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With the development of controllable quantum systems, fast and practical characterization of multi-qubit gates
has become essential for building high-fidelity quantum computing devices. The usual way to fulfill this require-
ment via randomized benchmarking demands complicated implementation of numerous multi-qubit twirling
gates. How to efficiently and reliably estimate the fidelity of a quantum process remains an open problem.
This work thus proposes a character-cycle benchmarking protocol and a character-average benchmarking pro-
tocol using only local twirling gates to estimate the process fidelity of an individual multi-qubit operation. Our
protocols were able to characterize a large class of quantum gates including and beyond the Clifford group via the
local gauge transformation, which forms a universal gate set for quantum computing. We demonstrated numeri-
cally our protocols for a non-Clifford gate—controlled-�TX � and a Clifford gate—five-qubit quantum error-
correcting encoding circuit. The numerical results show that our protocols can efficiently and reliably characterize
the gate process fidelities. Compared with the cross-entropy benchmarking, the simulation results show that
the character-average benchmarking achieves three orders of magnitude improvements in terms of sampling
complexity. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.473970

1. INTRODUCTION

Characterizing a quantum process has great importance in
both the fundamental study and practical application of quan-
tum information science. With the recent advent of noisy in-
termediate-scale quantum computing [1], benchmarking of
quantum operations is critical for quantum control [2,3] as
it provides an indicator for assessing experimental devices.
Furthermore, it is essential for the development of high-
precision quantum information processing instruments. Accu-
rate benchmarking can reliably characterize the noise levels of
quantum operations, and it plays a critical role in promoting
fault-tolerant universal quantum computing [4,5]. In practice,
we must evaluate the performance of a quantum circuit to
verify whether a quantum algorithm or an error-correcting code
is properly implemented in a quantum system.

Numerous approaches have been proposed to characterize
quantum processes. Conventional methods such as quantum
process tomography [6] provide a full description of a channel.
However, these methods are impractical for large-scale quan-
tum systems as the required experimental resources increase
exponentially with the number of qubits, even with state-of-
the-art techniques such as compressed sensing [7,8]. Direct
fidelity estimation [9] tackles the scaling problem and charac-
terizes the quantum process in terms of average fidelity.

Unfortunately, the result inevitably contains extra errors from
the state preparation and measurement (SPAM) and hence
often over-estimates the noise levels. In reality, SPAM errors
usually grow rapidly with the system size so that it is hard to
characterize the quantum process accurately for large-scale
quantum systems with direct fidelity estimation.

Randomized benchmarking (RB) and its variants have been
proposed to avoid simultaneously the scaling problem and
SPAM errors [10–16]. Standard RB estimates the average
error rate of a specific gate set under the assumption of gate-
independent or weakly-dependent noise. The gate set is nor-
mally selected to be the Clifford group and has been widely
implemented in experiments [17–24]. Otherwise, to character-
ize a specific Clifford gate, a variant called interleaved RB was
proposed. It utilizes random Clifford gates interleaved with the
target gate [25]. The random gates here are considered to be the
twirling gates for reference, whose fidelity should be measured
separately to infer the fidelity of the target gate. The interleaved
RB method is efficient and scalable in principle. However, it
suffers from two severe problems in practice. The first is the
compiling overhead for twirling operations. In reality, any op-
eration needs to be compiled to one- and two-qubit gates native
to the quantum system. Note that twirling gates are randomly
picked from a gate set, like the Clifford group. In general, the
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average number of native gates used for compiling a single sam-
ple grows dramatically with the system size. The second is the
gate-dependent noises introduced by twirling gates. Note that
different twirling operations in a gate group can vary a lot in the
depths of compiled circuits. For example, a local operation such
as a Pauli gate can be implemented by a single layer circuit,
while a complex entangling operation requires a deep circuit
with massive native gates. The strong gate-dependent noises
caused by the uneven compilations may bring inaccuracy to the
fidelity estimation [26,27]. Consequently, the compiling over-
head and gate-dependent noises introduced by twirling gates
limit the scalability of the RB method in experiments.

