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To enhance the strength of chiral light-matter interaction for practical applications, the chirality and quality
factors (Q-factors) of current methods need to be strengthened simultaneously. Here, we propose a design of
photonic crystal slabs (PhCs) supporting chiral bound states in the continuum (BICs) of transverse electric
(TE) and transverse magnetic (TM) modes, exhibiting maximal chiroptical responses with high Q-factors and
near-unity circular dichroism (CD = 0.98). Different from the past, the PhCs we employed only have reduced
in-plane symmetry and can support simultaneously chiral quasi-BICs (4-BICs) of TE and TM mode with
two-dimensional ultra-strong external and internal chirality. Based on the temporal coupled-mode theory,
two analytical expressions of CD of chiral g-BICs response are revealed, which are consistent with the simulation
results. Furthermore, we elucidate these results within the charge-current multipole expansion framework and
demonstrate that the co-excitation of higher-order multipole electric/magnetic modes is responsible for
near-perfect CD. Our results may provide more flexible opportunities for various applications requiring high
Q-factors and chirality control, such as chiral lasing, chiral sensing, and enantiomer separation. © 2023
Chinese Laser Press

https://doi.org/10.1364/PRJ.497954

1. INTRODUCTION

Chirality extensively exists in nature, which refers to the geo-

Chiral metamaterials/2D metasurfaces can generate large
chiroptical responses, but their achieved quality factors
(Q-factors) are still low due to absorption and scattering losses.

Significantly, bound states in the continuum (BICs) have
been introduced into metasurfaces and photonic crystal slabs
(PhCs) to achieve and tailor high-Q resonances. The BIC with
an infinite Q-factor is a dark state that cannot be directly ex-
cited in the photonic system [12]. By introducing external per-
turbations such as oblique incidence and breaking the in-plane
symmetry of the structures, the ideal BIC states will collapse to
quasi-BICs (¢-BICs) that can resonantly couple to free-space
radiation [13]. The ¢-BICs with significantly high Q-factors
have been applied in sensing [14], lasing [15], and increasing
second-harmonic generation efficiency [16]. Recently, some
chiroptical structures supporting the BIC-mediated chiral re-
sponse have been proposed. For example, the maximum intrin-

sic g-BIC chirality and the high Q-factor chiroptical resonances

metrical characteristics that an object cannot coincide with
itself via rotation or translation operations alone [1]. The chi-
roptical effects of chiral geometries, such as optical activity [2]
and circular dichroism (CD) [3], are fundamentally important
in various applications, including chiral lasing [4], chiral sens-
ing [5], and enantiomer separation [6]. Generally, the chirop-
tical effects in nature are extremely weak, which hinders its
further development. Therefore, various schemes for great en-
hancement of chirality were proposed and demonstrated in
metamaterials, such as metallic helical structures [7] or multi-
layer patterns [8]. However, most of the 3D chiral metamate-
rials have complex structures and suffer from unavoidable losses
of metals. Recently, 2D chiral metasurfaces (also called planar
chiral metamaterials) with broken in-plane mirror symmetry

have been proved to not only avoid manufacturing complexity
but also support strong intrinsic and extrinsic chirality [9—-11].
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have been achieved by simultaneously breaking the in-plane
and out-plane symmetry of the structures or only breaking
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the in-plane or out-plane symmetry [17-24]. Besides the in-
trinsic ¢-BIC chirality, the extrinsic chirality empowered by
g-BIC has been demonstrated at microwave frequencies by us-
ing achiral structures [25]. Very recently, Shi ez al. presented a
strong  extrinsic/intrinsic  chiroptical response with high
Q-factors in planar chiral meta-atoms. The underlying physical
mechanism is the BIC singularity point surrounded by elliptical
eigenstate polarizations with non-vanishing helicity, establish-
ing a connection between the ¢-BIC chiroptical response and
the eigen-polarization profile [22]. Nevertheless, most of the
planar structures obtain strong intrinsic and extrinsic optical
chirality only in the pure transverse magnetic (TM) mode.

Compared with chiral BIC metasurfaces, PhC holds higher
degrees of flexibility with respect to tuning the interplay of dif-
ferent resonance modes, and this platform has attracted intense
attention for its easy fabrication, designable bandstructures,
wide functionality, and capability to integrate [26]. It has been
reported that the at-I" BICs in PhCs are vortex polarization sin-
gularities (V points) in the polarization field [27], which has
been observed in the experiment successfully [28]. Different
from the past, the PhCs with 4-BIC modes only have reduced
in-plane symmetry and can support ¢g-BICs of transverse elec-
tric (TE) and TM modes [29]. By changing the thickness or
breaking the in-plane symmetry of the PhCs, the ¢-BICs of
TE and TM modes can also be chiral. For example, a maximum
intrinsic chirality in a monolithic PhC is realized through the
simultaneous excitation of the TE and TM Bloch modes. This
phenomenon can be understood from the perspective of elec-
tric/magnetic dipole moments: the coupling of the TE and TM
modes generates the in-plane electric and magnetic dipole inter-
actions [30]. Very recently, some other ID and 2D nanostruc-
tures with degeneracy states of TE and TM modes have also
been proposed, further demonstrating the enhanced chiroptical
effect and greatly expanding the simple and feasible platforms
to realize optical chirality [31-34].

In this work, by bridging the PhCs and the BIC physics, we
propose a planar all-dielectric PhC slab to comprehensively
study giant chiroptical response with high Q-factors supported
by ¢-BIC:s for different eigen-polarizations. To begin with, we
demonstrate that the giant extrinsic and intrinsic chiral effects
with high Q-factors can be achieved for pure TM modes by
chiral ¢-BICs. Specifically, the extrinsic chirality supported
by the 4-BIC mode is obtained through oblique incidence,
while we get the intrinsic chirality through breaking the in-
plane geometrical symmetry at normal incidence. The near-
unity maximum CD (0.98) is achieved. With the increase
of the thickness of the slab, the TE and TM modes tend to
degenerate when the illumination symmetry and in-plane sym-
metry are broken for the PhC, which can also lead to strong
extrinsic and intrinsic ¢-BIC chirality. Besides, within the
charge-current multipole expansion framework, we discover
that the giant chirality proposed in this work originated
from the co-excitation of multipole electric/magnetic modes.
Above all, we comprehensively study the giant ¢-BIC chirop-
tical response supported by different polarization modes. Our
work may give an important route to design planar chiral
metamaterials and better understand the origin of optical

chirality.

