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The relative phase change between two light fields can be used as a fundamental parameter to measure the physical
quantity causing this change. Therefore, amplifying the relative phase change becomes attractive to improve the
measurement resolution. Phase amplification using a many-body entangled state (NOON state) is a well-known
method; nevertheless, the preparation process for a high-number NOON state is difficult and sensitive to optical
loss. Here, we propose and experimentally verify a concise phase amplification method with a tolerance of about
five orders of magnitude for optical loss. The method is based on the optical-feedback-induced intracavity har-
monics generation effect to amplify the phase change by 11 times, which is comparable to the highest level of
about 10 experimentally reached in NOON states. Furthermore, the 20th intracavity harmonic is generated when
the reinjected photon number increases, indicating that 20 times phase amplification is attainable. The proposed
method has a prospect for precision measurement applications. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.494882

1. INTRODUCTION

Phase is one of the most basic parameters in wave optics and
quantum mechanics [1–3]. Phase change between the two arms
of the interferometer or in the superposition state of quantum
mechanics is very critical because many basic physical quan-
tities can be converted to the detection of the phase change
of light, including displacement [4], angle [5], temperature
[6], etc. [7,8]. To explore the changing process of these physical
quantities, it is often necessary to obtain the relative phase
change of the light field in the interferometer. For some ultra-
precision measurement, the original phase change is extremely
small [9]. For example, in the space gravitational wave detec-
tion frequency band, the sensitivity of phase detection is of the
order of tens of μrad∕

ffiffiffiffiffiffi
Hz

p
[10,11]. It should be pointed out

that we use the noise spectral density unit commonly used in
gravitational wave detection instead of the phase unit (radian);
by combining with the signal bandwidth, the minimum phase
drift can be further obtained. Therefore, if the phase can be
amplified, it will play a key role in improving the phase reso-
lution in the field of precision measurement. The traditional
interferometric optical subdivision method increases the de-
tected phase change by increasing the optical path change
[12]; however, its essence is not to directly amplify the light
phase, but to increase the change of displacement through the
relatively complex spatial structure of the optical path.

In quantum optics, there is a well-known method of ampli-
fying phase that is based on a multi-photon number and path

entangled state known as the NOON state [13,14], which can
be described as �jN0iab � j0N iab�∕

ffiffiffi
2

p
. The NOON state

containsN indistinguishable particles in an equal superposition
of all being in one of two possible paths a and b [1,15,16].
Phase amplification in this state is a manifestation of the
N -photon de Broglie wavelength λ∕N [16], and the phase os-
cillation is N times faster than that of single photon, which
results in super-resolution of the phase.

NOON states can be used to amplify phase in ultra-
precision measurement, which is very helpful to improve phase
resolution [17], but it is usually difficult to prepare a NOON
state with a high photon number, and the experimental highest
phase amplification in NOON states [17,18] as far as we know
is about 10. At the same time, the detection probability will also
decrease when N becomes larger, and the NOON state with a
high photon number is very sensitive to any optical loss, which
increases the difficulty of related experiments. Li et al. proposed
a novel phase amplification method; they achieved quadruple
phase amplification in the harmonic-assisted process, and con-
firmed that higher magnification phase amplification can be
further achieved through cascading [1]. This phase amplifica-
tion method will play a significant role in the field of precision
metrology, and also provides a new idea for phase amplification
technology. However, in this method, the high nonlinear con-
version efficiency and phase amplification need high pump
power and a proper crystal to be successful [1], which leaves
room for further improvement.
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In this paper, we propose and experimentally verify the ef-
fect of a new phase amplification method based on the feed-
back-induced intracavity harmonic generation (FIHG) effect
in a laser frequency-shifted feedback interferometer (LFFI).
In our proposed method, the relative phase change between
the two arms of the interferometer is amplified by 11 times
by the FIHG effect without assistance of any external harmonic
generation, which exceeds the maximum magnification of
around 10 experimentally obtained by using NOON states;
at the same time, in the proposed system, the reflective mirror
to losslessly return light in the traditional interferometer can be
replaced with a non-cooperative target (non-cooperative means
that the target cannot be fitted with a mirror, and great optical
loss will occur when the light is scattered by the target), because
the system has extremely high weak-light sensitivity, which can
respond to the echo optical signal of single-photon order per
feedback modulation period. The proposed system also has
a tolerance of about five orders of magnitude for optical loss
to amplify phase. In addition, we show the possibility that
the proposed system can amplify the phase change by 20 times
when the number of reinjected photons increases.

