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Dendrites, branches of neurons that transmit signals between synapses and soma, play a vital role in spiking
information processing, such as nonlinear integration of excitatory and inhibitory stimuli. However, the inves-
tigation of nonlinear integration of dendrites in photonic neurons and the fabrication of photonic neurons in-
cluding dendritic nonlinear integration in photonic spiking neural networks (SNNs) remain open problems.
Here, we fabricate and integrate two dendrites and one soma in a single Fabry–Perot laser with an embedded
saturable absorber (FP-SA) neuron to achieve nonlinear integration of excitatory and inhibitory stimuli. Note that
the two intrinsic electrodes of the gain section and saturable absorber (SA) section in the FP-SA neuron are de-
fined as two dendrites for two ports of stimuli reception, with one electronic dendrite receiving excitatory stimulus
and the other receiving inhibitory stimulus. The stimuli received by two electronic dendrites are integrated non-
linearly in a single FP-SA neuron, which generates spikes for photonic SNNs. The properties of frequency encod-
ing and spatiotemporal encoding are investigated experimentally in a single FP-SA neuron with two electronic
dendrites. For SNNs equipped with FP-SA neurons, the range of weights between presynaptic neurons and post-
synaptic neurons is varied from negative to positive values by biasing the gain and SA sections of FP-SA neurons.
Compared with SNN with all-positive weights realized by only biasing the gain section of photonic neurons, the
recognition accuracy of Iris flower data is improved numerically in SNN consisting of FP-SA neurons. The results
show great potential for multi-functional integrated photonic SNN chips. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.499767

1. INTRODUCTION

Neuromorphic computing, which aims to simulate the compu-
tational processes of biological neurons, has attracted significant
interest in various fields, including decision-making, speech
recognition, optimization, and learning [1,2]. In a biological
nervous system, a typical neuron mainly consists of three parts:
the dendrites, soma, and axon. It has been experimentally dem-
onstrated that dendritic nonlinear integration of excitatory and
inhibitory stimuli plays a critical role in biological neural net-
works and neural computation [3–5]. Therefore, incorporating
the dendritic nonlinear integration into neuromorphic compu-
tation, spiking neuron, and spiking neural networks (SNNs) is
highly desirable, as it can enhance the performance and effi-
ciency of these systems.

The continued evolution of integrated chip fabricating
technologies has reawakened interest for a relentless search in
neuro-inspired optical information processing [6–9]. Photonic
neuromorphic processers are particularly promising for a wide
range of applications that are currently unreachable by conven-
tional computing technology, due to their undeniable advantages
such as low cross talk, low latency, high speed, wide bandwidth,
massive parallelism, and low power consumption [10–22].
Photonic SNNs, which are based on the spike codes, exhibit the
expressiveness and efficiency of analog processing while main-
taining the robustness of digital communication [6,9,10,23–28].
In photonic SNNs, various tasks such as pattern recognition and
logical operation have been successfully achieved [6,23–28].
In 2019, a study demonstrated the successful recognition of
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patterns in an all-optical spiking neurosynaptic network consist-
ing of four neurons and 60 synapses [23]. In 2020, the exclusive
OR (XOR) classification was implemented in a photonic SNN
based on InP-based integrated photonic chips [6], while in 2021,
digital recognition was achieved in a photonic SNN consisting of
vertical-cavity surface-emitting lasers (VCSELs) neurons and
synapses [26]. Going further, the Boolean logic gates were suc-
cessfully implemented in a semiconductor Fano laser [27].

