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In the modern financial industry system, the structure of products has become more and more complex, and the
bottleneck constraint of classical computing power has already restricted the development of the financial in-
dustry. Here, we present a photonic chip that implements the unary approach to European option pricing,
in combination with the quantum amplitude estimation algorithm, to achieve quadratic speedup compared to
classical Monte Carlo methods. The circuit consists of three modules: one loading the distribution of asset prices,
one computing the expected payoff, and a third performing the quantum amplitude estimation algorithm to
introduce speedups. In the distribution module, a generative adversarial network is embedded for efficient learn-
ing and loading of asset distributions, which precisely captures market trends. This work is a step forward in the
development of specialized photonic processors for applications in finance, with the potential to improve the
efficiency and quality of financial services. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.493865

1. INTRODUCTION

The pricing of financial derivatives is a prominent problem that
requires extensive computational resources, as the stochastic
nature of the underlying assets requires precise modeling.
One of the typical financial derivatives is the option, which is
a contract that allows the holder to buy or sell assets at a pre-
established price (strike) at or before a specified date (maturity
date). The payoff of an option relies heavily on the stochastic
evolution of asset price. The traditional option pricing model,
Black–Scholes–Merton (BSM) [1], usually oversimplifies market
dynamics, which limits its practical application to real-life scenar-
ios. As such, numerical methods such as the Monte Carlo
method are typically employed for handling more realistic sto-
chastic fluctuations. However, the Monte Carlo method requires
extensive computation resources and is slow to predict compli-
cated options. Reducing the computational resources required
for models and speeding up option pricing could have significant
implications for the financial industry.

Recently, quantum algorithms have shown promise in facili-
tating computationally hard financial problems such as trading,
portfolio optimization, and risk profiling [2,3], and specifically,
quantum amplitude amplification can accelerate option pricing
with quadratic speedups [4–10]. The unique advantages of
quantum algorithms will make up for the shortcomings of
classical algorithms to a certain extent, enabling massive high-
speed data services in the financial industry. However, current
experimental demonstrations using binary approaches and
standard quantum circuit models on superconducting devices
[11] require dense chip connections and high gate fidelity, mak-
ing it difficult for practical applications in the near future with-
out a universal quantum computer [12,13]. In addition,
superconducting devices require bulky, energy-intensive, and
expensive peripherals such as cooling systems, making indus-
trial-scale applications have poor prospects.

For specialized application tasks such as option pricing,
there is no need to use universal quantum computers. Photonic
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circuits can provide fundamental functions that can be com-
bined to implement specific algorithms [14–20], which would
be practical and efficient for user-cased application scenarios.
Moreover, the reduced energy costs of photonic computing
have been a driving force behind works on dedicated photonic
chips for machine learning and algebra [16,21–24]. Therefore,
we demonstrate a unary (versus binary) approach in a photonic
chip for option pricing. Compared to the binary approach, the
unary approach [9] has a remarkably simplified structure and
reduced depth of quantum circuits and is especially suitable for
linear optical circuit realizations in photonic chips. The unary
scheme also allows a post-selection strategy for error mitigation.
Additionally, we demonstrate generative adversarial learning to
upload the probability distribution implicitly given by data
samples into the photonic chip. Generative adversarial learning
has previously been demonstrated only in superconducting and
optoelectronics devices [25–30]. Compared with traditional
Monte Carlo methods, our approach shows high accuracy
and significant speedup. It provides a promising avenue for
interdisciplinary research in quantum machine learning and fi-
nancial problems, paving the way for the development of prac-
tical photonic processors for quantitative financial applications.
It can greatly improve the efficiency and quality of financial
services, which is of great significance to the rapid and steady
development of the financial industry.