Recently, there have been several variants of RB attempting
to address the two compiling problems. For example, character
benchmarking employs the character theory so that the quality
parameters can be extracted from the local twirling operations
[28]. Unfortunately, for the gate groups with an exponentially
increasing number of quality parameters, this method requires
an exponential amount of SPAM settings. Besides, character
benchmarking is still caught in the aforementioned compiling
problems for the final inverse gate and can be hardly applied for
a generic multi-qubit quantum operation. Another inspiring
attempt called cycle benchmarking aims to estimate the fidelity
of the target gate by interleaving it with the Pauli gate set.
However, it is restricted to the Clifford gates [29]. In addition,
cycle benchmarking requires numerous repetitions for the gates
with large cyclic numbers, which is common for multi-qubit
gates. Hence, this method cannot efficiently benchmark a wide
class of gates. The cross-entropy benchmarking (XEB) charac-
terizes the fidelity of a generic quantum gate reflected by linear
cross-entropy using local Clifford gate twirling [30]. However,
the Haar measure assumption in XEB may lead to poor fidelity
estimation when the size of the target gate is large. Thus, how
to efficiently and reliably estimate the fidelity of a large-scale
quantum process from a universal gate set remains an open
problem.

This work proposes two scalable and efficient protocols to
tackle the compiling problems as well as the SPAM error issues
simultaneously, which we label character-cycle benchmarking
(CCB) and character-average benchmarking (CAB), respec-
tively. The protocols utilize local twirling to reliably characterize
the fidelity of an individual multi-qubit quantum operation.
We employ the Pauli and the local Clifford gates for twirling
and extend the applicable gate set to non-Clifford gates via
the local gauge transformation. The efficiency and reliability
of the protocols are shown by rigorous mathematical deriva-
tions and by numerical simulations under realistic physical
assumptions.

2. CHARACTER CYCLE BENCHMARKING

Let us denote the quantum operation of a unitary matrix U
acting on an n-qubit quantum state, ρ, by the calligraphic letter
U, i.e., U�ρ� � UρU −1, and the noisy implementation by Ũ.
One can evaluate the quality of Ũ by the process fidelity of the
noise channel Λ � U−1 ∘ Ũ,

F�Λ� � 1

d 2

X4n−1
i�0

λi, (1)

where λi � d −1Tr�PiΛ�Pi�� is the Pauli fidelity associated with
the Pauli operator Pi ∈ Pn, and d� 2n is the dimension of the
quantum system. Here, Pn denotes the n-qubit Pauli group,
containing the tensor product of the identity operation I and
three Pauli matrices X , Y ,Z .

In practice, it is costly to figure out all the parameters
λ0, λ1, � � � , λ4n−1 as their number increases exponentially with
n. Instead, one can estimate the process fidelity via repeatable
sampling of λ0, λ1, � � � , λ4n−1. Concretely, one samples a suffi-
cient number of Pauli operators fPjg and averages the corre-
sponding fλjg,

F �Λ� ≈ 1

M
Σ
fPjg

λj, (2)

where M is the number of samples and the summation takes
over the sample set.

Here, we propose a CCB protocol that employs the key
techniques of the cycle [29] and character benchmarking
[28]. Specifically, we extract different Pauli fidelities through
applying specific initial states and measurements and utilize
the character theory to fully separate the SPAM errors. The
schematic circuit of the CCB protocol is shown in Fig. 1(a).
Let us start with the Clifford case, where the target gate belongs
to the n-qubit Clifford group Cn. The inner random gate layer
consists of the target gate U and its inverse gate U−1, interleaved
with two random Pauli gate layers. The Pauli gates are the refer-
ence gates employed to perform local Pauli twirling over the
generic quantum noise channel Λ and turn it into

ΛP � 1

4n
Σ

fPj∈Png
P−1

j ∘ Λ ∘ Pj, (3)

where Λ contains the errors of Pauli gates and target gate U;
ΛP is a Pauli channel satisfying ΛP�ρ� �

P
j pjPjρPj, and pj is

the Pauli error rate related to Pj.
Note that the introduction of the inverse target gate U−1 is

the major difference between CCB and cycle benchmarking. In
cycle benchmarking, we need to repeat U for multiples of l
times, where l is the cyclic number of U , i.e., U l � I . In gen-
eral, l can be quite large for a wide class of Clifford gates, which
is prohibitive for the experiments. For example, the five-qubit
quantum error-correcting encoding circuit requires l � 124.
The CCB protocol improves the efficiency and application
scope via substituting a single U−1 for multiple repetitions of
U in cycle benchmarking. In many quantum platforms, such
as superconducting quantum processors, the inverse gates of the
native gates are also native. Typical examples include single-
qubit gates, CZ, and iSWAP. Thus, the inverse gates of native
gates are normally easy to implement. More generally, if U is
composed of several native gates, the difficulty to implement U
and U−1 is often the same. Based on this consideration, the in-
troduction of U−1 does not increase the implementation diffi-
culty of CCB in most cases.

In CCB, the randomization of Pauli gates in the inner gate
layers will generate a composite channel U−1 ∘ Λ�−�

P ∘ U ∘ ΛP,
where ΛP and Λ�−�

P are the Pauli-twirled channels correspond-
ing to gates U and U−1, respectively. Note that this composite
channel is a Pauli channel for Clifford gate U. The fidelity we
aim to estimate in the CCB protocol is defined as the CCB
fidelity,
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F ccb � F �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U−1 ∘ Λ�−�

P ∘ U ∘ ΛP

q
�, (4)

which contains the fidelities of U and U−1. When the noise
channel of U is the same as that of U−1, which is valid for most
of the experimental platforms, the CCB fidelity is simplified as

F ccb�Λ� � F �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U−1 ∘ ΛP ∘ U ∘ ΛP

p
�: (5)

Equation (5) is a lower bound of the process fidelity F �Λ� in
terms of the expectation value, as proved in Appendix B.2.
In the following context, we will employ Eq. (5) as our CCB
fidelity metric model and our arguments apply to the general
model of Eq. (4) as well. The difference between F ccb and F is
normally small because the physical realizations of the qubits in
one experimental platform are similar and the qualities of these
qubits will not differ too much. Note that if ΛP is a depolariz-
ing channel, then F ccb � F . Thus, the CCB fidelity can be
seen as a reliable metric for the noise channel Λ.

The procedure of the CCB protocol is as follows.

1. Sample a Pauli operator Pj and initialize state jsi such
that Pjjsi � jsi.

2. Apply a gate sequence Sccb composed of a Pauli gate
P�0�, m inner gate layers denoted by Sm, and inverse gate S−1

m .
3. Perform measurement Pj and then calculate the

Pj-weighted survival probability f j�m,Sccb� � χj�P�0�� ·
Tr�PjSccb�ρs��, where χj�P�0�� � 1 if Pj commutes with
P�0� and −1 otherwise.

4. Repeat steps (2) and (3) for several times for different m
and fit the Pj-weighted fidelity to f̂ j�m� � Ajλ

2m
j .

5. Repeat steps (1)–(4) for several times and finally esti-
mate the CCB fidelity as F ccb � avejλj.

Here, the estimated fidelity F ccb includes the errors from the
local reference gate set Pn. To remove these extra errors, one
can employ the interleaved RB technique, by performing addi-
tional CCB with a target gate of identity I to estimate the

reference fidelity FI
ccb. Then, one can infer the fidelity of the

target gate as F ccb∕FI
ccb. In practice, the errors of local gates are

often negligible, and hence, we focus on F ccb in the following
discussions.