As a crucial functional unit of photonic SNNs, photonic
spiking neurons are of great interest to researchers due to their
ability to represent and process spikes through the complex dy-
namics of excitation and inhibition [29–42]. Excitatory and
inhibitory dynamics were reported in a VCSEL and quan-
tum-dot mode-locked lasers by Robertson et al. [35,39]. In
2018, the stable propagation of inhibited spiking dynamics
in VCSELs was reported [36]. In the same year, simultaneous
excitatory and inhibitory dynamics were reported in a fiber-
based graphene excitable laser neuron [37]. In 2019, the all-
optical inhibitory dynamics based on polarization mode com-
petition was demonstrated [38]. In 2020, excitatory dynamics
was achieved in a micropillar laser, and the computing ability of
single and coupled spiking micropillar lasers was also demon-
strated [40]. In 2023, the excitatory dynamics was achieved
based on the fabricated Fabry–Perot laser with an intracavity
saturable absorber (FP-SA) neuron [9]. However, the excitatory
and inhibitory dynamics have not yet been integrated nonli-
nearly into the integrated semiconductor laser. Additionally,
the inhibitory dynamics has not yet been applied well in the
photonic SNNs for improving the performance of learning
and recognition.

In this work, we fabricate and integrate two dendrites and
one soma into a single FP-SA neuron. The two intrinsic elec-
trodes of the gain section and saturable absorber (SA) section in
the FP-SA neuron are defined as two dendrites for two ports
of stimuli reception, with one electronic dendrite receiving

excitatory stimulus and the other receiving inhibitory stimulus.
The stimuli received by two electronic dendrites are integrated
nonlinearly into the FP-SA neuron, which generates spikes for
photonic SNNs. This approach enhances information process-
ing capability with the utilization of the SA as one dendrite to
receive stimulus, creating an additional degree of freedom for
information processing within a single integrated device.
Furthermore, we apply the FP-SA neuron equipped with dou-
ble electronic dendrites in photonic SNNs. The range of
weights between presynaptic neurons and postsynaptic neurons
is varied from negative to positive values because of the ability
of integrating excitatory and inhibitory stimuli in FP-SA neu-
rons. This feature helps to enhance the accuracy of recognition.
The rest of the paper is organized as follows. The experimental
setup and operation principle of the FP-SA neuron with double
integrated electronic dendrites are described. Then, the fre-
quency encoding and spatiotemporal encoding are investigated
experimentally in the FP-SA neuron under excitatory and
inhibitory stimuli. Moreover, the recognition of the Iris data
set is performed numerically in the photonic SNN consisting
of FP-SA neurons based on frequency and spatiotemporal en-
coding. Finally, the conclusion is summarized.

2. RESULTS AND DISCUSSION

A. Experimental Setup and FP-SA Neuron
As shown in Fig. 1(a), in a biological nervous system, neural
information processing relies heavily on the nonlinear interac-
tion of excitatory postsynaptic potentials and inhibitory post-
synaptic potentials at dendrites. The process determines the
change in the somatic membrane potential and results in neural
spiking [2]. Therefore, the photonic spiking neuron that can
imitate this process by utilizing double dendrites for both
excitatory and inhibitory stimuli is desired. In this regard,
the FP-SA laser chip is fabricated and used for implementing
a photonic spiking neuron.

Fig. 1. Operation principle, chip, and experimental setup of FP-SA neuron. (a) Illustration of a biological neuron model receiving excitatory and
inhibitory stimulations at functional dendrites. (b) Microscope image of the FP-SA chip and the operation principle of the FP-SA neuron.
(c) Experimental setup of the encoding system based on a single FP-SA neuron with double electronic dendrites. Source, voltage source and current
source; FPGA, field programmable gate array; CH1, CH2, two channels of FPGA; Bias Tee 1, Bias Tee 2, bias tees; FP-SA, integrated Fabry–Perot
laser with an intracavity saturable absorber; OI, optical isolator; VOA, variable optical attenuator; OC, optical coupler; PD, photodetector; OSC,
oscilloscope; OSA, optical spectrum analyzer. Red line, electrical signal; blue line, optical signal.
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The microscope view of the FP-SA chip is shown in
Fig. 1(b). Two electrodes of the gain section and SA section
are integrated into a single FP-SA chip as two dendrites to re-
ceive excitatory and inhibitory stimuli, respectively. Then,
excitatory and inhibitory stimuli are integrated nonlinearly
into an FP-SA chip to generate spikes for a photonic SNN.
Essentially, this single photonic neuron features double inte-
grated electronic dendrites. In a photonic SNN, the gain sec-
tion of FP-SA is biased by a current source, while the SA section
is reversely biased by a voltage source. The stimuli generated by
signal generators are combined with current and voltage sources
with bias tees. The outputs of the FP-SA neuron are then de-
tected, recoded, and analyzed. Further details regarding the fab-
rication of the FP-SA chip can be found in Ref. [9].