2. CHIP DESIGN FOR UNARY OPTION PRICING

In this work, we focus on European option pricing, and the
expected payoff of options is given by

C�ST ,K � �
Z

∞

K
�ST − K �dST , (1)

where ST is the asset price at time T , and K is the strike price;
see European option pricing model in Appendix A. Figure 1
shows the overall scheme of our photonic-chip-based unary ap-
proach. The photonic chip [Fig. 1(a)] consists of a generative
adversarial network (GAN) and an option pricing part that in-
cludes payoff computation and amplitude estimation. In con-
trast to the classical Monte Carlo approach [Fig. 1(b)] that
requires huge computing power to simulate future asset prices
to obtain an accurate solution, our approach is expected to
show a speedup in the convergence of the standard error of
estimated payoff [Fig. 1(c)], which is proved experimentally
later in this section results.

The unary approach to option pricing encodes an asset price
distribution into the unary basis of a quantum register, as
shown in Fig. 2. A binning scheme is applied such that
Monte Carlo paths that would belong to the same interval
of asset prices end up in the same bin. Each bin is then mapped
to an element of the unary basis, whose coefficient is the ratio of
the number of Monte Carlo paths in that bin to the total num-
ber. The accuracy of unary encoding is bounded by the number
of bins that can be stored in a quantum state, i.e., the usable
dimension of the high-dimensional unary state. Based on the
unary basis, Fig. 3(a) depicts the algorithmic model for unary
option pricing, which consists of three modules: a distribution
loading module D that loads the asset price distribution into a
quantum state, a payoff calculation module P that computes
the expected return, and a quantum amplitude estimation

Fig. 1. Schematic of the unary approach to option pricing, compared to the classical Monte Carlo method. (a) Integrated photonic chip with the
unary algorithm, consisting of a generator of the generative adversarial network (GAN), payoff calculation, and quantum amplitude estimation for
acceleration. (b) Monte Carlo simulation on a classical computer, which first generates the future asset price paths based on random variables, and
then calculates the payoff. The accuracy relies on extensive simulations of random walk asset paths. (c) Expected acceleration of the convergence of
payoff errors, compared to classical Monte Carlo simulations. Shaded areas in the top inset indicate statistical uncertainty.
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module Q to gain quadratic speedup over classical sampling to
reach a target accuracy.

Figure 3(b) depicts the optical circuit model, whereby each
module of the unary algorithm is mapped to a linear optical
operator. We represent the high-dimensional state by path en-
coding a single photon using n optical waveguides. The super-
position of a single photon traveling through different
waveguides directly encodes the unary basis. This high-dimen-
sional state can be written as jψi �Pn−1

i�0

ffiffiffiffi
pi

p jii, where pi rep-
resents the probability of observing a photon in the waveguide
mode jii, and these probabilities conform to

Pn−1
i�0 pi � 1. The

payoff calculation requires an ancilla qubit to store the expected

Fig. 2. Mapping of asset prices to unary basis. (a) Classical Monte
Carlo paths partitioned into different unary bases. (b) Probability den-
sity function (PDF) according to the defined unary basis. (c) Payoff
value calculated according to the PDF and asset prices.

Fig. 3. Photonic chip design for the unary option pricing algorithm. (a) Algorithmic model of unary option pricing. The input state consists of an
n-dimensional qudit and a two-dimensional ancilla. The following modules are contained: D, distribution loading; P, payoff calculation; Q, quan-
tum operator for amplitude estimation. The amplification moduleQ is performed sequentially by Sψ → P† → D† → S0 → D → P. The expected
payoff is obtained by measuring the ancilla. (b) Optical circuit model by transforming the algorithmic model to linear optical operators. Each
element of the unary basis is represented by two waveguides, extending the n-bin unary basis to 2n-dimensional Hilbert space. Relevant linear
optical operators swp, Ry�θ�, and XZX are listed with their waveguide structures. (c) Photonic chip design and architecture. The chip is designed by
transforming the optical path model into waveguide structures and realizes the distribution loading, payoff calculation, and amplitude estimation
sequentially. The distribution loading is trained as a GAN embedded in the machine learning module.
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return for each asset price, expanding the Hilbert space of the
algorithm to 2n. To avoid non-local controlled gates in the
photonic chip implementation, we instead add an ancillary
waveguide to each of the n unary waveguide modes to represent
the effect of the ancilla qubit. Each element of the unary basis is
now represented by two waveguides. This way, the controlled
operations of the original algorithm are converted to linear
transformations on the optical circuit. The architecture of
the photonic processor with the detailed chip design is shown
in Fig. 3(c), which replaces each linear optical operator with the
corresponding waveguide structure. The entire chip is reconfig-
urable via wire bonds and integrated thermo-optic phase shift-
ers; see the experimental setup in Appendix B.

