity and phase of (b). (d) Output
beams while n � 1∕2. (e) Corresponding intensity and phase of (d).
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Figs. 4(a1)–4(d1). Figures 4(a2)–4(d2) depict the correction
phase, which performs the required phase correction of both
the first phase and the phase generated during the propagation.
The transformation parameters of each row of Fig. 4 from top
to bottom are n � 2, n � 1∕2, n � 5∕3, n � 2∕3, respec-
tively. It can be found that the phase patterns in Fig. 4 exhibit
a spiral shape. Particularly, the correction phase patterns exhibit
a Fermat’s spiral shape described by Eq. (4).

Furthermore, the power weight of the output OAM modes
in the case of multiplication and division is reported in Fig. 5.
Since free space paraxial beams carrying OAM can be expressed
as a weighted superposition of LG modes, we decompose the
final output field, which has been spatially filtered by a 4f sys-
tem, into a set of LG modes to ascertain the purity included in
the dominant OAM modes [43,44]. When the input OAM
states are l � 1, 2, 3, 4, 5, after performing multiplication with
n � 2, the power weights of the output modes, respectively,
center at l � 2, 4, 6, 8, 10, as illustrated in Fig. 5(a). On
the other hand, if the input OAM states are l � 2, 4, 6,
8, 10, after performing division with n � 1∕2, the output
beams obviously have the highest power at l � 1, 2, 3, 4, 5
OAM modes, as illustrated in Fig. 5(b). These results indicate

that, after performing OAM operations, the output OAM
mode that should be obtained is significantly more weighted
than the others.

At the end of this section, the optical descriptions of integer
and fraction OAM operations are demonstrated in Figs. 6–8.
Accordingly, the interference patterns of the output beams,
which have been spatially filtered by a 4f system, and
Gaussian beams are depicted to describe the output OAM
modes. First, Fig. 6 demonstrates the optical description of
integer multiplication with n � 2 for input LG beams carry-
ing l � −3, �2, �3, �4. Input intensity patterns and the
corresponding interference patterns are shown in Figs. 6(a)
and 6(b), respectively. From the interference patterns of the
output beams in Fig. 6(d), it is revealed that the input
OAM modes have successfully converted into the output ones
with l � −6, �4, �6, �8 after performing multiplication
with n � 2. Next, Fig. 7 demonstrates the optical descrip-
tion of integer division with n � 1∕2. The interference pat-
terns in Fig. 7(b) illustrate that the input OAM states are

Fig. 3. Numerical simulations of Fermat’s spiral transformation on
vortex beams in the case of fraction multiplication and division.
(a) Input LG beams with l � −3, �3, −6, �6. (b1), (b2) Output
beams while n � 5∕3. (b3), (b4) Output beams while n � 2∕3.
(c) Corresponding intensity and phase of (b). Fig. 4. Phase with different transformation parameters n that are

applied to Figs. 2 and 3. (a1)–(d1) Transformation phase. (a2)–
(d2) Correction phase. (a1), (a2) n � 2. (b1), (b2) n � 1∕2. (c1),
(c2) n � 5∕3. (d1), (d2) n � 2∕3.
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l � −6, �4, �6, �8. The output OAM states are l �
−3, �2, �3, �4, as shown in the interference patterns in
Fig. 7(d).

Lastly, Fig. 8 demonstrates the optical description of fraction
multiplication with n � 3∕2 and division with n � 3∕4.

Fig. 5. Power weight of the output OAMmodes. (a) Multiplication
with n � 2. (b) Division with n � 1∕2.

Fig. 6. Optical description of integer multiplication with n � 2.
(a1)–(a4) Intensity of input LG beams with l � −3, �2,
�3, �4. (b1)–(b4) Corresponding interference patterns of (a).
(c1)–(c4) Intensity of the output beams with l � −6, �4, �6, �8.
(d1)–(d4) Corresponding interference patterns of (c). All images are
on the same size scale.

Fig. 7. Optical description of integer division with n � 1∕2.
(a1)–(a4) Intensity of input LG beams with l � −6, �4,
�6, �8. (b1)–(b4) Corresponding interference patterns of (a).
(c1)–(c4) Intensity of the output beams with l � −3, �2, �3, �4.
(d1)–(d4) Corresponding interference patterns of (c). All images are
on the same size scale.

Fig. 8. Optical description of fraction multiplication with n � 3∕2
and division with n � 3∕4. (a1)–(a4) Intensity of input LG beams
with l � −4, −6, �8, �12. (b1)–(b4) Corresponding interference
patterns of (a). (c1)–(c4) Intensity of the output beams with
l � −6, −9, �6, �9. (d1)–(d4) Corresponding interference pat-
terns of (c). All images are on the same size scale.
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The interference patterns in Figs. 8(b1) and 8(b2) illustrate that
the input OAM states are l � −4, −6. The output beams
shown in Figs. 8(c1) and 8(c2) have OAM modes l � −6, −9,
as illustrated in the interference patterns in Figs. 8(d1) and 8(d2).
On the other hand, the input OAM states are l � �8, �12,
as shown in Figs. 8(a3), 8(a4), 8(b3), and 8(b4). After perform-
ing division with n � 3∕4, the output OAM states are
l � −6, −9, as shown in Figs. 8(c3), 8(c4), 8(d3), and 8(d4).
The optical description further confirms the expected Fermat’s
spiral transformation on OAM beams, consistent well with the
theoretical predictions.