The schematic diagram of the experimental setup for testing
the spiking encoding properties of the FP-SA neuron with dou-
ble integrated electronic dendrites is displayed in Fig. 1(c). The
packaged FP-SA chip is utilized as a photonic spiking neuron in
the photonic SNN. The working temperature of the FP-SA is
controlled at 25°C by a temperature controller (ILX Lightwave
LDC-3724C). Two distinct electrical signals, generated
from two channels (CH2, CH1) of FPGA (Xilinx Zynq
UltraScale+ RFSoC zu48dr), are considered as excitatory and
inhibitory stimuli for the gain and SA sections, which are re-
spectively combined with the current source and voltage source
through two bias tees (Bias Tee 2, Bias Tee 1). To prevent un-
wanted light reflections that might cause spurious results, an
optical isolator (OI) is included after the FP-SA. A variable

optical attenuator (VOA) is used after the OI to adjust the
strength of the light signal for both the photodetector (PD)
and optical spectrum analyzer (OSA, Advantest Q8384).
A 50:50 optical coupler (OC) is employed to split the light
signal into two paths. The first path is connected to the PD to
convert the optical input signal into electrical signal, which can
be recorded by an oscilloscope (OSC, Keysight DSOV334A).
The second path directly feeds into an OSA. The threshold of
the FP-SA for emission is approximately IG � 30 mA with a
reverse voltage of VSA � 0 V. The threshold slightly increases
with decreasing reverse voltage.

B. Experimental Frequency Encoding and
Spatiotemporal Encoding Mechanism in an FP-SA
Neuron with Double Electrical Dendrites
The FP-SA neuron is a multiple longitudinal laser. With
appropriate bias current IG and reverse voltage V SA, the optical
spectra of free-running FP-SA are depicted in Fig. 2(a) corre-
sponding to continuous-wave and spike dynamics. The optical
spectrum for the continuous-wave state is displayed in
Fig. 2(a1), whereas the optical spectrum broadens for the
Q-switching spike state as shown in Fig. 2(a2). TheQ-switching
spikes, with a full width at half maximum being about 15 ps, are
depicted in Fig. 2(b). The spikes with frequencies of 2.11 GHz,
2.38 GHz, and 2.48 GHz, are generated experimentally by the
FP-SA neuron with IG � 91 mA, 100 mA, and 100 mA and
V SA � −3.6 V, −3.6 V, and −3.8 V, respectively. That is
to say, with the same V SA, the frequency of spikes is increased
with the increase of IG . In contrast, with the same IG , the

Fig. 2. Optical spectra and spiking dynamics of the FP-SA neuron. (a) Optical spectra of the FP-SA neuron. (a1) Optical spectrum with
IG � 50 mA, V SA � 0 V; (a2) optical spectrum with IG � 91 mA, V SA � −3.8 V. (b) Spikes generated by the FP-SA neuron. (b1) IG � 91 mA,
V SA � −3.6 V; (b2) IG � 100 mA, V SA � −3.6 V; (b3) IG � 100 mA, V SA � −3.8 V. (c), (d) Frequencies as functions of IG and V SA .
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frequency of spikes is increased with the decrease of V SA. Note
that for reverse bias voltage, “−” and “3.6 V” are one value. For
instance, we consider that the value of “−3.8 V” is less than the
value of “−3.6 V.” Furthermore, the frequencies of spikes as
functions of IG and V SA are shown in Figs. 2(c) and 2(d), respec-
tively. It can be seen that the frequency of spikes is increased with
the increase of IG and the decrease of V SA. It is the same as the
results of Fig. 2(b). Specifically, in Fig. 2(c), the spike frequency
ranging from 1.43GHz to 2.73GHz can be achieved experimen-
tally. Besides, the region of IG for spikes is increased with the de-
crease of V SA to some extent. For instance, the ranges of IG are
about 2mA, 18mA, 31mA, and 37mAwith theV SA of −3.4 V,
−3.6 V, −3.8 V, and −4 V, respectively. Out of the region of
spikes, the continuous-wave is generated by the FP-SA neuron.
Thus, in Figs. 2(c) and 2(d), the bound of the continuous-wave
and spike dynamics is presented. In Fig. 2(d), the spike frequency
ranging from 2.01 GHz to 3.34 GHz is achieved experimentally.
To avoid damage to the laser, we consider the range of V SA from
0V to −4.8 V. The regions ofV SA for spikes are similar for differ-
ent considered IG . For example, the ranges ofV SA are about 1.5V
with the bias current IG � 90 mA, 95 mA, 100 mA, and
105 mA. Thus, the spikes with the frequency ranging from
1.43 GHz to 3.34 GHz can be achieved experimentally in the
FP-SA neuron with different IG and V SA.