Note that our inverse gate S−1
m is a Pauli gate and thus will

not introduce extra gate compiling overhead. In contrast, char-
acter benchmarking for a single multi-qubit Clifford gate [28]
requires a global inverse gate and a complicated compiling pro-
cess. This may cause strong gate-dependent errors and lead to
inaccuracy for fidelity estimation, especially for multi-qubit
quantum operations. The CCB protocol maintains the local
structure of reference and inverse gates and thus avoids the
compiling problems.

In the CCB protocol, one needs to average Pauli fidelities λj
to estimate F ccb. The sampling complexity for the CCB pro-
tocol is given by the following theorem.

Theorem 1 (informal version). For an n-qubit quantum noise
channel, to estimate the CCB fidelity within the confidence inter-
val �F̂ ccb − ϵM − ϵb, F̂ ccb � ϵM � ϵb� with probability greater
than 1 − δ, one needs to sample M Pauli fidelities where each
Pauli fidelity is estimated via K random sequences. The confi-
dence probability of the estimation is given by

Pr�jF̂ ccb − F̄ ccbj ≤ ϵM � ϵb� ≥ 1 − δ, (6)

where ϵM ≤ O�− log δM � and ϵb ≤ O�K −1� �O��− log δK �3∕2�.
Here, the total number of samples, or sample complexity,

depends on M and K . If the number of random sequences
for each Pauli fidelity is the same, then the sample complexity
is simply given byMK . Theorem 1 shows that the sample com-
plexity only depends on fidelity precision ϵM , ϵb, and confi-
dence level δ. The independence on system size n reflects the
strong scalability of the CCB protocol. A more detailed descrip-
tion of the result is shown in Theorem 2.

Fig. 1. Illustrations of circuit and procedures used in (a) CCB and (b) CAB protocols. The orange boxes represent the target gate U and its inverse
gate U−1. The blue and green boxes represent the random Pauli gate and random local Clifford gate. The yellow boxes denote the inverse gate for the
m inner gate layers in the light blue box. Here, P�i�

k is a single-qubit Pauli gate on qubit k, and P�i� � P�i�
1 ⊗ � � � ⊗ P�i�

n is an n-qubit Pauli gate.
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3. LOCAL GAUGE TRANSFORMATION

Now, let us extend the applicable gates for the CCB protocol to
non-Clifford gates. One can introduce local gauge transforma-
tion L to the twirling gate set, Pn → LPnL−1, where L is an
arbitrary local unitary operation L ∈ U�2�⊗n. Note that the
transformed twirling gate set LPnL−1 is still local. Then, we can
show that the applicable target gate set becomes LCnL−1, where
Cn is the n-qubit Clifford gate set.

To benchmark a gate LUL−1 from gate group LCnL−1, we
insert local gates L and L−1 between the twirling gates and the
target gates in the original CCB circuit, as shown in Fig. 2(a).
Here, L� ⊗n

i�1 Li, where Li can be an arbitrary single-qubit
gate. In practice, the local gates are absorbed into twirling gates
and target gates and do not need to be implemented individu-
ally as manifested in Fig. 2(b). The character gate LP�0� and the
twirling gate LP�1�L−1 will be merged into a single gate in im-
plementation as well. Details of the derivation are shown in
Appendix B.3.

As shown in Fig. 2, the CCB circuit with local gauge trans-
formation L and noise channel Λ is equivalent to the original
CCB circuit with noise channel L−1ΛL. Thus, one can obtain
F ccb�L−1ΛL�, which is close to the process fidelity F�L−1ΛL�.
As process fidelity is gauge-invariant, that is, F �L−1ΛL� �
F �Λ�, one can estimate the process fidelity of Λ as the perfor-
mance indicator of gate LUL−1.

Now, let us check out what kinds of quantum gates belong
to the set S � fLUL−1jL ∈ U �2�⊗n,U ∈ Cng.

First, notice that if a unitary U ∈ S, then for any
L ∈ U �2�⊗n, LUL−1 ∈ S. As any unitary is generated by a
Hamiltonian, that is U � eiH where H is Hermitian, one

can conclude that if eiH ∈ S, then for any L ∈ U �2�⊗n,
LeiHL−1 � eiLHL−1 ∈ S.