2. MODEL DESIGN AND THEORY

PhCs with a periodical lattice of air holes have been proved to
support the symmetry-protected BIC, which corresponds to a
polarization vortex in momentum space and is usually achiral
[35]. Here, our work demonstrates that the PhC with only re-
duced geometrical in-plane symmetry can support ¢g-BICs with
2D extrinsic and intrinsic chirality. The schematic of our PhC
structure is shown in Fig. 1, which consists of a square lattice of
air holes in a silicon slab (refractive index » = 3.48), and the
surrounding of the PhC is air. The air hole has a zigzag shape
that can be seen as a rectangle with two pieces on both sides cut.
This structure has up-down symmetry (6,) and in-plane rota-
tional symmetry around the z axis (C,) while lacking in-plane
mirror symmetry. Figure 1 schematically shows the totally dif-
ferent optical response to the left circularly polarized (LCP) and
right circularly polarized (RCP) waves. In this study, three dis-
tinct sets of parameters for the PhC will be designed to system-
atically investigate the intrinsic and extrinsic chirality excited by
the TM mode and the cross-coupling of TE and TM modes.

First, without loss of generality, we discuss the intrinsic and
extrinsic chirality with quasi-BICs for the TM mode. The sim-
ulation is performed through the 3D finite element software
COMSOL. Since the PhC has mirror symmetry along the
propagation direction z, we can cut half of the structure in
the z direction and add the perfect magnetic conductor
(PMCQ)/perfect electric conductor (PEC) boundary condition
to calculate the TE/TM eigenmodes, respectively. The band-
structure, Q-factor, and far-field polarization for the TM mode
are shown in Fig. 2. It can be seen that such a structure supports
symmetry-protected BICs at I" point for the band marked as
orange and blue colors in Fig. 2(a), while the band with the
green color is a leaky mode with a low Q-factor. Specifically,
the insets of Fig. 2(a) show the normalized electric field distri-
bution at I' point in the x-y plane for z = 0. The electric field
for the first eigenmode (under the orange triangle) is mainly at
the two defects of the structure, while the maximum electric
fields of the other two eigenmodes locate at the corner or boun-
dary of the air holes, which indicates that the first eigenmodes
will be more sensitive to the in-plane symmetry of the structure;
thus, we only consider the far-field polarization of the orange
band as shown in the inset of Fig. 2(b). Since the structure has

Fig. 1. Schematic illustration of the chiral quasi-BIC photonic crys-
tal slab (PhCs) with perforating holes. The yellow and blue colors
represent the RCP and LCP lights, respectively. The inset shows
the in-plane unit cell.
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Fig. 2. Bandstructures and Q-factors for TM mode of the PhC with parameters 2 = 795 nm, # = 430 nm, /, = 170 nm, w, = 186.5 nm,
/, = 580 nm, and ly = 560 nm. (a) Optical bands for TM mode of the PhC around I" point. Insets show the normalized electric fields of the
corresponding bands at the I' point. (b) Q-factors for the three bands in (a) with the same color. The inset displays the far-field polarization diagram

of the orange band in (a).

6, and C, symmetries while the in-plane magnetic field is dom-
inant for this TM mode, which leads to the degree of ellipticity
[36], the BIC of the designed PhC structure thereby supports
an unusual polarization singularity enclosed by a vortex ellip-
tical eigen polarization with non-vanishing helicity, which in-
dicates that we can achieve ¢-BIC supported chirality by
oblique incidence or breaking the in-plane symmetry.

The above analysis about bandstructure shows the guided
resonance (4-BIC) of PhC along high symmetry points, and
this system dominated by guided resonance can be described
by coupled mode theory (CMT) conveniently [37]. CMT
has been a powerful tool to predict the chiral response; thus,
we aim to apply this theory to get a clear description of the CD
for intrinsic/extrinsic chirality, respectively. For clarity, we set
the CD; and CDxg to represent the intrinsic and extrinsic CD
in the following. The 2D intrinsic chirality behavior with
g-BIC can be explained by temporal coupled mode theory
(TCMT). Here, a simplified equation to describe the CDj can
be expressed as follows (the detailed calculation process is

shown in Appendix B):
CDy = | * + ltrol® - |zre | - 2R P

_ (mi - n) (1 + 2118) )
1+ (@-w)?

where #,; is the element of the Jones matrix within the circular
basis, the i, j are subscripted by R, L, which represent the RCP
and LCP light, the 72; and 7y are the coupling of the resonances
with the incident LCP and RCP light, respectively, y; is the
decay rate due to the radiation, @y is the resonant frequency,
and 7] is the background scattering. If we want to have a maxi-
mum CD; = 1 at the ¢-BIC resonant frequency from Eq. (1),
ny and #{ should be set to zero. Then the CDy is a unity value.
This means that the maximum intrinsic optical chirality re-
quires the resonant mode of PhC to completely couple with
LCP light. For RCP light, the transmission of the PhC will only

have the background scattering part.
The TCMT for intrinsic chirality has a fixed in-plane
k) = 0, which is not suitable for the extrinsic chirality with
the oblique incidence angle (k) # 0); instead, we apply the
coupled-mode theory (CMT) with &) - 7 to investigate the

mechanism of strong extrinsic chiral response [38]. CMT offers
a new route to interpret extrinsic chirality, which has never been
proposed before to the best of our knowledge. The CDg, can be
expressed as follows (the detailed calculation is shown in

Appendix A):
CDg = |1 |* + ltre)” - Itre[* - 2117

_ (mi — n) (re + 27ety)
i+ Ukl -ko)*

where the my and ng represent the coupling of the resonances
with the incident LCP and RCP light, respectively, yg is the
decay rate due to the radiation, r; is the background scattering,
and k is the wave vector of the resonant radiative mode along
the same direction as k. In order to have a maximum
CDg =1 at the ¢-BIC resonant wave vector for fixed wave-
length from Eq. (2), #g and #; should be set to zero. Thus,
it can be concluded that the maximum CD of extrinsic chirality
supported by ¢-BIC mode also requires the selective coupling
of LCP/RCP light. To sum up, the key point to acquire strong
chirality of PhC is to manipulate the coupling strength of ei-
genmodes with different helicity.