Based on the continuous-wave and spike dynamics depicted
in Fig. 2, frequency encoding and spatiotemporal encoding can
be achieved experimentally in the FP-SA neuron. In the region
of spike dynamics, frequency encoding based on spike fre-
quency can be achieved through controlling the bias current
and voltage of the FP-SA neuron. With the switching of con-
tinuous-wave and spike dynamics, spatiotemporal encoding
can be achieved in the FP-SA neuron.

Next, the frequency encoding is shown in Fig. 3. The excita-
tory stimulus displayed in Fig. 3(a1) is generated by channel 2
of the FPGA. Subsequently, the signal of Fig. 3(a1) is injected
into the gain section of the FP-SA. There is no inhibitory
stimulus applied to the FP-SA neuron as shown in Fig. 3(a2).
The spike dynamics output of the FP-SA is experimentally
measured and shown in Fig. 3(a3). The inset of Fig. 3(a3) in-
dicates the enlargement of dynamics output in the red dotted
box in Fig. 3(a3). It can be observed that the frequency of
spikes is varying. Besides, it also can be observed that the am-
plitudes of the spikes fluctuate, which may be caused by white
noise. We find that white noise, generated by any parts of a
system including FPGA, radio frequency cable, and so on,
hardly affects the frequency of spikes. To quantify the fre-
quency of spikes generated by the FP-SA neuron, the time in-
terval τ between spikes is measured and presented in Fig. 3(a4).

Fig. 3. Frequency encoding in FP-SA neuron. (a1)–(a6) Excitatory stimulus and corresponding response in FP-SA with IG � 90 mA and
V SA � −3.9 V. (b1)–(b6) Inhibitory stimulus and corresponding response in FP-SAwith IG � 90 mA and V SA � −3.9 V. (c1)–(c5) Simultaneous
excitatory and inhibitory stimuli and corresponding response in FP-SA with IG � 81 mA and V SA � −3.9 V. (a1)–(c1) Excitatory stimulus
for gain section. (a2)–(c2) Inhibitory stimulus for saturable absorber section. (a3)–(b3) Response of FP-SA neuron. (a4)–(b4) Spike time interval
of spikes in (a3)–(c3). (a5)–(b5) Frequency of spikes in (a3)–(c3). (a6)–(c6) Eye diagram of (a5)–(c5).
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The fitted curve of τ is also depicted in Fig. 3(a4). It is evident
that there is a variation in τ from 0.3 ns to 0.4 ns, which cor-
responds to a change in the spike frequency (1∕τ) from
3.3 GHz to 2.5 GHz, as indicated in Fig. 3(a5). Moreover,
the frequency profile resembles the shape of excitatory stimulus
in Fig. 3(a1). The larger the excitatory stimulus intensity is, the
larger the frequency of spikes is. The frequency encoding
properties are consistent with the spike dynamics properties
illustrated in Fig. 2. In Fig. 3(a6), the eye diagram of the fre-
quency sequence is depicted, where the frequencies of the spike
curve overlap each other, indicating the controllable and stable
frequency encoding in the FP-SA neuron. Here, the frequency
of the spike curve is overlapped 10 times, making it particularly
valuable for practical implementation.