Take a step forward. If a controlled-eiH ∈ S, then
through local gauge transformation I ⊗ L, �I ⊗ L�
controlled−eiH �I ⊗ L�−1 � controlled−eiLHL−1 ∈ S. The argu-
ments also apply to the case of multi-controlled gates.

The two observations inspire us to first represent Clifford
gates in the form of eiH or multiple controlled-eiH , then replace
H with LHL−1 to find other gates in S. Take CZ as an exam-
ple. CZ � eiπj11ih11j � controlled-e−i

π
2Z . Through local gauge

transformation, one can transform j11i to any product state
jψϕi and transform e−i

π
2Z to any π-rotation e−i

π
2~σ·~θ, where

~σ � �X , Y ,Z � and ~θ is a unit vector. Thus, for any two-qubit
product state jψϕi, we have e−iπjψϕihψϕj ∈ S. In addition, any
controlled-π rotation, such as controlled-H and controlled-
TX , belongs to S.

Reversely, controlled-S � controlled-e−i
π
4Z is a controlled-π2

rotation. As any controlled-π2 rotation is not Clifford, one can
conclude that controlled-S does not belong to S. Similarly,
Tofolli = controlled-controlled-e−i

π
2X is a controlled-controlled-

π rotation. As any controlled-controlled-π rotation is not
Clifford, one can conclude that Tofolli does not belong to
S either. It is interesting to decide whether a quantum gate
belongs to S in a more general case, and we leave it for future
work.

4. CHARACTER-AVERAGE BENCHMARKING

We can take the CCB protocol one step further. Observe that
in CCB, one needs to implement the fitting procedures for
each sampled Pauli operator Pj to estimate Pauli fidelity λj.

Fig. 2. Illustrations of the noisy CCB circuit with local gauge transformation. For simplicity, we show the case that the local gates are noiseless.
The grey dashed boxes denote the noise channel Λ. The orange boxes represent the target gate U and its inverse gate U−1. The blue boxes represent
the random Pauli gates. The green boxes represent the inserted local gates L and L−1, where L �⊗n

i�1 Li . The yellow box denotes the inverse gate
for them inner gate layers in the light blue boxes. In practice, we implement gates in circuit (b) while absorbing local gates L and L−1 into twirling and
target gates. Here, the target gate following gauge transformation becomes LUL−1. Note that circuit (a) is equivalent to a CCB circuit with target gate
U and noise channel ℒ−1Λℒ. Thus, it can be implemented to estimate F ccb�ℒ−1Λℒ�, which is close to F �Λ�.
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Each estimation requires specific initial state, measurement,
and independent randomization procedures. We can further
simplify these procedures by introducing the local Clifford
group C⊗n

1 . Recall that in a qubit system, the Clifford twirling
depolarizes a channel via averaging the error rates in X ,Y ,Z
bases [13]. Then for an n-qubit system, the twirling over
C⊗n

1 would partially depolarize a channel and average out 4n

Pauli fidelities λj into 2n terms. These 2n values can be obtained
from the Z⊗n basis measurement only with additional data
post-processing.

Based on the local Clifford twirling, we propose the CAB
protocol as an improvement of the CCB protocol. The sche-
matic circuit of CAB is shown in Fig. 1(b), with the detailed
procedures described in Box 1. Like the CCB protocol, we can
extend the target gate set beyond the Clifford group by employ-
ing local gauge transformation. Here, to suppress statistical
fluctuations, we remove the character technique. Detailed de-
scription and analysis of the CCB and CAB protocols are pre-
sented in Appendix B.