)

3. CHIRAL RESPONSE FOR TM EIGENMODE

From the above theoretical analysis for planar PhC supporting
BIC, chiral 4-BIC is expected to be achieved by breaking the
BIC symmetry, i.e., tilting the incident angle or breaking the
in-plane C, symmetry. To begin with, the extrinsic chirality is
achieved by oblique incidence with the elevation angle 6 and
azimuthal angle ¢ as shown in Fig. 3(a). Here, the CD is cal-
culated by the formula CD = (71 + Try - Trr - T1r)/
(T + Try + Trr + T1r) (the CD in this work is all
calculated through this formula), where the transmission
T, = |ti/|2- The numerical simulation is performed through
COMSOL Multiphysics. In Fig. 3(b), for normal incidence at
0 = 0°, the symmetry-protected BIC state cannot couple to the
incident wave and, thus, exhibits no chirality. When the
incident angle increases along the I'-X direction, the peak of
CD has a near-unitary value, and the linewidth of the CD
gets wider with the continuous increase of incident angle.
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Fig. 3. Extrinsic and intrinsic chiroptical response of the quasi-BIC via pure TM mode. (a), (¢) Schematics of the oblique and normal incidence at
the PhC. (b) Extrinsic CD spectra with the variation of incident angle € for fixed azimuthal angle ¢ = 0°. (f) Intrinsic CD spectra as a function of the
asymmetric parameter 8. (), (g) The transmittance spectra Trp, Trp> 711, T1r and CD were extracted from (b) and (f) for fixed incident angle
(@ = 9°) and asymmetric parameter (6 = 60 nm), respectively. The Q-factors (red dots) and the corresponding fitting curves (black lines) with the
variation of (d) illumination asymmetric parameter sin(f) and (h) geometrical asymmetric parameter 6.

Specifically, the chiral 4-BIC has an inverse quadratic relation-
ship with the illumination asymmetry parameter sin(f) [which
can be written as Q « (sin(#))~? as shown in Fig. 3(d)]. In
Fig. 3(d), the Q-factor of the extrinsic CD spectrum varies from
1075 to 10° values as € increases, and the peak CD sustains a
near-unitary value with the wide range Q-factor in Fig. 3(b).
Therefore, large CD resonances and high Q-factors (the wide
range Q-factor) can be simultaneously achieved by tuning the
incident angle 6 appropriately. Since the structure has C, sym-
metry, the incident angle along the negative or positive direc-
tion of the x axis exhibits the same CD as shown in Fig. 3(b).
All the transmittance components and CD are plotted in
Fig. 3(c) for 8 = 9°, in which Ty shows a peak while the
Trr> Ty, and TR are nearly zero at the resonant wavelength
of 1476.5 nm; thus, a maximum CD of 0.98 can be obtained.
Note that 7'1; = 7rg due to the symmetry of the 2D planar
PhC; thus, the extrinsic CD mainly originated from the differ-
ence between cross-polarization 7'p; and 77g. To explicitly

show that the high Q-factor and strong CD resonance can
be acquired simultaneously, the transmittance spectra of the
Jones matrix and CD with small incident angle € are shown
in Fig. 8 in Appendix A; particularly, a high Q-factor
(132,777) with strong CD resonance (0.91) appears when
6 = 0.4°. Apart from studying the variation of CD with 6,
the CD spectra with the variation of the azimuthal angle ¢
for @ = 9° are also shown in Fig. 9 in Appendix A, and the
sign of the CD is consistent with the helicity transition of the
far-field polarization diagram in Fig. 2(b). In fact, these numeri-
cal transmittance results can be analyzed well through CMT.
We fit the Trp, 711, T, and T1g in Fig. 3(c) around the
resonant k)| vector using the Fano lineshape equation deduced
by CMT for extrinsic chirality in Appendix A, and the fitting
results of the transmission are consistent with the numerical
calculation as shown in Figs. 7(a)-7(c) in Appendix A. To re-
veal the resonance mechanism of the extrinsic chirality more
specifically, multipole decomposition of the scattering cross
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sections is performed, and near-field distributions at the reso-
nant ¢g-BIC state under RCP excitation are shown in Figs. 13(a)
—13(c) in Appendix C, and the detailed calculation method is
also proposed in Appendix C. As shown in Fig. 13(a), the elec-
tric and magnetic dipoles (ED, MD), electric and magnetic
quadrupoles (EQ, MQ), and electric octupoles (EO) all show
a peak at the corresponding ¢-BIC chiral resonance mode,
while the magnetic octupole (MO) is much weaker. The
strongest contribution among them is EO, which is evidenced
by the near-field patterns as shown in Fig. 13(c). Only seven
magnetic loops with opposite directions can be observed in the
x-y plane due to the oblique incidence. Besides, the directions
of magnetic loops of the field patterns excited by RCP are dif-
ferent from that of the eigenmode as shown in Fig. 13(b); thus,
the RCP light is mostly blocked by the PhC. Meanwhile, the
excitation fields are consistent with the eigenmode [¢-BIC that
deviates from the I" point in Fig. 2(a)], which further proves
that the chirality is supported by the ¢-BIC eigenmode. The
contribution of the higher-order multiple moments in gamma-
dion nanostructures to chirality has been demonstrated before
[39], which extends the chirality beyond the dipole moments.
Thus, we can conclude from the multipole analysis that the
higher-order multiple moment plays an important role in chi-
rality and the co-excitation of multipole moments is also essen-
tial for strong chirality [40].