The LFFI is different from the traditional Michelson inter-
ferometer or Mach–Zehnder interferometer. In the LFFI, the
cavity emitting laser irradiates the target, and the backscattered
or reflected light of the target returns to the laser cavity and
interferes with the intracavity light field, which modulates
the light field in the cavity and makes the re-output laser loaded
with external information (amplitude, phase, etc.). That is, in
the LFFI, the two arms of the interferometer can be regarded as
the external cavity light field and the intracavity light field,
which leads to the fact that the external returned light is af-
fected by the laser intracavity dynamics while interfering with
the intracavity light field, and this will cause some interesting
phenomena that are not available in the traditional interference.
For example, the returned weak light can be magnified about
106 through the intracavity resonance before output again [19],
which makes the LFFI avoid dependence on the target mirror
and enables it to detect weak signals more easily. Li et al. pro-
vided a detailed review of laser feedback technology, discussing
its principles and applications in the field of metrology [20].
Liu et al. reviewed the principles and applications of sensing
using laser feedback technology [21]. Lacot et al. studied the
variation of the relaxation oscillation frequency of a laser cavity
in a nonlinear optical feedback state [22], but did not explore
the amplification phenomenon of laser phase in a nonlinear
state.

Lacot et al. found that in a strong feedback state, multiple
harmonic peaks appear in the laser power spectrum [23].
Recently, we further found that using this harmonic effect,
the relative phase change between the external cavity light field
and the intracavity light field can be amplified. It means that we
can achieve phase amplification through this FIHG process in
the LFFI to obtain phase super-resolution measurement. We
will illustrate this phase amplification method from theoretical
simulation and experimental verification below.

2. PRINCIPLE AND SETUP

The working schematic diagram of the LFFI is shown in Fig. 1.

From Fig. 1(a), we can see that the LFFI has the character-
istics of optical path self-collimation; the two arms of the inter-
ferometer are E in and E ext, which makes it not need to tightly
adjust the beam like the Michelson interferometer. The phase
carried by the returned light is amplified by the FIHG effect
and output again, as shown in Fig. 1(b). Since the feedback
interference occurs in the cavity, we can use the intracavity dy-
namics equations as shown in Eq. (1) to describe the complete
interference process [23]:

dN
dt

� γ1�N 0 − N � − BN jE�t�j2,
dE�t�
dt

�
h
i�ωc − ω� �

1

2
�BN − γc�

i
E�t�

� γc
ffiffiffi
κ

p
E�t − τ�ei�4πΩt�e−i�ω�2πΩ�τ, (1)

where N is the population inversion, γ1 is the decay rate of the
population inversion, γ1N 0 represents the pumping rate, B is
the Einstein coefficient, E�t� is the complex amplitude of the
electric field in the laser cavity, ωc is the laser cavity frequency at
the atomic frequency, ω is the optical running laser frequency,
γc is the decay rate of the photon inside the cavity, κ is the
equivalent reflectivity of the external cavity, and the smaller
κ represents the greater external optical loss. τ is the transit time
of the photon in the external cavity, and τ � 2nLext∕c; here, n
is the external cavity medium refractive index, Lext is the exter-
nal cavity length, and c is the speed of light in vacuum. Ω is the
one-way frequency shift of the light provided by the frequency-
shifter.

