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The phenomenon of branched flow has attracted researchers since its inception, with recent observations of the
light branching on soap bubbles. However, previous studies have primarily focused on the flat spacetime, over-
looking the effect of surface curvature on branched flows. In this paper, we explore the branched flow phenome-
non of light on a rough curved surface called constant Gaussian curvature surfaces (CGCSs). Compared with flat
space, a CGCS demonstrates that the first branching point advances due to the focusing effect of the positive
curvature of the surface. Furthermore, unlike on flat space, optical branches on curved surfaces do not consistently
become chaotic during its transmission in a random potential field. On the contrary, the “entropy” decreases at
specific positions, which reveals a sink flow phenomenon following the generation of branched flows. This result
highlights the time inversion characteristics of CGCSs. Lastly, we demonstrated that the anomalous entropy re-
duction is related to the transverse and longitudinal coherence transformations of light. We suppose these efforts
would fuel further investigation of the thermodynamic evolution and spatiotemporal inversion of random
caustics, as well as their future application in the information transmission of random potentials in curved
spacetime. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.502521

1. INTRODUCTION

A fascinating phenomenon called branched flow occurs when a
wave passes through a weak disordered potential whose relative
length exceeds its wavelength. The gradual variation in disorder
produces focused, elongated filaments that branch out, forming
tree-like structures rather than random speckle patterns. This
branched flow appears to be irreversible, from the trunk to the
branch, and originates from the ray deflections due to weakly
correlated changes in potential, leading to the formation of
caustics [1]. These caustics reflect the folding of the
Lagrangian manifolds in phase space, which corresponds to
the concentration of rays and high field strengths along specific
lines on 2D or 3D surfaces [2]. When initially observed in elec-
trons [3–7] and microwave cavities [8,9], branched flow is
thought to occur across a broad spectrum of wavelengths. In
fact, branched flows are believed to play a pivotal role in focus-
ing ocean waves [10,11]. In the case of light, however, this
phenomenon has only recently been subtly observed on soap
bubbles [12].

An interesting but easily overlooked point is that the
branched flow phenomenon has a time arrow. Because of
the existence of the random potential field, the time inversion
symmetry of the Helmholtz equation is broken, and the optical
path loses reversibility. In the intuitive physical picture, when

we consider the inversion of time, the branched waves within
these filamentous structures refocus to create robust trunks
[13]. This counterintuitive process seems to violate the princi-
ple of entropy increase, which dictates a natural tendency to-
wards chaos. Yet on curved surfaces, specifically those with
constant Gaussian curvature surfaces (CGCSs), it is possible
to achieve this effect to some extent, thanks to the periodic
properties of light transmission. The general theory of relativity
offers rich potential for studying electromagnetic waves in
curved spacetime, where two-dimensional surfaces are often
used as laboratory simulations of the effects of gravitational
fields [14]. In addition to advances in geometric optics, such
as gravitational lensing [15], more interesting effects were dis-
covered, such as the relativistic Hall effect [16,17], the Wolf
effect [18,19], and chaotic [20] and wave redirection [21].
Among them, the electromagnetic wave equation on the
curved surface established by Batz and Peschel [22] has become
a key tool. They predicted that the coherent electromagnetic
wave transmission on the CGCS has periodic properties,
and in one period, the second half period can be regarded
as the time inversion of the first half period, which can also
be obtained by the matrix optical method [23,24]. This gives
us a scheme to achieve the temporal inversion of branched flow
phenomena.
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In recent experiments with optical branching flows on soap
bubbles [12], the bubbles they studied were large enough to
consider flat, smooth thickness variations in the film acting
as a correlated disordered potential. They verified that the dis-
tance from the launch point to the first branching point leads to
a scaling law that depends upon the optical potential strength
and its correlation length. In this paper, we propose that this
relationship on the curved surface should be corrected by the
curvature of the surface and can be described by the scintilla-
tion index (ScI) [25]. The ScI is one important parameter for
describing the appearance of branches, as they periodically be-
come abnormally larger, which is caused by the optical sink
flow of the surfaces.