In the distribution loading module D, a single photon is
incident into the chip from a waveguide in the middle of the
circuit, which encodes the ancilla in its j0i state, e.g., for a
three-asset case, the initial input state can be written as the ten-
sor product of the middle unary qudit and the ancilla qubit as
�0, 1, 0� ⊗ �1, 0� � �0, 0, 1, 0, 0, 0�. The distribution of asset
prices is then uploaded to the different waveguides using a lin-
ear depth circuit. This distribution loading circuit spreads the
superposition to the neighboring basis using swp operators:

swp �

0
B@

I ffiffiffi
p

p ffiffiffiffiffiffiffiffiffiffi
1 − p

pffiffiffiffiffiffiffiffiffiffi
1 − p

p
−
ffiffiffi
p

p
I

1
CA ⊗ I , (2)

where p depends on the target distribution. The procedure is
repeated until the edge of the circuit is reached. The distribu-
tion loading module can be reconfigured to obtain any target
probability distribution in the unary representation. Precisely,
given n assets, the depth of the circuit is always b�n� 1�∕2c,
and the loading of any known probability distribution onto the
unary basis depends on �n − 1� splitting parameters p. The gen-
erator of a GAN is embedded in this module. The GAN is
employed to capture the probability distribution underlying
given market data. The details are presented in the next section.

The payoff calculation moduleP encodes the expected payoff
as the probability of measuring the photon in the waveguides
encoding the ancilla in state j1i, using rotation operations be-
tween the two waveguides of each element of the unary basis.
The rotations encode the expected return for each asset price
in the distribution. This action, labeled P, can be written as

P �

0
BBBBB@

M 0

M 1

. .
.

Mn−1

1
CCCCCA, Mi �

�
cos θi − sin θi

sin θi cos θi

�

(3)

for a 2n-waveguide, n-bin example.
A quantum amplitude estimation module Q is applied to

achieve quantum speedups. Various amplitude estimation tech-
niques have been presented that are friendly to NISQ devices
[31–33]. Here, we implement an amplitude estimation algo-
rithm without quantum phase estimation in the photonic
circuit, following the technique used in Ref. [9]. Increasing
steps of amplitude amplification are applied to estimate the

relevant amplitudes with up to a square root advantage oversam-
pling from the original distribution. This amplification module
Q is performed by applying the following operators. First, Sψ
identifies the amplitudes that encode the expected payoff and
reverses their signs. Explicitly, for the three-asset example at
hand, such an operation is Sψ � diag�1, − 1, 1, − 1, 1, − 1�,
and is realized experimentally by applying a phase shift of π
on the second waveguide of each element of the unary basis.
Then, the original operations are reversed, that is, the inverse
of the payoff calculator P† and the distribution loading D†

are applied. An operator S0 follows, which reverses the sign
of the initial state of the computation. Experimentally, it is ap-
plied by introducing a phase shift of π to the waveguide where
the photon was introduced. The last step is to repeat the distri-
bution loadingD and the payoff calculator P modules. The am-
plitude amplification operator Q � P ·D · S0 ·D† · P† · Sψ is
repeated a different number of times, and the results are proc-
essed to estimate the expected payoff. This technique provides up
to quadratic speedups over ordinary sampling in the number of
calls to theD andP operators to reach the same confidence level;
see theoretical derivations in Appendix C.