When κ is small (typically less than 10−12), the laser exhibits
an effect similar to heterodyne interference, and the output
light power can be described as

ΔI
I

� ffiffiffi
κ

p
G�2Ω� cos�4πΩt − φ0 � Δφ�, (2)

where ΔI is the intensity modulation of the measurement sig-
nal, I is the steady laser output power without feedback, and
G�2Ω� is the gain caused by the feedback interference effect
(typically reaches 106), which the traditional interference pro-
cess does not have. φ0 is the initial fixed phase of the system,
Δφ is the relative change of phase between the two arms in
the LFFI and we can demodulate Δφ through the lock-in am-
plifier. However, as κ increases, the laser cavity enters a medium

Fig. 1. Working model of the laser frequency-shifted feedback sys-
tem. (a) Working process of the LFFI. ML, microchip laser; M1,M2,
resonator mirrors of the ML; FS, frequency-shifter; T, target; E in, light
field reflected by M2; E ext, backscattered light field from the target.
(b) Schematic diagram of the phase amplification process of returned
light in the LFFI. Eback , light field returned to the laser cavity from the
target with the phase change of Δφ; Eout, re-output light field after
phase amplification of N times (here, N � 11) by the FIHG effect.
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feedback state. Different from the weak dynamic balance ad-
justment process in the laser cavity under weak feedback, at
this time, the external reinjected photons will also cause a
strong resonance effect of the intracavity laser. In this process,
the energy of the interference fundamental wave will be trans-
ferred to the higher-order harmonics in turn, and the order and
intensity of the output harmonics depend on the energy of the
returned photons. From the perspective of the intracavity dy-
namics equations, it means that multiple solutions are allowed
in the cavity at this time, and the phase oscillation speed of
the N th-order solution is naturally N times faster than that
of the fundamental wave representing the original phase
change. We demonstrate this FIHG phenomenon by simulat-
ing Eq. (1) to obtain the frequency spectra of the laser at differ-
ent κ, as shown in Fig. 2.

During the simulation process, we set the relative pump
level η (ratio of actual pump power to threshold pump power,
η � BN 0∕γc) to 1.6. Moreover, the decay rate of the popula-
tion inversion γ1 is set to be 1.11 × 104 s−1, the decay rate of
the photon inside the cavity γc is set to be 2.75 × 1010 s−1, and
the one-way frequency shift of the light Ω is set to be 0.5 MHz.
From Fig. 2(a), we can see that in the weak feedback state
(κ < 10−12), there is a single beat frequency peak at 1 MHz
representing the interference signal in the laser output fre-
quency spectrum, as well as the inherent relaxation oscillation
frequency peak at about 2.1 MHz of the laser, and when κ is of
the order of 10−12 to 10−7, there are different orders of harmon-
ics of the interference signal appearing in the frequency spectra
as shown in Figs. 2(b) and 2(c), and the intensity of harmonics
increases with the increase of κ. The light intensity output of
the N th harmonic can be expressed as

ΔIN
I

∝ CN cos�N �4πΩt − φ0� � NΔφ��: (3)

Here, ΔIN is the intensity modulation of the N th har-
monic, and CN represents the intensity output coefficient of
the N th harmonic, which is related to the external optical loss.

Similar to the second-harmonic generation processes uti-
lized in the polarized interferometer [1], in the FIHG effect,
the phase carried by the fundamental wave is simultaneously
transmitted to the higher harmonic in multiples, which means
that we can obtain phase changes of different magnification
rates at different levels of harmonics at the cavity output. The
dependence on NΔφ instead of Δφ allows us to achieve phase
super-resolution measurement, because the phase oscillation is

N times faster than the original phase change. Next, in order to
demonstrate the process of realizing phase amplification by
nonlinear LFFI, we build a complete system of the LFFI, whose
structure is shown in Fig. 3.

In the LFFI, the phase amplification module is the laser cav-
ity itself. The laser source we use is a 1064 nm Nd:YVO4 mi-
crochip laser with an output power of 5 mW. The laser
resonator is formed by a 3 mm × 3 mm × 0.75 mm Nd:YVO4

crystal plate with the coating on both surfaces. The surface near
the pump light is coated to be antireflective at the pump wave-
length of 808 nm and highly reflective (R > 99.8%) at the las-
ing wavelength of 1064 nm, and the output surface is coated
with 5% transmittance at a wavelength of 1064 nm. The pump
light is a fiber-coupled single-mode laser diode, which is fo-
cused onto the center area of the Nd:YVO4 crystal to produce
the laser. The Nd:YVO4 microchip laser can work at room tem-
perature and pressure. The laser emitted by the Nd:YVO4