Except for extrinsic chiral ¢-BICs, we can also acquire in-
trinsic chiral ¢-BICs by introducing asymmetric parameter &
to break the in-plane symmetry under normal incidence as
schematically shown in Fig. 3(e). In this case, the CD disap-
pears at the § = 0 nm as shown in Fig. 3(f), which is due to the
dark BIC state. When the geometrical asymmetry & is intro-
duced, the BIC state will collapse to a chiral 4-BIC state, which
gives rise to the CD and the linewidth changes with the increase
of 8. Specifically, the Q-factor of the chiral g-BICs also decays
as Q o 572 when the geometrical symmetry is broken as shown
in Fig. 3(h). In Fig. 3(h), the Q-factor of the intrinsic CD spec-
trum increases from 10%3 to 107 values as § decreases, and the
peak CD also sustains near-unitary value with the wide range
Q-factor in Fig. 3(f). This shows the wide tunability of the
Q-factor with a large CD through the asymmetric parameter
0. All transmittance components and CD are plotted in
Fig. 3(g) for 6 = 60 nm and show a similar trend as shown
in Fig. 3(c). The maximum CD for the intrinsic chirality is
0.92 at 1482.8 nm. In addition, with small asymmetric param-
eters 0, the transmission spectra of all Jones matrix elements
and the CD spectrum are also shown in Fig. 11 of Appendix B.
The CD spectrum at the resonance is extremely sharp—for ex-
ample, the Q-factor is 986,846 with the maximum CD = 0.94
for § = 2 nm. The transmission spectra of intrinsic chirality
can also be well analyzed by the TCMT proposed above.
The simulation results shown in Fig. 3(g) are fitted according
to the theory proposed in Appendix B, which are also in good
agreement with the analytical calculation of TCMT around
the resonant wavelength as shown in Figs. 10(a)-10(c) in
Appendix B. To show the evolution of the circular polarization
cigenstates with different &, the far-field polarization patterns
are provided in Fig. 12 in Appendix B. The circular polarization
states will move away from the I" point with the increase of 6.
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Moreover, the multipole decomposition for the intrinsic chiral-
ity is performed to study the origin of the chirality as well. Since
the intrinsic chiral response is based on the same chiral BIC
state of TM mode as the extrinsic chirality above, the multipole
contributions of intrinsic chirality are similar to that of extrinsic
chirality. As shown in Fig. 13(d), the ED, MD, EQ, MQ, and
EO are all excited at the corresponding ¢-BIC chiral resonance
mode. Four pairs of magnetic loops with opposite directions
can be observed in the x-y plane at 1482.8 nm as shown in
Fig. 13(f), which proves the presence of the strongest EO.
Meanwhile, the excited field pattern is the same as the eigen
¢-BIC mode at I' point but with the opposite magnetic loops
as shown in Figs. 13(e) and 13(f). Above all, the same conclu-
sion can be made: the co-excitation of electric/magnetic multi-
poles is indispensable for both extrinsic/intrinsic chirality.

4. EXTRINSIC CHIRAL RESPONSE FOR THE
COUPLING OF TE AND TM MODES

Apart from the extrinsic and intrinsic chirality for the pure TM
eigenmode above, the coupling of TE and TM modes can also
be used to obtain the giant chiroptical response [30]. It is pos-
sible for the non-orthogonal TE-like and TM-like mode degen-
eracy to appear when the illumination symmetry and in-plane
geometrical symmetry are broken for the PhC. Thus, in the
following two parts, we aim to investigate the chiroptical re-
sponse that relies on both TE and TM polarizations. Here,
the geometrical parameter is changed to =795 nm,
b =650 nm, /, =157 nm, w, = 202 nm, /[, = 575 nm,
and /, = 565 nm. To begin with, we plot the 3D bandstruc-
ture of the TE mode (enclosed by the green line) and TM mode
(enclosed by the red line) in Fig. 4(a), and the colormap shows
the Q-factors, from which we can see that the Q-factors tend to
infinity at T" point (Qy ~ 10%4 and Qg ~ 107); thus, these
two modes both have symmetry-protected BIC states at the I
point. The two yellow lines indicate the hybridization wave-
lengths of the TE and TM modes in £ space. Since the degen-
eration points are located away from I' point, we can expect
giant chirality to show up at oblique incidence in accordance
with the interaction points in £ space. Here, we choose two
points in the yellow lines in Fig. 4(a) marked by the blue
dot (b, = -0.075 27”, k}, = 027”) and the purple dot
(k. = 0.01 2, k, = -0.07 %), respectively, to study the chirop-
tical response at the hybridization points. The projection rela-
tionship between the in-plane wave vector k of the PhC and
the incident angle is k” = kysin(@) [41]; thus, the incident

angle can be written as 6 = arcsin (i—!) Here, £, is the wave
vector in air. Figure 4(b) shows the absolute difference of
the eigen-wavelength of the TE and TM modes, in which
|AA| = |A1g - Apm. Cleatly, the black regions denote the over-
lap of the two modes in £ space, and the degeneration eigen-
wavelengths of the 4, and 4, points are also shown in Fig. 4(b).

To calculate the CD at the two points in 4 space that have
been marked in Fig. 4(a), the incident light is inclined along the
ki and k, vectors in Fig. 4(b) for the fixed azimuthal angle
@ = 0° and ¢ = 98.13°, respectively. In fact, the maximum
chiroptical response may slightly deviate from the degeneracy
point for continuum coupling of non-orthogonal TE-like and
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corresponding to the blue and purple dots in (a) and (b).

TM-like modes [30]. Thus, to begin with, the incident light is
inclined along the 4, and £, vectors in Figs. 4(c) and 4(d) for
the fixed azimuthal angle ¢ = 0° and ¢ = 98.13°, respectively,
to study the maximum CD near the two £ points. The CD in
Figs. 4(c) and 4(d) vanishes at the normal incidence due to the
symmetry-protected BIC states for TE and TM modes, respec-
tively, in Fig. 4(a). We can observe that the upper and lower
bands of the CD will converge with the increase of € and
exhibit a maximum CD at a certain inclined angle. Then the
transmission and CD spectra are displayed in Figs. 4(e) and 4(f)
for 6 = 7.94° and 6 = 8.16° [corresponding to the maximum
CD in Figs. 4(c) and 4(d)], respectively. In Fig. 4(e), the Q-factor
for the CD spectrum is 258, and the peak of the CD is -0.976 at
1596.8 nm, which is almost the same as the eigen-wavelength of
the £, (1597.2 nm) point. For the 4, (the corresponding eigen-
wavelength is 1598.6 nm) point, the Q-factor for the CD
spectrum is 528, and maximum CD is 0.997 at 1598.7 nm
in Fig. 4(f); the wavelength of the excitation ¢-BIC mode is also
very close to the eigen-wavelength. These results comprehen-
sively show that the giant extrinsic CD arises from the hybridi-
zation of TE and TM modes at oblique incidence.