3. GAN FOR DISTRIBUTION UPLOADING

A GAN is implemented in the distribution loading module
with on-chip training for real-time noise perception. The goal
of the GAN is to obtain an intelligent generator at the chip
parameter level that captures the probability distribution be-
hind the given market data without simulating enormous ran-
dom paths, accumulating data statistics, and then fitting them
into the chip architecture. With the GAN, we can efficiently
load the classical data, i.e., the probability distribution under-
lying market data, into quantum states and obtain more precise
payoff calculations with the presented unary option pricing
methods.

GANs train a generator (G) to synthesize semantically
meaningful data from standard signal distributions, as well
as a discriminator (D) to distinguish real samples in the training
dataset from fake ones produced by the generator [34], as de-
picted in Fig. 4(a). As its adversary, the generator aims at de-
ceiving the discriminator by producing more realistic samples.
Training GANs involve the search for a Nash equilibrium of a
two-player game between a generative and a discriminative net-
work, which can be formulated as

min
G

max
D

Ex∼preal�log�Dϕ�x��� � Ez∼pz �log�1 − Dϕ�Gθ�z����,
(4)

where the generative network Gθ takes noisy samples z from a
normal or uniform distribution pz as input, and x comes from
the real distribution preal. The discriminative network Dϕ tries
to distinguish the generated (fake) sample Gθ�z� and real sam-
ple x by projecting their output to f0,1g. θ and ϕ are free
parameters that construct the generator and discriminator. The
training procedure is complete when the generator wins the
adversarial game, that is, the discriminator cannot make a better
decision than random guesses on the validity of a sample.

We develop a hybrid GAN implementation that consists of
a generator network in the photonic chip, a classical discrimi-
nator network, and a control system that communicates
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between the classical computer and photonic chip, all depicted
in Figs. 4(b)–4(d). The generator is parameterized by the angles
on the phase shifters that are reconfigurable through the
thermo-optic effect, induced by applying tiny electrical power
to the integrated heaters. Instead of a noise distribution as in-
put, we utilize the uncertainty of photons appearing at different
waveguide modes to achieve the equivalent randomness for the
generator. The fake samples are the probability distribution of
the photons at different waveguide modes. The real samples are
drawn from the desired probability distribution, a log-normal
or normal distribution for the examples presented in Fig. 5.
Fake and real samples sequentially enter the classical discrimi-
nator to achieve the classification results. The discriminator
is a classical neural network implemented with TensorFlow.
We then explicitly discuss the training of the GAN with data
samples drawn from the log-normal distribution and the nor-
mal distribution.

The training process of the GAN in a photonic chip intro-
duces two challenges, the difficulty of obtaining gradients due
to the stochastic nature of measurements, and the phenomenon

that the discriminator easily overpowers the generator. To cir-
cumvent these problems, we propose a hybrid training strategy,
where the generator is optimized under a gradient-free evolu-
tionary algorithm, while the classical discriminator uses a gra-
dient descent optimizer. Additionally, the Wasserstein distance
[35,36] is used to train the GAN, which changes the dynamic
between the generator and the discriminator. In this new GAN
scheme, the discriminator acts as a critic, instead of classifying.
It aims to give a high score to real instances over fake ones,
effectively alleviating the problem of unstable GAN training.