The inhibitory stimuli for SA sections and their correspond-
ing experimental responses are illustrated in Figs. 3(b1)–3(b6).
It is apparent from the figures that, with a higher intensity
inhibitory stimulus, the frequency of spikes is relatively lower
than that with the lower intensity. For example, with the stimu-
lus amplitude of −0.2, the frequency of spikes is approximately
3.2 GHz, while with a larger stimulus amplitude of 0.2, the
frequency of spikes is roughly 2.6 GHz. These results demon-
strate the inhibitory effect of stimulus in the SA section.
Note that compared with Fig. 3(a3), Fig. 3(a5) and Fig. 3(b3),
Fig. 3(b5), the frequency of spike is independent of its ampli-
tude. Furthermore, the findings in Fig. 3(b6) suggest that the
responses of the FP-SA under inhibitory stimulus are consistent
and reproducible.

Figures 3(c1)–3(c6) experimentally demonstrate the simul-
taneous application of excitatory and inhibitory stimuli to the
FP-SA. The nonlinear combination of these stimuli from two

channels of the FPGA elicits responses in the FP-SA. For a
larger excitatory stimulus paired with a smaller inhibitory
stimulus, the frequency of spikes is larger. In contrast, for a
smaller excitatory stimulus and a larger inhibitory stimulus, the
frequency of spikes is smaller. For instance, with an excitatory
stimulus amplitude of 0.25 and inhibitory stimulus amplitude
of −0.17, the frequency of spikes is about 3.5 GHz, whereas,
with an excitatory stimulus amplitude of 0.1 and inhibitory
stimulus amplitude of −0.1, the frequency of spikes is about
1.9 GHz. Similarly, the results are controllable and stable as
shown in Fig. 3(c6).

The spatiotemporal encoding is presented in Fig. 4. The
excitatory and inhibitory stimuli as shown in Figs. 4(a1)–
4(c2) are generated by the CH2, CH1, as well as both
CH2 and CH1 of the FPGA. The responses of excitatory
stimulus are presented in Fig. 4(a3). It is evident that the excita-
tory stimulus can trigger neuron-like spikes in the FP-SA upon
the arrival of excitatory stimulus pulses. Thus, spatiotemporal
encoding can be achieved in the FP-SA neuron by switching
between continuous-wave and spiking dynamics.

The responses of inhibitory stimulus in Fig. 4(b2) for
spatiotemporal encoding are shown in Fig. 4(b3). It can be
seen that with inhibitory stimulus, spikes are inhibited in
the FP-SA neuron with initial spiking dynamics. The responses
of simultaneous excitatory and inhibitory stimuli are presented
in Fig. 4(c3). It can be observed that the spikes triggered by
excitatory stimulus are inhibited by the inhibitory stimulus,
exhibiting properties similar to the biological inhibition. The
stability property of spatiotemporal encoding is demonstrated
by overlapped color maps in Figs. 4(a4)–4(c4). In these color
maps, spikes are represented by colors of yellow and black,

Fig. 4. Spatiotemporal encoding in FP-SA neuron. (a1)–(a4) Excitatory stimulus and corresponding response in FP-SA with IG � 65 mA and
V SA � −4.6 V. (b1)–(b4) Inhibitory stimulus and corresponding response in FP-SAwith IG � 64 mA andV SA � −4.19 V. (c1)–(c4) Simultaneous
excitatory and inhibitory stimuli and corresponding response in FP-SA with IG � 61.6 mA and V SA � −3.97 V. (a1)–(c1) Excitatory stimulus
for gain section. (a2)–(c2) Inhibitory stimulus for saturable absorber section. (a3)–(b3) Response of FP-SA neuron. (a4)–(b4) Overlapped color
map of the responses of FP-SA neuron.
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whereas the continuous-wave is represented by consistent
yellow or consistent black. It can be seen that the results of all
three cases are stable and controllable. Thus, Fig. 4 effectively
demonstrates the spatiotemporal encoding properties of a single
FP-SA with double integrated electronic dendrites for excita-
tory and inhibitory stimuli.