The above extrinsic chirality exploits TE and TM coupling.
To further understand the chiral resonance supported by the
TE and TM modes, the multipole scattering cross sections and
the near-field patterns are shown in Fig. 14 in Appendix C.
Electric and magnetic multipoles (up to octupoles) are all ex-
cited at the peak of CD, which shares the same mechanism of
the chirality under pure TM mode: co-excitation of multipoles.
The two main multipole contributions are vertical EO and par-
allel EQ, which are derived from the TM mode and TE mode,

respectively.

5. INTRINSIC CHIRAL RESPONSE FOR THE
COUPLING OF TE AND TM MODES

The remarkable intrinsic chirality in a quasi-two-dimensional
structure has potential applications in quantum optics and op-
tomechanics [30]. Inspired by this work, we expect that the
planar PhC also supports the intrinsic chiral response by engi-
neering both the TE and TM modes through breaking the in-
plane symmetry. The geometrical parameters are the same as
Fig. 4 with a different thickness # = 685 nm. Figure 5(a)
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Intrinsic chirality of TE and TM coupling modes with parameters 2 = 795 nm, » = 685 nm, /, = 157 nm, w, = 202 nm,

[, = 575 nm, ly = 565 nm. (a) The black lines with circle/square shape are the eigen-wavelength of TM/TE mode at I' point, respectively,
as a function of 8, and the red lines are the corresponding Q-factors of the modes. (b) Bandstructure of the PhC with § = 90 nm near the vicinity
of T point. (¢c) CD for different geometrical parameters 8. (d) Evolution of the TE and TM eigenmodes at the I point with the variation of the
asymmetric parameter 0. (e) Electromagnetic (EM) field distribution under LCP excitation as a function of the asymmetric parameter 6.

shows the eigen-wavelength and Q-factors at I" point of the TE
and TM modes with the variation of asymmetric parameters 6.
For 6 = 0 nm, the TM mode has a BIC state for an infinite
Q-factor at I' point, while the TE mode has a low Q-factor state
due to the field radiation to the external environment. The ei-
gen-wavelengths of the TE and TM modes get closer with the
increase of the &, and we can see clearly that the two modes
degenerate at 6 = 90 nm in Fig. 5(a). The corresponding 2D
bandstructure of the PhC is also shown in Fig. 5(b), where we
can see the degeneration of TE and TM modes at I" point
at 6 = 90 nm.

Figure 5(c) shows the evolution of CD spectra by varying
asymmetric parameter 0. Specifically, the simulated Q-factors
and the peaks of the CD spectrum here are 7611/-0.825
(6 =20 nm), 1438/-0.937 (6 =40 nm), 266/-0.978
(6 =70 nm), and 147/-0.983 (5 = 90 nm), respectively. It
is shown that the magnitude of CD at resonances would be-
come larger when the eigen-wavelengths of TE and TM modes
get close to each other due to parameter § increase, which re-
veals that the giant CD arises from the co-excitation of the TE
and TM modes. When the symmetry is broken, the TE-like
and TM-like modes are not orthogonal with each other any-
more; thus, they can couple to give rise to the chiral response.

Furthermore, to illustrate the TE and TM eigenmodes cou-
pling process with 8, we show the evolution of TE/TM eigenm-
odes profiles and the electromagnetic (EM) field profiles excited
by LCP light in Figs. 5(d) and 5(e). The EM field in Figs. 5(d)
and 5(e) is extracted at the x-y plane for z = 0. The TE mode is
a low-Q mode, and its mode profiles remain constant with the
variations of 8, as shown in the upper row of Fig. 5(d). In con-
trast, the TM mode exhibits a different behavior: both the
maximum electric and magnetic fields tend to concentrate near
the cutting area as § increases, as illustrated in the lower row of
Fig. 5(d). At the left panels in Fig. 5(e), the electric and mag-
netic field illuminated by LCP is the same as the profiles of the
TM eigenmode for 6 = 20 nm, which is due to the excitation
of pure TM mode. The CD peak is only -0.825 for § =
20 nm. The magnetic field is dominated by the eigenmode
profile of the TM mode with the increase of §, while the electric
fields become similar to the eigenmode profile of the TE mode
as shown in the right panels in Fig. 5(e). The mixture of the
excitation EM fields denotes the co-excitation of the TE and
TM modes.

To further understand the origin of the intrinsic chiral re-
sponse empowered by the 4-BIC TM mode and leaky TE

mode above, the normalized multipole contributions for
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different 6 under LCP excitation are shown in Figs. 15(a)-
15(d) in Appendix C. Note that the EQ in Figs. 15(a) and
15(b) is dominant; however, this chiral response is weak due to
the pure excitation of the EQ without magnetic multipoles.
The dotted lines in Fig. 15 correspond to the position of the
CD peak in Fig. 5(c), and the multipole contributions at the
wavelengths of the CD peak are extracted and normalized,
respectively, in Fig. 16 in Appendix C. The maximum multi-
pole contribution is MQ, which is supported by the TM eigen-
mode. Meanwhile, the proportions of EO, ED, and EQ
increase with the variation of the § parameters. It can be con-
cluded that the giant intrinsic CD is due to the mixture exci-
tation of the multipoles from both Figs. 15 and 16, which
originated from TE and TM degeneracy.