4. EXPERIMENTAL RESULTS

In this section, we carry out an experiment to verify the theo-
retical results above. Figure 9 presents the illustration of the
proof-of-principle configuration. Generated by a He–Ne laser
with 633 nm wavelength, Gaussian beams propagate through a
half-wave plate (HP) and a linear polarizer (Pol.). After being
expanded by an objective lens (×10 objective) and a 60 mm lens
(L1), the beams illuminate a transmissive spatial light modu-
lator (RSLM1080P) (SLM1) to generate LG modes by means
of computer-generated hologram. The phase ϕ1�r, θ� is en-
coded in a reflective phase-only spatial light modulator
(HDSLM80R-NIR) (SLM2). LG modes are projected on
SLM2 to perform the transformation. The transformed beams
propagate through the beams’ relaying system that consists

of L2 and L3. Relying on this system, the intensity profiles
in the plane of the SLM2 are recorded. Finally, we use a
complementary metal oxide semiconductor camera (CMOS,
CinCam CMOS-1201) to image the intensity profiles at differ-
ent distances between ϕ1�r, θ� and ϕ2�ρ,φ�.

Figures 10 and 11 depict the evolution of input LG beams
in OAM operations after illuminating the first phase mask dur-
ing propagation of the distance d theoretically and experimen-
tally. In Fig. 10, the input OAM state is l � 4. Figures 10(a)
and 10(c) show the simulation results while Figs. 10(b) and
10(d) show the corresponding experiment results. The evolu-
tions of LG beams in integer multiplication with n � 2 are
reported in Figs. 10(a) and 10(b). One can see that the ring
of the output beams is thinner than that of input LG beams
owing to the extension of beams. Thus, the number of abrupt
phase jumps in a 2π period increases after performing multi-
plication. In the other aspect, LG beams are mapped in integer
division with n � 1∕2 in Figs. 10(c) and 10(d). On the con-
trary, the ring of the output beams is wider than that of the
input beams, and the number of abrupt phase jumps in a
2π period decreases after performing division.

Finally, we analyze the evolution of input LG beams carry-
ing l � 5 in fraction OAM operations after illuminating the
first phase mask during propagation of the distance d .
Figures 11(a) and 11(c) present the simulation results while
Figs. 11(b) and 11(d) present the corresponding experiment
results. Similar to the evolution in integer OAM operations
in Fig. 10, the output beams have the same characteristics.

Fig. 9. Schematic of the experimental setup. HP, half-wave
plate; Pol.1–Pol.3, polarizer; ×10 objective, objective lens (×10,
NA � 0.25); L1, 60 mm lens; SLM1, transmissive spatial light modu-
lator; BS, beam splitter; SLM2, reflective phase-only spatial light
modulator; L2 and L3, 150 mm lens; CMOS, complementary metal
oxide semiconductor camera.

Fig. 10. Evolution of input LG beams carrying l � 4 in the case of
integer multiplication and division. (a) Simulation results of the trans-
verse intensity at different distances while n � 2. (b) Corresponding
experiment results of (a). (c) Simulation results of the transverse in-
tensity at different distances while n � 1∕2. (d) Corresponding experi-
ment results of (c).
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As shown in Figs. 11(a) and 11(b), the ring of the output beams
is thinner than that of the input beams in fraction multiplica-
tion with n � 8∕5 for the increase of the number of abrupt
phase jumps in a 2π period. However, the ring of the output
beams is wider than that of the input beams in fraction division
with n � 4∕5 for the decrease of the number of abrupt phase
jumps in a 2π period. Comparing the simulation results with
the experimental ones in Figs. 10 and 11, it is concluded that
they are in good agreement. On the other hand, the experimen-
tal characterization that uses single-step geometric transforma-
tion for the highly accurate OAM multiplication is
demonstrated [45]. Besides, metasurfaces [41] or computa-
tional optics will also provide another good experimental im-
plementation.

5. CONCLUSION

In conclusion, we theoretically and experimentally report a
Fermat’s spiral transformation scheme to operate optical multi-
plication and division on OAM beams. The simulation results
of OAM operations are presented with integer and fraction
transformation parameters n. Besides, the power weight of
the output OAM modes is reported to confirm the expected
ability of OAM mode conversion by Fermat’s spiral transfor-
mation. Furthermore, the interference patterns of the output
beams and Gaussian beams are demonstrated to characterize
the output OAM modes. Finally, an experiment is carried
out to investigate the evolution of the input LG beams in

multiplication and division after illuminating the first phase
mask during propagation of the distance d and before reaching
the second phase mask. As expected, the experimental results
agree well with the simulation analyses, confirming the feasibil-
ity of OAM mode conversion by Fermat’s spiral transforma-
tion. We believe that our study may inspire other new ideas
in performing optical geometrical operations on OAM
beams and manipulating OAM states. Moreover, it offers great
potential in optical communications with larger OAM modes
as well as quantum state transformations in high-dimensional
systems.
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