C. Numerical Recognition in Photonic SNNs
Consisting of FP-SA Neurons with Double Dendrites
Next, by employing the proposed FP-SA neuron with double
electrical dendrites, the recognition of the Iris data set is per-
formed numerically in two photonic SNNs based on frequency
encoding and spatiotemporal encoding.

In photonic SNNs, when the presynaptic neurons are con-
nected to the gain section of traditional photonic postsynaptic
neurons, the weights between presynaptic neurons and postsy-
naptic neurons are all positive values due to the magnitude/in-
tensity modulation. To expand the range of weights, we
introduce the FP-SA neuron for photonic SNNs. Except for
the connection to the gain section, the connection to the
SA section of FP-SA postsynaptic neurons is increased. For
a single FP-SA neuron, the stimulus in the SA section of
the FP-SA is inhibitory stimulus, which can decrease spike fre-
quency or inhibit triggered spikes. Similarly, in photonic
SNNs, inhibitory stimuli for postsynaptic neurons are repre-
sented by the negative weights of connections between presy-
naptic neurons and postsynaptic neurons. Thus, the weight
range is expanded to both negative and positive values.

In the photonic SNNs based on FP-SA neurons, the model
of all photonic neurons is considered as the Yamada model of a
two-section laser [43]. The model is rewritten as follows:

dN ph

dt
�ΓGgG�nG −n0G�N ph�ΓSAgSA�nSA −n0SA�N ph

−
N ph

τph
�V oGβBrn2G , (1)

dniSA
dt

� −ΓiSAgiSA�niSA − n0iSA�
N iph

V oiSA
−
niSA
τiSA

� I iSA � ii�t�
eV oiSA

,

(2)

dnjSA
dt

� −ΓjSAgjSA�njSA − n0jSA�
N jph

V ojSA
−
njSA
τjSA

� I jSA � ηcij
Pnpre

i�1 ωijPi�t − τr�
eV ojSA

, (3)

dniG
dt

� −ΓiGg iG�niG − n0iG�
N iph

V oiG
−
niG
τiG

� I iG � ie�t�
eV oiG

, (4)

dnjG
dt

� −ΓjGg jG�njG − n0jG�
N jph

V ojG
−
njG
τjG

� I jG � ηcij
Pnpre

i�1 ωijPi�t − τr�
eV ojG

, (5)

P�t� ≈ ηcΓG

τph

hc
λ
N ph�t�, (6)

where the subscript i in Eqs. (2), (4) and subscript j in Eqs. (3),
(5) respectively represent the indices of presynaptic neurons
and postsynaptic neurons in Fig. 5. Thus, the Yamada model
of presynaptic neurons is represented in Eqs. (1), (2), (4), and
(6). The model of postsynaptic neurons is represented in
Eqs. (1), (3), (5), and (6). The subscripts G and SA denote
the gain and SA sections of the FP-SA. N ph represents the total
photon number in the cavity, nG�t� [nSA�t�] is the carrier den-
sity in the gain (SA) sections, and P�t� is the output power of
the FP-SA. The stimuli of presynaptic FP-SA neurons in the
form of ii�t� and ie�t� are introduced in Eqs. (2) and (4)
for SA and gain sections, respectively. The stimuli for SA
and gain sections of postsynaptic FP-SA neurons are
ηcij

Pnpre
i�1 ωijPi�t − τr�, where ωij and τr are coupling weight

and coupling delay between presynaptic neurons and postsy-
naptic neurons, respectively. npre is the number of presynaptic
neurons. ηcij is the coupling coefficient from presynaptic neu-
rons to postsynaptic neurons. Here, when ωij is in the range of
[0, 1] ([−1, 0]), ωij in Eq. (3) [Eq. (4)] is set to zero. Other
parameters are the bias current in the gain (SA) region IG
(I SA) and the lasing wavelength for FP-SA λ (850 nm for all
lasers). Other device parameters described and summarized
in Table 1 are considered to be identical for all FP-SA neurons.
We numerically solve Eqs. (1)–(5) by using parameters for
FP-SA neurons: IG � 2 mA, I SA � 0 mA, and τr � 2 ns.