6. CONCLUSION

In summary, we have designed a 2D PhC with reduced in-plane
symmetry, which exhibits a giant intrinsic and extrinsic ¢-BIC
chiroptical response. This is achieved through engineering BIC
states in PhC for the pure TM mode or TE and TM cross-
coupling mode. By adjusting the incident angle or in-plane
asymmetric parameters, this PhC exhibits near-unity extrinsic/
intrinsic CD (maximum CD = 0.98) and high Q-factors sup-
ported by chiral g-BICs for the pure TM mode. With the in-
crease of the thickness of the slab, the mixture of TE and TM
modes tends to appear when the illumination symmetry and in-
plane symmetry are broken for the PhC, which allowed for the
achievement of the ultra-strong extrinsic and intrinsic ¢-BIC
chirality. Based on the TCMT, we revealed two analytical ex-
pressions of CD for the chiral 4-BIC response, which can be
applied to predict and analyze CD well. Furthermore, the giant
chiroptical responses have been proved to originate from the co-
excitation of both electric/magnetic multipoles. In particular,
higher-order (up to octupole) multipoles are also essential
for the strong chiroptical response. Our work demonstrates that
planar PhC can support giant 2D chirality via different polari-
zation eigenmodes, which may provide a new paradigm for the
future design of 2D chiral metamaterials. Additionally, this chi-
ral platform with high Q-factors also has potential applications
in chiral lasing, chiral sensing, and enantiomer separation.

APPENDIX A: COUPLED-MODE THEORY FOR
EXTRINSIC CHIRAL Q-BICS

Extrinsic chirality requires an oblique incidence angle (£, # 0);
thus, we apply coupled-mode theory (CMT) with & - 7 pro-
posed by Wang ez al. [38], and the equation of CMT can be

written as

e _ .
&, = (k- arods +a,DElsy)

(Z/g > 0,(1,,g =L, < O’Qvg =-1)
) = Cels:) + Dydg = Sls, ), (A1)

where Ag is the complex amplitude of the oscillating eigen-
mode, Cy is the background scattering matrix, Dy, is the cou-
pling matrix between the resonances with the incident and
outgoing waves, @, is the group velocity of the radiative mode,

v is the decay rate due to the radiation, 7| is the in-plane po-
sition whose direction is parallel to 4, and £ is the wave vector

of the resonant radiative mode along the same direction as k.

The |s_) = [S{{_,S}“_,S{%_’,S}}_] T and lsy) = [S%{+,S£+,Sg+,
siL,]7 are the output and input waves from two ports (port I
and port II) as shown in Fig. 6(a), and the subscript L/R means
the LCP/RCP light. Cf; is the background scattering matrix for

the direct transport process and can be written as [20]

R{{R R%{L T{QIR THL TE 71’5 tg ¢t l’i
[ 1 I 11 ] /
Rig Ry TR Ty 'g TE g IE
Ce= 1 1 11 n | ' Ak
TRR TRL RRR R RL t E r E TE r E
1 1 i i ' /
Ing Ty Ry Ry g g Tg TE
(A2)

where the subscripts of R;;and 7; (i = R, L, j = R, L) indicate
the RCP and LCP, respectively, and the 7, 7, #g, and #f can be
written as |rg| exp(ipig), || exp(ipag), |7e| exp(igsg), and
|7e| exp(ig4g), respectively. The coupling matrix Dg in
Eq. (A1) can also be written as

Dy = [dk, d}, 4%, 417, (A3)
where the elements in Eq. (A3) are the coupling coefficients of
the resonant mode with LCP/RCP light from port I/I1. Dg, needs
to satisfy the following relationship considering the space-rever-
sal process condition and the energy conservation of the system:

D Dg = 2y
{ s (A4)

Due to the mirror symmetry of the PhC, the coupling be-
tween the eigenmode and the LCP and RCP light at two ports
is the same, which can be written as

dl +dk = dV + dY. (A5)

Meanwhile, for this planar PhC, the cross-polarization coupling
of the eigenmode with port I/II should be the same; thus, we
have
1 _ I _
{dIL_dII{I_ME- (A6)
d R = dL = ng
Combining Egs. (A4) and (A6), we can get the relationship
of my and n,

b
% Loa A
\\\\ z // I ‘ ‘ z l l
X
A1(+k”)
PhC PhC
// \\\ I
i s PGPS , , }

1T

al oIl pll I
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Fig.6. (a) Schematic of the CMT for extrinsic optical chirality along
the positive k4 direction. (b) Schematic of the TCMT for intrinsic
optical chirality.
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g |* + |ne]* = 7. (A7)

Note that the 7 and 7 are complex numbers, according to Eq. (A7), and the 7 and ng can be written as

myg = exp(i6,5) v/ Pere (A8)
ng = exp(i0,5) /AEYVE
Further considering Ay = |Ag|e/"1, we can have the expression of Sg,
Dp DL
layg(|k||| - ko) +7E
Substituting the Egs. (A2), (A3), and (A6) into Eq. (A9), we have the form of Sg as follows:
[ 1 1 1 11
’RR TRL  fRR ZRL
I I 11 I
g — | 7L IR AL
E= g AL
RR RL RR RL
1 1 11 I
IR i IR TLL
—r + ”123 o Mg Mg tr + MENE o+ ”123 i
E ia,, (kyl~ko)+re  "E T da, (Jyl-ko)+75 E ia,, (Ikyl~ko)+re  "E T da,, (Jky[~ko)+7&
7.’ + MENE 7 + mlz—: t’ + mlzi t + Mg NE,
E T da,, (Iky ko) +re E i, (k| ~k)+re  “E T ia, (Iky]-ko)+7e E i, ([ |-ko)+7E
= o o (A10)
myn]. ! E E ! ml.ﬂp
N 1T R SR (/T S R ST T R TN [T s
t/ + n% t + Mg g 7,’ + MENE 7 + n%,
L ETda, (Jky|~ko)+re E iay, (fy ko) +7e ET da, (lky|~ko)+re E i%g(l/eu|*/€o)+h:_
Equation (A10) can also be written as the Fano line-type function,
Apt+ilg Appt+ilop Agpt+ilyp Age+ilp
g (IR0 F75 T Ubi1Ro) F75 Ty UbiTRo) F75 Ty Ul TRo) F75
Agp+op Asp+il'sp Asp+isp Agp 4Ty
P T e T e e R e e A1)
E Agp+ilsp Asp+ilsp Asp+il5p Agp e ’
iayg(|/?|\|*ko)+}’1: iayg(|ku|*/€n)+}’n i(lﬂgﬂku\*kn)"r}’n iaygﬂku\*ko)"'}’n
Aget+ilep Agpt+ilyp Asp+ilop A+l
f“vg(|/€|\|-/€o)+}’ﬁ i(lvg(|/€u|-/€u)+}’ﬁ l'%g(VfH\-/fo)"r}’E f“ug(Veu\-/@o)"'}’E
where
Ajp + g = [rodie + a, (1| - ko) Big] + dye Cir + a,, 15y - ko) Djgl, j€1{1,2,3,4,5,6}. (A12)