The magical sink flow on the curved surface is a phenome-
non of reverse branched flow, which is a process from disorder
to order. Following the concept of thermodynamics, we define
a new index called “branched flow entropy,” and prove that the
entropy increase principle is temporarily broken in the inverse
branch flow on a curved surface. The degree of entropy reduc-
tion is closely related to the curvature of the surface and the
parameters of the random potential field. Further, we explore
that this is because the decoherence process is blocked by the
curved surface, and the decreasing coherence of the light will
rise periodically, which gives us inspiration for studying the in-
fluence of spatial structures on the conservation of information.
In addition, since the CGCSs are often used to simulate curved
spacetime with uniform mass densities, the Friedmann–
Robertson–Walker (FRW) metric, our research can also be ex-
tended to the cosmology [26]. Considering that macroscopic
surfaces can be approximately flat, the refocusing phenomenon
of branched flow on curved surfaces will be more significant
at microscopic levels, such as in droplets [27] or biological cells
[28]. Therefore, microscopic particle size analysis may be one of
the possible applications of this research. Additionally, this re-
search could use extremely intense lasers or electron streams
[29,30], which could help in the study of extreme radiation
and field.

2. RESULTS

We begin our study of optical branched flow and the corre-
sponding time reversal on a special type of 2D curved surface
in 3D space, CGCS, by investigating the plane wave and the
Gaussian beam propagation on the rough curved surfaces with
random fluctuations. The CGCS has revealed various proper-
ties on which light is transmitted, such as periodic convergence
and divergence of the light spot and oscillation of the transmis-
sion trajectory [26,31,32]. By convention, we define the coor-
dinate system, as shown in Fig. 1(a), where ρ is the equatorial,
and h is the arc length of the generating line (longitude and
latitude). The light transporting on a two-dimensional curved
surface can be described by the scalar Helmholtz equation [33],

�Δg � k2�Ψ� �H 2 − K �Ψ � 0,

where H stands for average curvature, while K stands for
Gaussian curvature. It has been proved that the effect of the
average curvature H is negligible when the wavelength of
the light wave is small, i.e., our rough surface can be considered
as follows: H ∼ 0, K 0 � K � ΔK �h, ρ�, where K is a constant

and ΔK is the curvature fluctuation depending on the position
of the curved surface.

It has been known in previous discussions, namely [32], that
the effect of the curvature on the CGCS in the paraxial approxi-
mation can be equivalent to a second-order potential field
V eff � 1 − K h2, and the Helmholtz equation with paraxial
approximation on a CGCS can be written as

2ik∂ρu � −K r2∂2hu� �V eff � V R�u: (1)

This is similar to the Schrodinger equation, where we divide the
potential field into two parts: the harmonic oscillator potential
due to a curved surface, and the random potential due to the
surface roughness (the undulation of the surface), shown as
Fig. 1(b). The curvature changes caused by rough fluctuations
can be separated into V eff and V R in the Helmholtz equation
under the weak field approximation. The roughness of a surface
can be described by the random potential of the Gaussian cor-
relation with the correlation length l c [1,34],

hV �r�V �r 0�i � V 2
0e

−jr−r 0 j2∕l 2c , (2)

where V 0 is the amplitude of the random potential field [see
Fig. 1(d)]. Rather, in simulation, we find that the conditions
must be restructured to enable fluctuation in the proper range.
Otherwise, the light patterns would be wave-guiding channels
with a higher effective refractive index. Alternatively, it could be
a nonlinear process such as surface polariton production [35].
Another possibility is that the light is guided by the membrane’s
deformation due to optical forces [36].

The generatrix equation of CGCS is R � R0 cos� ffiffiffiffi
K

p
h�,

where the relationship between R0 and K determines the shape.
In particular, K R0 � 1 is spherical, and we take the olive shape
of K R0 � 1∕2 as the light transport surface for our paper. In
our simulation, as shown in Fig. 1(d), the branched flow of
light also appears on the curved surface, but then, time inver-
sion occurs, and other abnormal peaks in the ScI appear. The
ScI is used to describe the normalized variance of the branched
flow intensity,

Fig. 1. CGCS images with positive Gaussian curvature. (a) Smooth
and (b) rough. (c) Light beam transmits on the rough CGCS. (d) Local
rough surface.
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ScI�ρ� �
hI2�ρ, h�i
hI�ρ, h�i2 − 1: (3)

We can visually understand that the distribution of light inten-
sity is denser in the position with a larger scintillation index.
After the maximum point of ScI, the degree of light conver-
gence begins to decrease.