The sample number of the Iris data set is considered as 150.
Here, we compared the recognition accuracy of the Iris data set
in neural networks with the same architecture but different
weight limitations. In one case, the weights are limited to pos-
itive values under the condition of the only connection to the

Fig. 5. Schematic diagram of photonic SNN for the recognition of
Iris data set. (a1) Photonic SNN based on frequency encoding.
(a2) Photonic SNN based on spatiotemporal encoding. (b) Detailed
connection of presynaptic neuron and postsynaptic neuron.
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gain section of postsynaptic neurons, while in another case, the
weights can range from negative to positive values due to the
FP-SA postsynaptic neurons. That is to say, the range of
weights is [0, 1] with all connections to the gain section, while
the range of weights is [−1, 1] with networks consisting of
FP-SA neurons with double electrical dendrites.

For the case of the [−1, 1] weight range, based on the fre-
quency encoding in FP-SA neurons, the schematic diagram of a
network for the recognition of the Iris data set is shown in
Fig. 5(a1). A single-layer fully connected neural network con-
sisting of 41 presynaptic neurons and three postsynaptic neu-
rons is presented [43]. The weights between the presynaptic
neuron and postsynaptic neuron are represented by ωij. The
Iris data set inputs are converted to the frequency of spikes
by presynaptic neurons. The recognition results are represented
by the frequency of spikes generated by postsynaptic neurons.
As illustrated in Fig. 5(a1), FP-SA neurons with double den-
drites are employed as both presynaptic and postsynaptic neu-
rons. The detailed connections of one presynaptic and one
postsynaptic neuron are presented in Fig. 5(b). For the presy-
naptic neuron, the excitatory stimulus is combined with a di-
rect current source through a bias tee to bias the gain section.
The outputs of the presynaptic neuron are injected into one
port of OC 1 through OI and VOA. The OI is used to avoid
unwanted reflected light that might affect the results of the pre-
synaptic FP-SA neuron. The VOA is included to adjust the
weight value between the connected presynaptic neuron and
postsynaptic neuron according to the training. OC 1 is used
to combine different weighted presynaptic neuron outputs
in a weight range of [0, 1]; meanwhile, presynaptic neuron out-
puts corresponding to connected weights in a range of [−1, 0]
are combined by OC 2. The optical signals from OC 1 and OC
2 are converted into electrical signal by PD 1 and PD 2 to bias
the gain and SA sections of the postsynaptic FP-SA neuron.
Then, the outputs of all presynaptic neurons are integrated
nonlinearly in the postsynaptic FP-SA neuron to generate
spikes for photonic SNNs. All presynaptic neurons and post-
synaptic neurons in Fig. 5(a1) are connected in the way shown
in Fig. 5(b).

The photonic SNN is trained by the back-propagation al-
gorithm with all weights initialized in the range of [0, 1]. The
weights of the photonic SNN are achieved based on the con-
version of an artificial neural network [43]. The recognition
accuracy as a function of learning cycles with two cases is shown
in Fig. 6(a1). With two cases of weight ranges of [0, 1] and
[−1, 1], the recognition accuracy is 98.67% and 100% in
the 386th and 231st learning cycles, respectively. Therefore,
based on frequency encoding, the accuracy of recognition can
be enhanced by including both positive and negative weights.
Specifically, the weight distributions of the two cases are dis-
played in Figs. 6(b1) and 6(c1), respectively.