We mainly consider the &y, 75, £, and #F in the main text; thus, the corresponding parameters are given as follows:

Ayp = |tg| cos @ap + /Prag cos(0,,; + 0,5), B = -|t|sin @3
Cyp = |tg|sin @ap + +/Pragsin(@,5 + 0,5), Dsg = |t5| cos @3

. (A13)
ASE = |t],3| COS Q4§ + Qg COoS 2071E’ BSE = —|té| sin P4E> CSE = |t],5| sin P4E + ag sin 297!]5’ DSE = |t],5| COS QP 4g

Age = |tg| cos @4 + Py cos 20,1, Beg = ~|tg| sin @41, Cop = || sin @5 + P sin 20,5, Doy = || cos @y

Equations (A10) and (A11) have a,, and the group velocity v, = V,@; along I'-X direction is v, < 0 for the orange band in the

Fig. 2(a); thus, for the £ along positive I'-X direction, we have a, = -1, and the transmission of |tij(r,vj)|2 can be written as
/ ia, (|| - ko) + 7
R+ Ch) + 20, ye(ly | - ko) (A + CpDip) + @2 (B + D) ([ky| - ky)?
7t (b~ ko)
e + Ch) - 27e(ky] - ko) (A Bie + CieDip) + (B + Dip) (k| - ko)?
v + (k| - ko)? ’

T |z

ij:

(A14)
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Fig. 7. (a)—(c) Fitting results of the CMT for extrinsic chirality utilizing Eq. (A14), corresponding to Fig. 3(c) in the main textat 4 = 1476.5 nm.
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0.54 0.54

CD; = (7'112-:2— ) (ve + 271521‘1’3)
re + (kyl - o)

In addition, the extrinsic chiroptical response can also be
tuned through the azimuthal angle ¢ as shown in Fig. 9.

We can use Eq. (A14) to fit the Trg, 711, Try, and 71 of
Fig. 3(c) as shown in Figs. 7(a)-7(c). The transmittance spectra
of the Jones matrix and CD with small incident angle 0 are
shown in Fig. 8. If the CD is defined as CD = 7'} + T~
Trr = T1r, we only consider the incident LCP/RCP waves
from port I, and substituting Eqs. (A7) and (A10) into the ex-
pression of CD, the extrinsic CD can be written as

(A16)

APPENDIX B: TEMPORAL COUPLED-MODE
THEORY FOR INTRINSIC CHIRAL Q-BICS

S, , Since the PhC owns C, symmetry, for intrinsic chirality with
_ (mg - ng)(ve + 27ety) (A15) normal incidence, the main equation of TCMT is [37]

2 2 2
ve + a;, ([ky| - ko) :
BT T TR Yo = (-iwy - y) A1+ Dl a (B1)
Since a2 = 1, the sign of @, will not influence the expres- b=Sa= Ca+ DA ’

& g
sion in Eq. (A15), and Eq. (AI5) can be written as where 4 is the complex amplitude of the oscillating eigenmode,
@y is the mode’s resonant frequency, yy is the decay rate due to
the radiation, Sy is the scattering matrix, and D is the coupling
matrix between the resonances with the incident and outgoing

l waves. For circularly polarized light, 2 = [ak, 4}, 4}, &"]7 and

CDg = | |* + ltre|® - Itre|* - 18R 1> = |2re ] - |2k [

1490, 1

b= [b} ,bl,én,bg]T are the input and output waves from

1480
‘ two ports (port I and port II), respectively, as shown in Fig. 6(b),
and the subscript L/R represents the LCP/RCP light. The C|
and Dy will have the same form as in Egs. (A2) and (A3) and

1470 are shown in the following [20]:

A (nm)
[=)
CD

[ )| 11 11 ’ 2
R RR R RL TRR TRL oo

180 360 = 1 1 11 11 =

" (O) TRR TRL RRR RRL ty Z'I’ 71 7’1’
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g Ty Rgr Ry Hotoron
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Fig. 9. CD spectra with the variation of azimuthal angle ¢ and
wavelength at 6 = 9°. (B82)
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where the subscripts of R;;and 7';; (/ = R, L, j = R, L) indicate the RCP and LCP, respectively, and the 7, 71, 1, and #{ can be written as
|71| exp (i), |71] exp(zgoﬂ) |71 exp(zq)ﬂ) and | 7| exp(igpy4), respectively. C in Eq. (B2) needs to satisfy the relationship C| Ci=1
due to time-reversal symmetry.

The coupling matrix Dy in Eq. (B1) can be written as

= [d}, d},dV, 47, (B3)

where the elements in Eq. (B3) are the coupling coefficients of the resonant mode with LCP/RCP light from port I/Il. D needs to
satisfy the following relationship due to time-reversal symmetry and the energy conservation:

{DfrDI =2y

e h (B4)

Due to the mirror symmetry of the PhC, the coupling between the eigenmode and the LCP and RCP light at two ports is the same,
which can be written as

A+ dy = dV + 4L (B5)

Meanwhile, for this planar PhC, the cross-polarization coupling of the eigenmode with port I/II should be the same; thus, we have

dt = dY = my
. B6
{dI =4 =y (B6)
Substituting Eq. (B6) into the first equation in Eq. (B4), we have
lmi|* + |m|* = y1. (B7)
Note that the 7 and 7y are complex numbers, according to Eq. (B7), and the »; and 7y can be written as
{ my = exp(i0,,1) /Pir1 (B8)
n = exp(i0,1) /oy
From Eq. (B1) and considering A; = |A4;|e”**, we can have the expression of S,
D\D!
S=C4—11 (B9)
i(wy - w) + 71
Substituting the Egs. (B2), (B3), and (B6) into Eq. (B9), we have the form of S; as follows:
Z 7[2
"hR TRL fRR ZRL "t oo T teeom AT tecom 0 o
2 2
! myng ! my myng
_ VILR VILL tILIR Z{IL _ nt i(wy-w)+y1 n+ l(mo-w)+71 n+ i(wo-w)+71 t+ i(wo-w)+71 B10
SI N tI II 7’H VH N myny / ml 2 ’ myny ’ ( )
}{R ?L FIR EL it i(wy-w)+y1 h+ i(wo-w)+y1 nt (o~ w)+y[ ot i(@-w)+71
iR fLL IR OTLL , n? mn , mn n
i+ i(wo—(i))+yl n+ i(woffl))l+71 ot i(“’o*lﬂ’)lﬂl o+ i(@o- w)+71