Based on Eq. (1), in a random potential field with Gaussian
correlation, the evolutions of light transmission on a flat surface
and on a CGCS are demonstrated, as shown in Figs. 2(a)–2(d),
by using the method of fast Fourier transform. In our simula-
tion, according to Ref. [12], the beam size of the Gaussian light
is set as 20 μm, and the wavelength of the light is set as 500 nm.
The correlation length of 100–300 μm is performed in the cal-
culation, which is approximately hundreds of times the wave-
length and 10 times the size of the Gaussian spot. For
convenience, we set all the calculation parameters to be dimen-
sionless in the following. The white line shows the change of

the ScI of the plane waves with transmission. The highest point
of the ScI corresponds to the first branching position d 0 of the
light beam, and it obeys the scaling law as the distance to the
first caustic position d 0 ∼ l cV

−2∕3
0 when the light travels in flat

space [1,9], as shown on the dark point of the black curve
in Fig. 2(e). We also find that the first caustic position on
the curved surface appears earlier than that on the flat surface.
Furthermore, as the curvature K increases or the amplitude of
the random potential field increases, the branching position
will be more advanced, as shown in Figs. 2(e) and 2(f ).
This advance is closely related to the focusing effect of the pos-
itive curvature surface on the light, which shortens the effective
transmission distance of the light and speeds up the branching
process. In Fig. 2(f ), the fitted lines represent a proportional
relationship between the curvature K and the first focus posi-
tion d 0. For Gaussian beams, this branch position advance phe-
nomenon also appears on the curved surface. But because the
initial scintillation index of Gaussian light is large, it is difficult

Fig. 2. Beam is transmitting in a Gaussian correlated random potential. (a) and (b) are the plane waves propagating on a flat surface and a CGCS,
respectively, and the white line is the evolution of the ScI with light transmission. (c) and (d) are the Gaussian light propagating on flat surfaces and
CGCSs, respectively. (e) Change of the ScI of the plane waves on the CGCS with different curvatures. (f ) The position of the first branching point of
plane wave varies with the curvature of the curved surface and the magnitude of the random potential field V 0.
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to identify the position of the first peak; here, we only show
the ScI changes with the transmission distance of the plane
waves.

In addition, in Fig. 2(e), when the curvature of the surface
increases to a certain value, two or more peaks of ScI will ap-
pear. The presence of the remaining peaks indicates that the
light field has an anomalous flare after branching. We discover
that the first peak is at the location where the branched flow is
generated, while the second peak corresponds to a special con-
vergence position of the light on the curved surface.

This similar phenomenon can happen to the Gaussian
beam. Figure 3(a) presents the evolution of the Gaussian beam
in the random field on the CGCS. The size of the main peak
of the waveform will first expand and then converge. As shown
in Figs. 3(b) and 3(c), a single-peak Gaussian light changes into
multiple branches and then returns to one main peak with
multiple secondary peaks, meanwhile the maximum light in-
tensity decreases first and then increases, although the intensity
of the main peak cannot return to the original value.

During the propagation, the branched flow process of light
is partially reversed, and the scattered branches of light flow
converge again, becoming more orderly, which is known as sink
flow. This interesting phenomenon indicates that when light
travels on a curved surface, its disorder does not always increase,
but it may cause anomalous changes at some positions. In order
to better explain this phenomenon, we introduce a concept
similar to thermodynamic entropy to describe the chaos degree
of light rays. Referring to the concept of thermodynamics, we
define the entropy of branched flow as the following expression
to describe the chaos of the light beam:

Sbf � −
X

P�I� ln P�I�, (4)

where P�I� represents the probability density distribution of
the light intensity. In the initial position, the plane waves
are used for simulation, and the distribution of the light inten-
sity satisfies the delta function P�I� � δ�I − I0� theoretically,

as shown in panel (P1) of Fig. 4(a). From Fig. 4(a), the entropy
on the CGCS increases like that on a flat surface at the begin-
ning of transmission. However, after transmission for a certain
distance, a temporary decrease of the entropy occurs, and a
small “pit” appears on the transmission-dependent entropy
curve. During this transmission process, the probability density
distribution changes from exponential [panel (P2) in Fig. 4(a)]
to a Gaussian-like distribution [panel (P3) in Fig. 4(a)],
and becomes exponential [panel (P4) in Fig. 4(a)] again.
Figures 4(b) and 4(c) show the variation of the branch-flow
entropy in the random potential on a flat surface and a CGCS,
respectively. The correlation length of the random potential
field affects the evolution of entropy at the beginning of trans-
mission but tends to a same value at the end. On the curved
surface, during the beam transmission, there are two or more
processes of entropy reduction due to the convergence of the
branched flow.

3. DISCUSSION

In flat space, when an electromagnetic wave travels in a random
medium over a long distance, the light intensity is a strong
fluctuating quantity, which is classically described by Rayleigh
statistics. The distribution function P�I� is a negative exponen-
tial [37],

P�I� � 1

hIi exp

�
−

I
hIi

�
: (5)

However, the Rayleigh distribution only applies to the com-
pletely coherent light, while the partially coherent light has a
coherence-dependent probability distribution of light intensity
in the random medium [38]. The influence of P�I� caused by
the change of coherence degree is very similar to that of the
random potential field with the change of transmission dis-
tance. For example, the log-normal distribution appears at the
position of entropy reduction [see Fig. 4(a)], which is similar to
the situation of partially coherent light. So, in our paper, we
believe that the evolution of the energy distribution along
with the transmission is also closely related to the coherence
degree, α � jhEi2j∕hIi.

Before studying the curved surface, we can first demonstrate
the influence of the random potential field on the coherence
of the flat surface. By solving the Helmholtz equation numeri-
cally, the electric field and light intensity distribution of the
optical branch flow are obtained. During the numerical simu-
lation, 500 random fields with consistent parameters were gen-
erated, and the evolution of optical coherence was obtained on
average. It is found that with the light transmission, the coher-
ence can be viewed as decreasing exponentially, α � exp�−bρ�,
and gradually tends to 0, as shown in Fig. 5(a). The coherence
attenuation factor b is related to the fluctuation V 0 and the
correlation length l c of the random potential field, as shown
in Figs. 5(b) and 5(c).

On the curved surface, as long as the light intensity moment
hIni is expanded (see Appendix A), the evolution of light in-
tensity distribution can be naturally obtained. Then, the rela-
tionship between the intensity distribution of the partially
coherent light and the coherence degree after multiple scatter-
ing by random mediums will take the following form [8]:

Fig. 3. (a) Evolution of the Gaussian beams in random fields on the
CGCS. (b) Change of the maximum intensity of light with respect
to transmission. (c) Evolution of the transverse light intensity
distribution.
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P�I� �
Z

∞

−∞
exp�iξI�

exp
�
− iξα
1�iξ�1−α�

�
1� iξ�1 − α�

dξ

2π
, (6)

where ξ is an integral constant. We can substitute the exponen-
tial decreasing relation of the flat space into Eq. (6). Then, we
can calculate the theoretical evolution of this P�I� with the
transmission ρ, as shown in Fig. 5(g), which is close to our
simulation results [panels (P1)–(P4) in Fig. 4(a)]. In fact,
Figs. 4(a) and 5(g) describe the situation of the curved surface

and the flat surface, respectively. Due to the entropy increasing
on the flat surface while the possible entropy reduces on the
curved surface, the transmission distance ρ in Fig. 5(g) cannot
be directly compared with that in Fig. 4(a). The transverse co-
herence of light decreases in random fields for both the flat
space [Fig. 5(a)] and the CGCS [Fig. 5(e)], but the decrease
is oscillatory in the CGCS. Thus, on the curved surface, the
decoherence process induced by random medium scattering
is reciprocating but not monotonous. The weakening of the
“connection” between photons is actually the reason for the en-
tropy increase, while the unique function of the fractional
Fourier transformation on the CGCS [39] establishes new
connections between photons, resulting in a temporary de-
crease of entropy. Quantitatively, if we consider the case of
separable variables, then the coherence factor can be written
as α � f �K , ρ� exp�−bρ�. Unlike the flat surface, here the am-
plitude factor f depends on the curvature of the curved surface.