Based on the spatiotemporal encoding in the FP-SA neuron,
the network architecture with 24 presynaptic neurons and one
postsynaptic neuron is shown in Fig. 5(a2). The connected de-
tails are the same as those for the case of frequency encoding,
which are depicted in Fig. 5(b). The weights of the photonic
SNN with spatiotemporal encoding are trained based on the
ReSuMe algorithm [44], and the recognition results are repre-
sented by the spikes with different spiking timing in FP-SA
neurons. The recognition accuracy in two different weight
ranges as a function of learning cycles is presented in Fig. 6(b2).
It can be seen that with a larger weight range of [−1, 1], the
recognition accuracy also can be improved to some extent.
Specifically, the achieved highest accuracy is 89% and 92%
in the 327th and 372nd learning cycles with the weight ranges
of [0, 1] and [−1, 1], respectively. Thus, by introducing the
FP-SA neuron with double electrical dendrites, the recognition
accuracy can be enhanced through expanding the weight
range.

Moreover, we also consider the recognition of the Iris data
set with noisy stimuli for presynaptic neurons as well as noisy
spikes propagating from presynaptic neurons to postsynaptic
neurons. The recognition accuracy of the Iris data set is illus-
trated in Fig. 7. It can be seen that, although the recognition
accuracy of the Iris data set slightly decreases compared to that
shown in Fig. 6, it still remains higher with the weight range of

Table 1. Two-Section Laser Parameters

Param. Description Value

V G Gain section cavity volume 2.4 × 10−18 m3

V SA SA section cavity volume 2.4 × 10−18 m3

ΓG Gain section confinement factor 0.06
ΓSA SA section confinement factor 0.05
τG Gain section carrier lifetime 1 ns
τSA SA section carrier lifetime 100 ps
τph Photon lifetime 4.8 ps
gG Gain section differential gain/loss 2.9 × 10−12 m3 s−1

gSA SA section differential gain/loss 14.5 × 10−12 m3 s−1

n0G Gain section transparency carrier density 1.1 × 1024 m−3

n0SA SA section transparency carrier density 0.89 × 1024 m−3

Br Bimolecular recombination term 10 × 10−16 m3 s−1

ηc Output power coupling coefficient 0.4
β Spontaneous emission coupling factor 1 × 10−4
c Speed of light 3 × 108 m∕s
h Planck constant 6.63 × 10−34 J s
e Electron charge 1.6 × 10−19 C

Fig. 6. (a1), (a2) Recognition accuracy of the Iris data set and
(b1)–(c2) weight distribution of corresponding photonic SNNs. (a1)–
(c1) Corresponding to the architecture of Fig. 5(a1) with the frequency
encoding; (a2)–(c2) corresponding to the architecture of Fig. 5(a2)
with the spatiotemporal encoding. (b1), (b2) Weight range is [−1, 1];
(c1), (c2) weight rang is [0, 1].
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[−1, 1] compared to the accuracy obtained with the weight
range of [0, 1] for both frequency encoding and spatiotemporal
encoding schemes. To be precise, based on the frequency en-
coding, the accuracy reaches 97.3% and 94.7% with the weight
ranges of [−1, 1] and [0, 1] respectively. On the other hand,
with spatiotemporal encoding, the accuracy is 92% and 88%
with the weight ranges of [−1, 1] and [0, 1], respectively. It
should be noted that the discrepancy in recognition accuracy
between frequency encoding and spatiotemporal encoding is
due to various factors such as architectures, algorithms, and
data encodings.

Thus, for both frequency encoding and spatiotemporal en-
coding schemes, the recognition accuracy can be enhanced
based on the FP-SA neurons with double dendrites by expand-
ing the weight range. The results are of value for the develop-
ment of photonic SNNs for pattern classification.

3. CONCLUSION

In the present work, we demonstrate the nonlinear integration
of excitatory and inhibitory stimuli in the FP-SA neuron with
double integrated electronic dendrites. The electrodes of the
gain section and SA section are considered as two electronic
dendrites of the FP-SA photonic neuron, which increases
the degree of freedom for information processing in a single
integrated chip. The frequency encoding and spatiotemporal
encoding are investigated in the fabricated FP-SA neuron.
Moreover, we apply the FP-SA neuron equipped with double
electronic dendrites in the photonic SNN, which increase the
weight range to enhance the recognition accuracy. The results
in the paper are valuable for the development of photonic
SNN, for example, multi-functional integrated photonic
SNN chips.
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