microchip is first divided into two beams by a BS. The trans-
mitted light is collimated by a lens, and differentially shifted by
AOM1 and AOM2 (CAFS-070/1-010-TEC-1064-AF-A17,
CASTECH). Here, we set the value of the frequency shift Ω
to 1 MHz. Then, it irradiates the target and the backscattered
light returns to the laser cavity through the original path, and in
this process, the light passes through the AOMs once again, so
the round-trip frequency shift is 2Ω (2 MHz). The feedback
light is loaded with the phase change information caused by
the external physical quantity, and this phase change is ampli-
fied by the intracavitary FIHG effect. Next, the laser exits the
cavity again and is reflected by the BS into the PD. The PD

Fig. 2. Frequency spectra of the output laser after feedback interference under different external optical loss states (different κ) with external
modulation frequency shift of 1 MHz. (a) κ < 10−12. (b) κ � 9 × 10−12. (c) κ � 2.5 × 10−7.

Fig. 3. Schematic diagram of the experimental setup. BS, 7:3 (trans-
mittance:reflectivity) beam splitter; L, convex lens; AOM1, 2, acous-
tic-optic modulators to provide frequency shift Ω of external light; f 0,
laser frequency; AP, aperture; T, target; PD, photodiode.
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converts the optical signal into an electrical signal in real
time and sends it to the lock-in amplifier (HF2LI, Zurich
Instruments) to extract the phase information. The specific sig-
nal demodulation process diagram is shown in Fig. 4.

As shown in Fig. 4, the driving signal of the AOMs and the
detected signal received by the PD are sent into the reference
terminal and signal terminal of a lock-in amplifier, respectively.
In the signal from PD, the frequencies of all levels of harmonics
representing phases with different magnifications are included.
Therefore, to obtain an N -fold amplified phase change, we first
convert the reference electrical signal driven by AOMs into an
N -multiple frequency, which is easy to achieve for electrical
signals; then, the signal from PD and the signal from AOMs
pass through a mixer and low-pass filter, the high-frequency
part is filtered out, and I∕Q items are operated by an arctan-
gent function to get the corresponding phase change after
N -fold amplification. By writing a program to directly control
the lock-in amplifier, we can obtain the phase change after
amplification in real time.

In our proposed method, we directly obtain the phase
through quadrature phase-sensitive detection, rather than
observing the changes in light intensity detected by the photo-
detector to calculate the oscillation period and restore the
phase, which is used in the NOON state method. Compared
with the phase acquisition method adopted in the NOON state
method, the proposed method has advantages of precise trace-
ability of the phase and resistance to light intensity drift, thus
promising a high accuracy for the amplified phase measure-
ment. In addition, since the lock-in amplifier allows multiple
groups of reference signals to be input at the same time, we only
need to input the AOM signals into the lock-in amplifier after
different frequency multiples, so that the phase changes of dif-
ferent magnifications can be obtained simultaneously without
changing the optical path structure.

We use a common aluminum block instead of the mirror
placed in the traditional Michelson interferometer as the target,
and put it at a distance of about 0.5 m from the LFFI. At this
time, the backscattered light from the surface of the aluminum
block reinjects to the laser cavity, which induces the generation
of harmonics in the cavity. The specific experimental results are
as follows.

3. RESULTS

When the intracavity light field is modulated by the light scat-
tered back by the external aluminum block, we can observe the
laser output from the fundamental wave to the 11th harmonic
on the frequency spectrum analyzer. Figures 5(a)–5(k) show the
corresponding frequency spectra of the fundamental wave to
the 11th harmonic. It should be noted that due to the small
frequency deviation of the AOMs, the frequency of the funda-
mental wave is 1.9995 MHz rather than perfect 2 MHz, which
results in the center frequency of higher harmonics being an
integral multiple of 1.9995 MHz.