4. RESULTS AND DISCUSSION

A. GAN Results
Our chip can accommodate the entire option pricing process of
distribution loading, payoff calculation, and amplitude estima-
tion for three option assets. However, training three bins is too
trivial to demonstrate the ability to implement GANs on a pho-
tonic chip. Here, to demonstrate the GAN, we employ a chip
that supports up to eight bins to demonstrate the generation of
probability distribution. Figure 5(a) shows the probability dis-
tribution of the generator output compared to the real log-nor-
mal distribution. Figure 5(b) shows the convergence of the l2

norm between the fake and real samples, of 100 training iter-
ations. For generator output g and real distribution x, the l2

norm is defined as

l2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i�1

�xi − gi�2
s

: (5)

The results for a target normal distribution are shown in
Figs. 5(c) and 5(d). For both examples of log-normal and nor-
mal distributions, the final l2 norm between the generator out-
put and the real distribution stabilizes at −18 dB.

By training this generative model directly on the photonic
chip, we bypass the need to solve the BSM equations while
capturing the nuances that the simplified method overlooks.

Fig. 4. GAN on the photonic chip for precise asset distribution up-
loading. (a) Algorithm of GAN, composed of a generator and a dis-
criminator. (b) Generator implemented by a variational photonic
circuit, which is trained on-chip in real time. The probability distri-
butions accumulated on the waveguide paths are used as fake samples.
Real samples are the training targets taken from market data in real
applications. (c) Classical discriminator consisting of sequential con-
volutional layers and trained by a gradient descent algorithm. The dis-
criminator aims to distinguish the source of the input sample, from the
generator or a real distribution. The cost function is calculated from
the discriminator output and used to train the discriminator itself and
the generator. (d) The generator is trained by an evolutionary optimi-
zation procedure where populations (e.g., different configurations of
the generator ansatz) are generated, evaluated, and iterated. The evalu-
ation is accomplished using the scores granted by the discriminator.
New generations are produced via the operators of selection, crossover,
and mutation of current populations.

Fig. 5. Experimental training performance of the GAN under
Wasserstein distance. (a), (c) Comparison between the probability dis-
tributions obtained experimentally from the generator (solid line with
data points) and the target distribution (histogram). (b), (d) Evolution
of the l2 norm between the fake and real samples with increasing
training iterations. (a), (b) Log-normal distribution; (c), (d) normal
distribution.
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Concurrently, it incorporates environmental elements that are
hard to model, such as cross talk and chip imperfections into
the GAN training. Another feature of using GANs for the am-
plitude distribution step is that we can tailor the variational
ansatz to construct short-depth circuits for a given degree of
accuracy, even in a more general case with multiple photons.

B. Unary Option Pricing Results
As a proof of principle, the fabricated photonic chip supports
an option pricing problem with three asset values, whose sche-
matic diagram is shown in Fig. 6(a). The chip has six waveguide
inputs: each pair represents one element of the unary basis and
the ancilla qubit state. The chip is divided into distribution
loading, payoff calculation, and then m runs of amplitude am-
plification. To stay within the depth constraints of this proof of
concept, the circuit’s unitary matrix is multiplied and uploaded
into the photonic chip at a constant depth. The single-photon
measurement is performed at the waveguide modes that re-
present ancilla state j1i for asset prices larger than the strike
value. The comparison between the theoretical payoff and es-
timation achieved experimentally is shown in Fig. 6(b), with
increasing iterations of amplitude estimation. The performance
of the amplitude estimation is shown in Figs. 6(c) and 6(d). In
Fig. 6(c), the dotted line represents the theoretical payoff

expectation, the solid line with data points represents the ex-
perimental results, and the shaded area represents the standard
deviation (STD) of 50 measurements performed in each step of
amplitude estimation. The progression of m from 0 to 50
(m � 0 being a classical sampling of payoff calculation) dem-
onstrates the convergence of the STD. Similarly, in Fig. 6(d),
we visualize the convergence of the payoff error with more am-
plitude estimation runs. The amplitude estimation improves
the accuracy of the expected payoff for a certain number of
circuit runs.