Note that the transmission of the same helicity is same at the same port in Eq. (B10). Moreover, Eq. (B10) can be written as the
Fano line-type function,

Aty Ag 4y Ag+Ty Ag+ilg
7%{}{ V%{L tI{R tEL z'(m—mo')erI i(a)—mu?+y1 i(m—a}0?+y1 i(a}—mu-)+y1
I I i 0 Agi iy Az 4+l Asi+s; Ag+ilyy
57 IR AR L Hw-w)+y1 Hw-wo)+y1  Hw-wo)+r  Hw-wo)+ry (B11)
7 i 4 Al Al Ag+Ty Agi+iTs; ATy Ay +iTy >
?R ?L ﬁR EL i(w-wy)+y  iw-w))+y  iw-0))+y  i(w-0)+7
IR 1L TR TLL Ag+d Ag+1 'y Agr+1y; A+
i(w-wo)+y1  Hw-wy)+y  dw-wg)+y  i(w-wo)+r’
where
A+ = [nd; + (0 - 00) Byl + iy C1 + (@ - wy) Dy, j€11,2,3,4,5,6}. (B12)

The parameters Aj1, By, Bﬂ, Dﬂ in Eq. (B12) have the same form as those in Eq. (A13). We can get the expression of reflection/

transmission from Egs. (B11) and (B12) as follows:
Aj + il

2

g+

Ch) + 2r1(w - o) (A3 B +

CiDy) + (B3 +

DJZI)(CU - @)*

T(R); = [t(r),* =

i(w - wy) + 11

1t + (0 - wp)?

We can use Eq. (B13) to fit the Ty, 711, Tre> and 71y of Fig. 3(g) in the main text around the resonant peak as shown in
Figs. 10(a)-10(c). Furthermore, we can get the similar expression of intrinsic CD as Eq. (A16),

(B13)
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Fig. 10. (a)—(c) Fitting results of the TCMT for intrinsic chirality utilizing Eq. (B13), corresponding to Fig. 3(g) in the main text.
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Fig. 11. Transmittance spectra Trp, TRy, 71> T1r> and CD with small asymmetric parameters 8. The Q-factor and the maximum CD are
986846/0.94, 39721/0.92, and 9147/0.92 for § = 2 nm, 10 nm, and 20 nm, respectively.

CD; = | )? + lere? = 12vr)? = 12R)? = |2r0)? - |2R [ APPENDIX C: MULTIPOLE CONTRIBUTIONS OF
(R -m) R 4w o) _ (i)t 2py) Ve PHC . | B
7+ (@ - @) R P The multipole scattering cross sections under RCP/LCP inci-
dence for CD > 0/CD < 0 are shown in this section, which
(B14) is helpful for understanding the origin of the chiral response.
In addition, the far-field polarization diagrams in momen- The spherical multipole scattering cross sections of the PhC
tum space with different asymmetric parameters § are shown under LCP/RCP excitation are calculated through COMSOL
in Fig. 12. Multiphysics. The periodical boundary condition is utilized,
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Fig. 13. Multipole contributions of the PhC (a) under oblique incidence (¢ = 0°, @ = 9°, and § = 0 nm) and (d) normal incidence (¢ = 0°,
0 = 0°, and § = 60 nm) for TM eigenmode. The electromagnetic eigenmode for the (b) wave vector along I'-X direction and (¢) § = 60 nm atI"
point; here, the blue and red circles indicate the magnetic loops. (c), (f) Corresponding z component of electric field at 1476.5 nm and 1482.8 nm,
respectively, under RCP excitation. The black vectors are magnetic fields (H,, H ,). The electric field patterns are extracted from x-y plane at

z =0 nm.

and the two perfectly matched layers are added at the ports. The
electric field in the unit cell of the PhC is extracted and the fol-
lowing equation is used to get the scattering current density:

J(r) = -iole(r) - &,JE(), (C1)

and the electric and magnetic multipole coefficients can be cal-
culated as [42]

(@

Multipoles Contributions (a.u.)
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1590 1595
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0,08 -] () - im, (O)D- T (D) dr, (C2)
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at1596.8 nm
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Fig. 14. Multipole contributions of the PhC under oblique incidence at (a) 4, and (d) 4, points in Fig. 4(a) under LCP and RCP excitation,
respectively; the black dotted lines indicate the peak of the CD. Electric field distributions at the peak of CD are extracted from (b), (¢) x-y plane for
z = 0 and (c), (f) y-z plane for x = -280 nm. The black vectors are magnetic fields (/7,, /,); here, the blue and red circles indicate the magnetic

loops.
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where E|, is the electric field amplitude, 7 is the impedance of the
free space, W, (kr) = krj,(kr) are the Riccati—Bessel functions,
W, (kr) and W) (kr) are their first and second derivatives with
respect to the argument kr, PJ]' represents the associated
Legendre polynomials,

1 [2/+1(!—m)!]%'
I+ DEL 4z ((+m)]’

d
75,,(0) = @P;”(cos 0);

Im

7,,(0) = %P;”(cos 0), (C4)
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Fig. 16. Normalized multipole contributions of the PhC under
LCP excitation at the wavelength of the peak of the CD for
0 = 20 nm, 40 nm, 70 nm, and 90 nm, respectively.

Multipoles Contributions (a.u.)

and the electric and magnetic multipole (dipole for / = 1, quad-
rupole for / = 2, octupole for / = 3...) coefficients can be
written as

© /
Coe = D @+ DllalmF)
o
Cou =13 2, @+ DllaytmP)  (CB)
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