The aluminum block is placed on the precision displace-
ment stage, whose movement will change the optical path dif-
ference (OPD) to change the phase of the light. First, we show
the result of the change of the phase without unwrapping with
the OPD change of 2 μm in Fig. 6, which can intuitively
show the periodic change of the phase oscillation after ampli-
fication under the FIHG effect.

The y-axis and x-axis in Fig. 6(a) represent the phase change
without unwrapping and the OPD change, respectively. In
Fig. 6(a), we can see that the phase oscillation period under the
FIHG effect decreases to 1/4 of the original period. For the
phase changes that are not amplified or are amplified, the graph
presents a periodic serrated curve. In theory, the period of each
serration represents a perfect 2π phase change, as shown in
Fig. 6(a). The numbers marked on each serration represent
the corresponding phase change period for the original or am-
plified phase change. In Fig. 6(a), the original phase change has
only one complete cycle (one complete serration), while the
phase change after magnification has six complete cycles (six
complete serrations). For the original phase change, we obtain
the actual change value of 1.9993π for one cycle, with an error
relative to the theoretical value of 0.0007π and an error rate of
0.035%. For the amplified phase, we also calculate the actual
phase change value for each cycle, as shown in Fig. 6(b), and we
can get that for the amplified phase, the maximum phase
deviation in all cycles is 0.0196π and the average phase
deviation is 0.0102π. The maximum deviation rate and the
average deviation rate are 0.98% and 0.51%, respectively.

Although the phase without unwrapping can more intui-
tively represent the result of phase oscillation, in the actual pre-
cision measurement, we usually need to obtain the unwrapped
phase. After unwrapping, the phase change Δφ is theoretically
linearly proportional to the OPD change ΔL, as shown in
Eq. (4):

Δφ � N
2π

λ
ΔL, N � 1, 2, 3… (4)

Here, N represents the phase amplification coefficient, and λ is
the wavelength of the laser.

Therefore, next, we use the unwrapped phase change to fully
demonstrate the ability of the nonlinear LFFI to amplify the
phase. The interference results of different harmonics are dem-
onstrated in Figs. 7(a)–7(d), which show the comparison results
of the original phase change with two, four, eight, and eleven
times amplified phase changes, respectively.

The y-axis and x-axis in Fig. 7 represent the unwrapped
phase change and the OPD change, respectively, and the slope

Fig. 4. Flowchart showing the signal processing process of obtaining
amplified phase change through lock-in amplifier. Mixer, frequency
mixer; LPF, low-pass filter; I, in-phase component; Q , quadrature
component; A, θ, amplitude and phase of the signal, respectively;
NΔφ, phase output after N -fold amplification.
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Fig. 5. Corresponding frequency spectra of different harmonics in laser cavity, with corresponding SNR of each spectral peak marked in each sub-
figure. (a) Fundamental wave. (b)–(k) Second through eleventh harmonics.

Fig. 6. Schematic diagram of phase amplification result and measurement values. (a) Result of the original phase change and quadrupling phase
change without unwrapping. (b) Actual value of the phase change in each cycle after amplification and the average phase change value.
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of each curve represents the corresponding phase change rate.
We use the phase change of the fundamental wave of the LFFI
to obtain the OPD. When the displacement stage moves, the
optical length path changes, causing the phase of the LFFI to
change accordingly. According to Eq. (4), we can directly con-
vert the phase into the OPD. Moreover, by utilizing the multi-
channel demodulation function of the lock-in amplifier, we can
simultaneously obtain amplified phase information through
other channels, which ensures that all phase information is ob-
tained in the same OPD change. Using the set displacement
value (1 μm) of the displacement stage as the standard value,
the deviation between the measured value and the standard
value is about 4 nm. From Fig. 7, we can see that the LFFI can
produce 11 times phase amplification through the FIHG effect
when the target is non-cooperative.

To evaluate the phase errors, we take the corresponding
phase values for OPD change values of 0.5 μm, 1 μm, 1.5 μm,
and 2 μm in each sub-figure in Fig. 7 for error analysis. Based
on Eq. (4), we can theoretically obtain the corresponding stan-
dard phase values at different OPDs, as shown in Fig. 8.