The structure of the unary algorithm allows a simple but
efficient design of photonic chips, especially when loading
probability distributions into quantum registers since only local
interactions between neighboring waveguides are required.
This, however, is inaccessible for the binary alternative, where
high connectivity is required to offset the exponential Hilbert
space available; see the unary and binary comparison in
Appendix D. The optical circuit that implements the unary ap-
proach requires a linear number of waveguides scaling with the
required precision, which coincides with the remarkable scal-
ability of photonic chips. Instead, avoiding the use of controlled
operations via ancilla waveguides bypasses one of the main bot-
tlenecks of photonic chips in quantum computing: the obstacle
of realizing photon interactions.

Fig. 6. Experimental results of option pricing with three asset values. (a) Illustration of the optical chip with payoff calculation and amplitude
estimation module. OperatorQ is repeated up to m (m ≤ 50) times. The payoff is measured on waveguides that encode the ancilla in state j1i when
the asset price is larger than the pre-defined strike value. (b) Comparison between theoretical expectations and experimental results of the payoff,
represented in angles. The raw angles �2m� 1�θ are shifted back to the original angles θ, and the differences from theoretical expectations are
recorded as errors. (c) Standard deviation (STD) of the expected payoff with increasing iterations of the amplitude estimation module. The STD
converges from the initial ∼0.2 to less than 0.004. Iterations from 20 to 50 are zoomed in. (d) Error in payoff estimation between theoretical and
experimental results, with increasing iterations of amplitude estimation. It shows a speedup in convergence compared to the Monte Carlo method.
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Speedup is achieved in our work much akin to proposals for
quantum search without entanglement [37,38], whereby poly-
nomial speedup of unstructured search is achieved with a single
photon at the cost of exponential resources. In particular, iso-
morphisms exist between a system of n qubits and a qudit re-
siding in a 2n Hilbert space (systems presented in this thought
experiment and our implementation) [39]; thereby the unary
implementation on a photonic chip displays entanglement in
the path encoding of the single photon. Coherent light can
achieve a similar effect with a high sampling rate, which is ad-
vantageous in near-term use case scenarios, with some trade-
offs for the random behavior of single photons in the generator
part of the GAN.

The presented avenue to achieve speedup in option pricing
is scalable in the photonic chip. It transforms the unary algo-
rithm’s need for increasing qubits into a need for waveguide
paths, which are highly scalable in photonic chips. For further
scalability, in the presented experiment, the photon detectors
placed in ancilla waveguides could be combined into a single
one, as only the counts of photons in any ancilla qubit are
needed, hence significantly reducing the resources needed to
scale this approach to meaningful problems. The energy effi-
ciency of photonic chips also promises a relevant advantage be-
yond a complexity separation between quantum and classical
algorithms. Given an energy budget instead of a shot budget,
the photonic implementation of the unary approach to option
pricing can yield a significant advantage in the number of op-
erations performed.

5. CONCLUSION

This work is the first demonstration of photonic chips for fi-
nancial applications. As a proof of concept, we implement the
unary option pricing algorithm in a photonic chip for European
options, which includes the generation of amplitude distribu-
tion of the asset value, evaluation of expected return, and am-
plitude estimation. We prove the high accuracy in calculating
the payoff function, as well as the effectiveness of amplitude
estimation in reducing the number of evaluations to reach the
same degree of accuracy when compared to classical sampling.
The unary representation remarkably simplifies the structure
and reduces the depth of quantum circuits in the linear optical
circuit implementation. Such photonic devices could eventu-
ally be an eco-friendly alternative to electronic circuits.
Furthermore, we demonstrate an on-chip training of a GAN
that successfully captures important market dynamics in
real-life scenarios, bypassing the simplified assumptions in
the BSM model that limit its accuracy, as well as the computa-
tional burden in solving differential equations. The photonic
chip could be potentially employed for other options pricing,
paving the way for developing dedicated processors in finance
applications.