From Figs. 5(b) and 5(c), b is proportional to the square of
V 0 while the variation of b with l c is a logarithmic Gaussian
distribution. The coherence of the optical branched flow will
decrease with the increasing V 0, which leads to the acceleration
of the entropy increase process. In addition, on a curved sur-
face, an increase of V 0 will weaken the entropy reduction effect
and even make it disappear. Furthermore, from Fig. 5(f ), it is
found that the position of the first peak in the curve of Fig. 5(e)
is positive with the reciprocal of the curvature. Through the
synthesis of the above numerical relations, we can deduce an
analytic expression,

α � J0�p1K ρ�2 exp�−b�l c ,V 0�ρ�, (7)

where b � V 2
0 exp�−p2�ln l c − p3�2� and p1,2,3 are the optical

parameters independent of the potential field and spacetime
background. When substituting Eq. (7) into the calculation
of entropy, we find that it is the coherence of light that leads
to a periodic decrease of entropy, although the amplitude is
small and only lasts for a few periods, as shown Fig. 5(d).

In particular, the CGCS can be regarded as a rotation in
phase space composed of the momentum and position of
the light. What we calculated above is the spatial coherence
(transverse coherence). At the same time, the CGCS will also
become such a transformation system, which periodically con-
verts the temporal coherence (longitudinal coherence) into
the spatial coherence, resulting in a brief reversal of the
decoherence process. In fact, the reduction of temporal coher-
ence has been reported in other literature, e.g., the so-called
Wolf effect [19]. It shows that the curved spaces with larger
positive curvature accelerate and enhance the spectral shifts
(blue shifts or red shifts) of light during their propagation.

It is worth emphasizing that in this study we do not have a
clear delineation of the material that constitutes the curved sur-
face. The optofluidic system can be formed by the optical
branched flow with liquid surfaces, such as soap bubbles men-
tioned in the literature [12], biological cells, and even the
ocean. It can also be formed with solid structures such as nano-
structure, fiber, or metasurface. In optofluidic systems, there are
some examples that can be further considered, such as the op-
tical control of the thermocapillary effects [40], stochastic sol-
itons, or occurrence of turbulence at low Reynolds numbers.
Applications to solid systems include particle manipulation

Fig. 4. (a) Evolution of the entropy of the optical branched flow
when it transmits on a curved surface. (P1)–(P4) Light intensity prob-
ability distribution. For the different correlation lengths, the branched
flow entropy of the beam varies with the transmission on (b) the flat
surface and (c) the CGCS.
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[41], random scattering quasi-two-dimensional resonator [8],
and so on. The universality of the discussion in this paper
means that it is not related to the constituent matter but only
to the curvature of the surface. This is reminiscent of the same
“hairless” black hole, so we cannot help but ask whether the
entropy reduction here has the same deeper roots as
Bekenstein entropy [42], and how the entropy reduction relates
to the thermodynamic effects of the event horizon.

4. CONCLUSION

In conclusion, we have investigated the phenomenon of optical
branched flow on a CGCS. The CGCS is rough, with a random
slight fluctuation potential field, which satisfies both the gen-
eration condition of the branched flow and the weak field
approximation. In the case of paraxial transmission, the first
branching position of the optical branched flow on the
CGCS is earlier than that on the flat surface, which shows that

the focusing characteristic of the positive curvature surface
shortens the length of the wave caustics. On the curved surface,
there is a phenomenon of anti-branched flow, called sink flow,
which is impossible to appear on the flat surface. Through sim-
ulations, we found that the “branched flow entropy” near the
sink flow point decreases temporarily with the transmission,
indicating that the optical intensity distribution becomes or-
dered at this location.