By combining the phase values of each point in Figs. 7
and 8, we can obtain the phase errors at different positions, as
shown in Fig. 9.

As shown in Fig. 9, we can calculate the maximum deviation
rates [(deviation/standard value) × 100%] of the original phase
measurement and the phase measurement after two, four, eight,
and eleven times magnification, which are 0.37%, 0.37%,
0.34%, 1.10%, and 0.74%, respectively.

In order to further prove the application potential of the
phase amplification method based on the FIHG effect in
the field of precision metrology and other fields, we carry out
the phase amplification experiment for a non-cooperative target
at a long distance. The physical device of the experiment and
the results of the phase amplification are shown in Fig. 10.

The aluminum block is placed about 130 m away from the
LFFI, whose output light power is 10 mW. In this case, the

light energy Er received by the LFFI returned from the target
in each feedback modulation cycle is about 1.216 × 10−18 J,
which is equivalent to seven photons’ energy. The specific cal-
culation method of evaluating the received energy can be seen
in Appendix A. At this time, we confirm that the proposed non-
linear LFFI can still achieve four times phase amplification, as
shown in the Fig. 10(c). Moreover, if the light collecting system
can be further improved, which is equivalent to increasing the
effective reflectivity of the external cavity, we can achieve higher
magnification phase amplification.

In addition, in the above experiments, the targets we detect
are all non-cooperative targets, which means higher external
optical loss than that brought by cooperative targets such as
reflective mirrors. Nevertheless, it does not mean that the
LFFI cannot detect cooperative targets; in some scenarios where
reflective mirrors can be used, the optical loss caused by the

Fig. 7. Comparison of the original unwrapped phase change with
two, four, eight, and eleven times amplified unwrapped phase change.
(a) Two times amplification. (b) Four times amplification. (c) Eight
times amplification. (d) Eleven times amplification.
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Fig. 8. Theoretical standard phase values corresponding to different
OPDs (0.5 μm, 1 μm, 1.5 μm, 2 μm) at different magnifications.

Fig. 9. Errors between measured values and standard phase values
corresponding to different OPDs (0.5 μm, 1 μm, 1.5 μm, 2 μm) at
different magnifications. (a) Two times amplification. (b) Four times
amplification. (c) Eight times amplification. (d) Eleven times
amplification.
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reflector can be negligible, and at this time, more feedback pho-
tons will excite a more intense harmonic effect in the laser cav-
ity to induce higher-order harmonics, which also means we can
achieve higher magnification of phase change. So, next we re-
place the aluminum block with a reflective patch as the mea-
sured target and rotate it by an angle to prevent the cavity from
entering a chaotic state due to the strong feedback light, at
which point we observe harmonics of up to 20 times in the
output frequency spectrum of the laser, which is shown
in Fig. 11.

It shows us the possibility of the LFFI to provide 1/20 phase
super-resolution measurement under the application scenarios

of traditional interferometers such as Michelson and Mach–
Zehnder.

4. DISCUSSION AND CONCLUSION

We propose a method that can amplify the relative phase
change in laser interferometry based on the FIHG effect.
We achieve 11 times phase amplification in the proposed non-
linear LFFI by demonstrating the magnification of the phase
change rate to 11 times the original change rate (equivalent
to changing the period of phase change to 1/11 of the original
period). In our demonstration experiments, the phase change is
caused by the OPD change. In fact, as long as the phase in-
formation can be loaded into the light, regardless of the physical
quantity that causes the phase change, we can perform super-
resolution measurements of the phase through the FIHG effect.
In addition, we verify that the proposed system also has a phase
amplification ability for weak signals returned by long-range
non-cooperative targets, which indicates that it has a wide range
of application scenarios for most real-world targets that cannot
be measured by installing reflective mirrors.

Below, we will discuss the impact of the signal-to-noise ratio
(SNR) of harmonics on demodulation. From the SNR of differ-
ent harmonic peaks marked in Fig. 5, it can be seen that for
higher-order harmonics, the SNR decreases gradually compared
with the fundamental wave. This decrease in SNR has certain
limitations on obtaining the amplified phase. We will explain
this below.