APPENDIX A: EUROPEAN OPTION PRICING
MODEL

The Black–Scholes model is a typical economic model used to
calculate the evolution of asset prices in financial markets,
known as the European option pricing problem. In this model,
the evolution of option price ST at time T is decided by two

market properties: interest rate r and volatility σ, which are ex-
pressed by the stochastic differential equation

dST � ST rdT � ST σdWT , (A1)

whereWT describes a Brownian process, which is a continuous
stochastic evolution starting at W 0 � 0 and consists of
independent Gaussian increments. Specifically, let N �μ, σs�
be a normal distribution with mean μ and STD σs; then
the increment of two steps of the Brownian processes is
WT −W S ∼N �0,T − S�, for T > S. The stochastic differen-
tial equation can be approximately resolved to first order, and
the solution is

ST � S0e�r−
σ2

2 �T eσWT ∼ eN��r−σ22 �T , σ
ffiffiffi
T

p �, (A2)

which is a log-normal distribution. The process of solving the
stochastic differential equation is valid for the simplified
European option model, while for more practical cases, an ana-
lytical solution does not exist, and even numerical simulation is
costly. To get the expected return, a payoff calculation block is
integrated over the resulting probability distribution. The pay-
off function is given by

f �ST ,K � � max�0, ST − K �, (A3)

producing the expected payoff

C�ST ,K � �
Z

∞

K
�ST − K �dST , (A4)

where K is the strike.

APPENDIX B: EXPERIMENTAL SETUP AND
SINGLE-PHOTON GENERATION

The entire packaged chip is shown in Fig. 7. Each phase shifter
is independently controlled by an electronic current driver with
1-kHz frequency and 12-bit resolution. Output photons are
filtered via wavelength division multiplexing (WDM) to re-
move the residual photons, and then detected by superconduct-
ing nanowire single-photon detectors (SNSPDs) (PhotonSpot,
100 Hz dark counts, 85% efficiency). Polarization controllers
are placed before the SNSPDs as the detectors are polarization
sensitive. A time tagger (Swabian Instrument) is used to count
the single-photon events, which can support more than 40 mil-
lion events per second. A temperature controller is used to

Fig. 7. Fabricated quantum photonic chip.
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stabilize the chip temperature and reduce thermal fluctuations
caused by possible cross talk.

A degenerated photon pair is used in our experiment. The
pump laser is generated from the Ultrafast Optical Clocks de-
vice (PriTel) with a repetition rate of 500 MHz, central wave-
length of 1550.116 nm, and bandwidth of 1.9 nm. A dual
pump scheme is employed to generate pairs of identical pho-
tons on chip with a degenerated spontaneous four-wave mix-
ing (SFWM) process. On the chip, the desired state jψi � j11i
is generated out of the two-photon N00N state jψi �
1ffiffi
2

p �j20i � j02i�, by configuring the phase value θ � π∕2
when interfering the two photons.

APPENDIX C: THEORY OF UNARY OPTION
PRICING

By solving the aforementioned BSM model, the probability
density function of the option price can be described by a
log-normal distribution. We map this continuous price distri-
bution into n discrete values, which are the amplitudes of n
orthogonal quantum state basis, by using a probability loading
operator D acting on an initial state jψ inii as

Djψ inii �
Xn−1
i�0

ffiffiffiffi
pi

p jψ iin, (C1)

where each state jψ ii represents a discrete option price value Si,
and pi is the corresponding probability. These quantum state
bases are orthogonal so that hψ ijψ ji � δij. The payoff is ob-
tained by accumulating the asset value under its corresponding
probability. The payoff of the European option in this discrete
scenario can be simplified as

C�ST ,K � �
Xn−1
0

pi · f �Si,K � �
Xn−1
Si>K

pi · �Si − K �, (C2)

where K is the strike price. The rotation angles after being nor-
malized by the maximum asset price Smax are given by

θi � max

 
0, arcsin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Si − K
Smax − K

s !!
: (C3)

This payoff calculation can be mapped to the quantum model
by introducing an ancilla qubit into the original quantum state
followed by a controlled rotation gate CR defined as