In the discussion, we demonstrated that the entropy reduc-
tion is closely related to the coherence of the optical field, and
the increase of the curvature of the surface will accelerate the
conversion from the longitudinal coherence to the transverse
to resist the decoherence of the light caused by the random
field. Moreover, the effects of the random field and the surface
parameters on the evolution of the optical coherence were
studied. Based on this, we deduced a theoretical expression
of entropy reduction, which agrees with the simulation
results.

Fig. 5. (a) Evolution of the coherence degree of the branched flow with transmission on a flat surface. (b) and (c) are the relationship between the
attenuation factor b and the random potential field parameters V 0 and l c , respectively. (d) Theoretical evolution of branching flow entropy under
different curvatures. (e) Evolution of the coherence degree of the branched flow on curved surfaces with different curvatures. (f ) Change of the
position of its first peak in the curve of (e) with different curvature. (g) Theoretical evolution of the probability distribution of the light intensity with
different ρ on a flat surface.
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We obtained this time reversal of branched flow because of
the unique focusing property of the CGCS, which is a non-
local effect. In fact, if we consider the transmission of branched
flow on surfaces with slowly changing curvature, this inversion
property is also possible, but much worse than that of the
CGCS. If the optical branches propagate on the CGCS with
negative curvature for the location of the scintillation index
and the first branching point of the branched flow, compared
to the flat surface, then the negative curvature surface will have
a hysteresis effect, which is the opposite of the CGCS with the
positive curvature. Furthermore, our simulation showed that
CGCS with negative curvature will lose the temporary entropy
reduction effect of the optical branched flow, and the time in-
version phenomenon will disappear simultaneously. The en-
tropy reduction, which is monitored by the curvature of the
surface and roughness parameters, can be used to enlighten
multi-mode fiber amplifiers to improve pump absorption effi-
ciency under complex backgrounds with nonuniform trans-
verses [43,44]. The research can also be extended to other
types of wave transport on curved surfaces, such as the trans-
mission of ocean currents branching on the Earth’s surface [11].
In addition, according to Einstein, gravitational fields can be
thought of as curved spacetime. The exploration of branched
flow and entropy within the context of non-Euclidean geom-
etry may give a new perspective in the study of conservation of
information and chaos in cosmology.

APPENDIX A: PROOF OF THE RELATION
BETWEEN INTENSITY PROBABILITY
DISTRIBUTION AND COHERENCE DEGREE

Because of the completeness of the exponential family of dis-
tributions, we can write P�I� for different evolutionary proc-
esses or different coherence degrees as follows. This is physically
equivalent to a superposition of a heat distribution with a cer-
tain temperature distribution width,

P�I� �
X
i

g iPRi�I i�: (A1)

Each of these individual sub-distribution PRi is a Rayleigh dis-
tribution. So, at this point, we can simply get the n-order mo-
ment of light intensity, which will satisfy hIni � R

In×
P�I�dI � n!hIin because of the derivative property of the ex-
ponential function. We expand the light intensity to the power
n by binomials as follows:

hIni � n!hIin � n!�hIi − jhEi2j � jhEi2j�n

�
Xn
m�0

C�m, n�jhEi2jm�hIi − jhEi2j�n−m, (A2)

where C�m, n� � �n!�2
�m!�2�n−m�!. In statistics, the distribution of a

random variable can be obtained by knowing all its moments
by the following formula:

P�I� �
Z

∞

−∞
exp�iξI�

X
n

�−iξ�n
n!

hIni dξ
2π

: (A3)

By combining Eqs. (A2) and (A3), we get

P�I� �
Z

∞

−∞
exp�iξI�

X
n

�−iξ�n
n!

�Xn
m�0

C�m, n�

× jhEi2jm�hIi − jhEi2j�n−m
�
dξ

2π
: (A4)

Notice that Eq. (A4) is actually a Taylor expansion, and since
n!

�n−m�!X
n−m � d

dXm X n holds, we have the following formula:

P�I� �
Z

∞

−∞
exp�iξI�

hIi exp
�
− iξjhEi2j
1�iξ�hIi−jhEi2j�

�

hIi � iξ�hIi − jhEi2j�
dξ

2π
, (A5)

which is consistent with Eq. (6) in the main text.
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