The theoretical expression for the SNR of theN th harmonic
generated due to the FIHG effect can be described as [23]

Fig. 10. Physical device of the long-distance experiment and the results of phase amplification. (a) Diagram of the experimental system and the
target (aluminum block) in the corridor; inside the red frame is the overall schematic diagram of this long-distance experiment. (b) Diagram of the
mirror used to turn the light path, which makes distance from the target to the LFFI reach 130 m. (c) Result of the phase amplified by two times and
four times.

Fig. 11. Corresponding frequency spectrum of the 20th harmonic
in laser cavity.
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SNRN � PN

2hνΔF
: (5)

Here, PN and ΔF represent the power possessed by theN th
harmonic and the demodulation bandwidth, respectively, h is
Planck’s constant, and ν is the frequency of the used laser.
When the initial laser power of the LFFI and the reflectivity
of the measured target are determined, the power possessed
by the N th harmonic can be considered deterministic. As
the order increases, the harmonic power will decrease, leading
to a decrease in the SNR, which is consistent with the results
shown in Fig. 5. On the other hand, the SNR and the demodu-
lation bandwidth ΔF of the LFFI are inversely proportional,
and ΔF needs to be no less than the Doppler frequency shift
f d caused by the target motion (ΔF ≥ f d ), in order to ensure
that the system can accurately obtain all phase changes gener-
ated when the target moves. The Doppler frequency shift f d
can be determined by Eq. (6):

f d � 2v
λ
: (6)

Here, v is the speed of the target’s movement, and λ is the
laser’s wavelength. By analyzing Eq. (6), it can be concluded
that f d is directly proportional to the velocity of the target’s
motion (this represents the velocity of phase change from
the perspective of phase change). In other words, for a target
with higher motion speed (higher phase change speed), the gen-
erated f d is larger, and the required ΔF is larger. However, the
larger the ΔF , the smaller the SNR. By combining Eq. (5) and
Eq. (6), it can be concluded that for the higher-order harmonic,
the SNR is reduced compared to lower-order harmonics (under
the same demodulation bandwidth), so the system demodula-
tion bandwidth variation it can tolerate is smaller. This means
that the target motion speed (phase change speed) it can re-
spond to is smaller, because when the target’s motion speed
increases, ΔF must also increase accordingly. For higher-order
harmonics, the SNR will reach 0 dB earlier than the fundamen-
tal wave, making it impossible to accurately obtain phase
changes. Therefore, when using the proposed method for phase
amplification, the required demodulation bandwidth should be
evaluated based on the target motion speed to ensure that all
phase information can be accurately obtained when being N
times amplified.

In addition, in terms of the relationship between phase
demodulation precision and SNR, due to the reduced SNR
of higher-order harmonics, the noise in nearby frequency bands
is more likely to affect demodulation, leading to a decrease in
accuracy. However, since the phase demodulation method we
use is quadrature phase-sensitive detection, compared to the
commonly used method in NOON states that directly judges
phase changes based on changes in light intensity, the quadra-
ture phase-sensitive detection method has a lower require-
ment for the SNR; therefore, using a lock-in amplifier for
demodulation can effectively reduce the adverse effects of the
SNR reduction, but this still requires a stable SNR higher
than 0 dB within the demodulation bandwidth of the lock-
in amplifier.

In summary, due to the different SNRs of different levels of
harmonics, the maximum target motion speed (phase change
speed) that they can respond to is different. The higher the

order, the higher the phase magnification, and the lower the
SNR (under the same demodulation bandwidth). The maxi-
mum phase change speed that the higher-order harmonic
can respond to is lower. Therefore, in practical use, it is neces-
sary to determine the required demodulation bandwidth based
on the phase change speed, and to determine the maximum
phase magnification that can be obtained under the premise
of correctly obtaining phase information.