CR �
Xn−1
i�0

jψ iihψ ij ⊗ Ry�2θi�: (C4)

Then, the expected payoff of the option price is related to
the amplitude of the ancilla qubit in the form of

jψi � CR ·
Xn−1
i�0

ffiffiffiffi
pi

p jψ ii ⊗ j0i

�
Xn−1
i�0

ffiffiffiffi
pi

p
cos θijψ iij0i �

ffiffiffiffi
pi

p
sinθi jψ iij1i: (C5)

By measuring the ancilla qubit under basis j1i, we can achieve
the result as

jh1jψij2 �
Xn−1
i�0

pi · sin
2θi �

C�ST ,K �
Smax − K

: (C6)

Thus, the payoff of the option price can be directly read out
from the measurement results of the ancilla qubit under basis
j1i. Then, we explain how the amplitude estimation works.
The payoff calculation [Eq. (C5)] can be simplified as

CR · D · jψ iniij0i � cos αjψaij0i � sin αjψbij1i, (C7)

where α is the normalized parameter, and jψai and jψbi are the
normalized states

jψ ai �
Xn−1
i�1

ffiffiffiffi
pi

p
cos θijψ ii, jψbi �

Xn−1
i�1

ffiffiffiffi
pi

p
sin θijψ ii:

(C8)

The ancilla qubit is functioning as an indicator to identify the
useful state. The amplitude amplification step begins by apply-
ing an oracle operator Sψ on state ψ with the form

Sψ � I − 2
Xn−1
i�0

jψ iihψ ij ⊗ j0ih0j (C9)

to produce a sign change on the ancilla qubit state j0i that we
want to perform the amplitude estimation. Then, we add an
inversion operation of the previous payoff calculation CR
and distribution loading operator D followed by another sign
flip operation S0 on the initial state as

S0 � I − 2jψ iniihψ inij ⊗ j0ih0j, (C10)

and the last step is to apply D and CR again so that the am-
plitude estimation operator Q can be written as

Q � CR · D · S0 · D† · CR† · Sψ : (C11)

By repeating the Q operator m times, the full amplitude esti-
mation can be represented as

Qm · CR · D · jψ iniij0i
� cos�2m� 1�αjψaij0i � sin�2m� 1�αjψbij1i: (C12)

Therefore, the measurement of the ancilla qubit under basis
j1i after repeated amplitude estimation would yield the results
of sin2�2m� 1�α for us to infer the payoff of the option price

Fig. 8. Simulation of the scaling of quantum AE and classical MC.
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with improved accuracy. The amplitude estimation scheme we
use here is an iterative approach [9]. This procedure is based on
the theory of confidence intervals for binomial distributions
[40] and uses samples of increasing amplitude amplification
[4] steps to better estimate the value of the target amplitude.
The quantum amplitude estimation algorithm achieves quad-
ratic speedups when compared to classical Monte Carlo meth-
ods of option pricing:

O
�

1ffiffiffiffi
m

p
�

→ O
�
1

m

�
, (C13)

where m is the number of quantum samples used. The com-
parison between quantum and classical scaling factors is de-
picted in Fig. 8, exhibiting a trend that aligns well with our
experimental results shown in Fig. 6(d).

APPENDIX D: UNARY AND BINARY
COMPARISON

The utilization of a unary approach [9], instead of the com-
monly adopted binary approach [6,11], distinguishes this work
from other quantum approaches. The key advantage of the
unary method is its ability to implement all the necessary quan-
tum operations within the option pricing algorithm using a lin-
ear optical circuit. In contrast, the binary approach relies on
two-qubit controlled operations, which cannot be determinis-
tically achieved in a photonic chip. The comparison between
unary and binary approaches is summarized in Table 1. The
unary method has a simple chip architecture, no need for phase
estimation, scalable gate count, accurate distributed loading,
and robustness in payoff computation.
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