On the other hand, when the reflector is allowed to be used,
we show the potential of the nonlinear LFFI to amplify the rel-
ative phase change by 20 times, which exceeds the maximum
phase magnification currently achievable in the NOON state.
And in our experiments, the lasers used are all low-power lasers.
By further increasing the output power of the laser to increase the
upper limit of the nonlinear harmonic effect in the cavity, or
integrating the optical amplifier to the LFFI to obtain a larger
number of reinjected photons, we may be able to get more
times of phase amplification. Apossible LFFI structure with add-
ing an optical amplifier is shown in Fig. 12, and the path
of the beam isML→ L→NPBS1→ ISO→NPBS2→M1→
OA→ AOM1→ AOM2→M2→NPBS3→ T→NPBS3→
NPBS1 → L→ML→ L→NPBS1 → ISO→NPBS2→ PD.
Although it increases the complexity of the system, the number
of the reinjected photons can be greatly improved in theory
with the integration of the optical amplifier, and greater phase
amplification through the FIHG effect in the cavity can be
achieved.

Moreover, the proposed phase amplification method has the
advantage of detecting the phase change in real time through
ordinary photodetectors compared to the method based on the
NOON state, which always requires a single photon detector to
take a long time in the coincident measurements [24,25].
Furthermore, our system has an optical loss tolerance of up
to five orders of magnitude, which makes it able to amplify
both amplitude and phase for extremely weak signals, and
the proposed FIHG process occurs in the laser cavity, which
means that we do not need to set additional nonlinear modules
in the system to achieve phase amplification. This has certain
advantages over the phase amplification method based on the

Fig. 12. Schematic diagram of the circular LFFI with adding optical
amplifier to get greater phase amplification. ML, microchip laser; L,
lens; NPBS1–3, non-polarizing beam splitters with ratios of transmit-
tance to reflectivity of 5:5, 7:3, 5:5, respectively; ISO, optical isolator;
M1, 2, mirrors; OA, optical amplifier; AOM1, 2, acoustic-optic mod-
ulators to provide frequency shift of external light; T, target; PD,
photodiode.

Research Article Vol. 11, No. 11 / November 2023 / Photonics Research 1899



three-wave mixing process, which depends on a certain effi-
ciency of the nonlinear processes [1].

The unique advantage of our proposed scheme is that after
the nonlinear LFFI phase amplifier, the external change corre-
sponding to a phase oscillation period is much smaller than that
before the amplification. At the same time, the cost of achieving
this phase super-resolution effect is rather small compared with
the method based on the NOON state [26,27] or based on the
harmonic assistance [1]. We believe that the proposed phase
amplifier could be widely used in many precision measurement
fields, such as measurements of the precision displacement [28]
and medium refractive index [29] to improve the measurement
resolution, or in the imaging process to improve the imaging
resolution [30], or to provide auxiliary analysis assistance for
other fields that need to track and study optical phase change
[31,32]. The proposed method will greatly change our under-
standing of nonlinear interference, and may provide a concise
approach of super-resolution precision measurement.

APPENDIX A: METHOD FOR EVALUATING THE
LIGHT ENERGY RECEIVED BY THE LFFI

In the case of long-distance measurement, we can get the light
energy Er received by the LFFI returned from the target in each
feedback modulation by the following equation:

Er � P0η
2ΩrT∕Ω0: (A1)

Here, P0 � 10 mW is the output power of the laser;
η � ηBSηAOMsηlens denotes the one-way light transmittance
of the system (ηBS � 0.7, ηAOMs � 0.49, ηlens � 0.985). The
total transmittance is η2 for the light passing through the sys-
tem twice.Ωr � Ar∕L2 is the entrance pupil angle of the LFFI,
Ar � πr20 is the receiving aperture area of the system, and
r0 � 6 mm is the outgoing spot radius of the system. L �
130 m is the distance from the LFFI to the target. T � 1∕f
is the feedback modulation period, and f � 2 MHz is the
feedback modulation frequency. Ω0 � π is the backscattering
angle of the measured target (assuming that it is full-angle
scattered).

Substituting all the parameters, we get Er � 1.216 × 10−18 J,
which is equivalent to seven photons’ energy per feedback modu-
lation cycle. It means that the proposed nonlinear LFFI can re-
spond to extremely weak optical signals and amplify their phase
change, which gives it broad application scenarios in the field of
precision measurement.
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