Similar to the CCB protocol, the randomization over m gate
layers inside the blue box in Fig. 1(b) will generate a Pauli chan-
nel ΛP�m� � �U−1 ∘ ΛP ∘ U ∘ ΛP�m. The local Clifford gates
in the beginning and end of the circuit jointly perform local
unitary 2-design twirling, which transforms the Pauli channel
ΛP�m� into a partially depolarizing channel ΛC�m�. Here, the
quantum channel ΛC�m� contains less independent parameters
than the original ΛP�m�. It holds the unique value of fidelity
for every disjoint Pauli subset in Rn � ffIg, fX ,Y ,Z gg⊗n. The
Pauli fidelities in ΛC�m� can be seen as the average values
of those in ΛP�m�, μ2mk � P

Pj∈σk λ
2m
j ∕jσkj, where fλ2mj g are

the Pauli fidelities of the channel ΛP�m�. The local Clifford
twirling here averages multi exponential decays into one

exponential decay and captures all the information of the noise
channel, as shown in Eq. (11). The comparison between F cab

and F ccb is shown in Lemma 3 in Appendix B.5, while the CCB
protocol employs a sampling method as in Eq. (2), which only
contains partial information of the noise channel. Thus,
one can intuitively conclude that the CAB protocol is more
efficient than the CCB protocol, as demonstrated in later
simulations.

5. SIMULATION

In numerical simulations, we characterize a two-qubit
controlled-(TX ) gate and a five-qubit quantum error correcting
encoding circuit, respectively. Furthermore, we simulate the
noise channel for the target gate with a realistic error model
that contains a Pauli channel, an amplitude damping channel,
and a correlation channel. In the simulation, the Pauli fidelities
of the Pauli channel are randomly sampled from a normal
distributionN �μ, σ�, which we call theN �μ, σ�-Pauli channel.
Here, the error parameter μ reflects the quality of the Pauli
channel and σ implies the discrepancy of the channel, i.e., the
differences among Pauli fidelities. The detailed descriptions for
the error models and simulations are presented in Appendix D.

For the controlled-�TX � gate, we take �I ⊗
ffiffiffiffi
T

p
� ·

Pn�I ⊗
ffiffiffiffi
T

p
−1� as the twirling gate set, where T is the

π∕8-phase gate, T � exp�−iπZ∕8�, and I ⊗
ffiffiffiffi
T

p
is the

local gauge transformation. We simulate the CAB and CCB
protocols on the controlled-(TX) gate with 8 different noise
channels. For each noise channel, we take 40 independent
simulations for both CAB and CCB protocols. In CCB
simulations, we sample M � 10 Pauli operators to esti-
mate F ccb.

Box 1. Procedures for character-average benchmarking
1. Sample a gate sequence �C ,P�1�,P�2�, � � � ,P�2m��, where C and P�i��1 ≤ i ≤ 2m� are sampled uniformly at random from

the local groups, C⊗n
1 ,Pn, respectively.

2. Initialize the state jψi � j0i⊗n and apply the gate sequence as shown in Fig. 1(b),

Scab � C−1 ∘ U inv ∘ U−1 ∘ P�2m� ∘ … ∘ U ∘ P�1� ∘ C, (7)

where the inverse gate U inv � P�1� ∘ U−1 ∘ … ∘ P�2m� ∘ U is a local gate as well.
3. Measure in Z⊗n basis and compute the survival probability for each measurement observable Qk ∈ fI ,Z g⊗n,

f k�m,Scab� � Tr�QkScab�ρψ ��, (8)

where ρψ is the noisy preparation of the initial state jψi.
4. Repeat for a sufficient number of sequences and estimate the average value

f k�m� � E
Scab

f k�m,Scab�: (9)

5. Repeat for different m and fit to the function

f k�m� � Akμ
2m
k , (10)

where Ak and μk are fitting parameters.
6. Estimate the CAB fidelity

F cab �
1

d 2

X
k

d kμk, (11)

where dk� 3π�Qk� and π�Qk� is the number of Z in Qk.
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Figure 3(a) shows F cab and F ccb versus the error rate
r � 1 − F for the controlled-�TX � gate with different noise
channels. We observe that when the standard deviation of error
parameters σ grows, the error bars of F cab and F ccb become
larger. Intuitively, the discrepancy of the Pauli fidelities is
one of the key reasons for the fluctuations of F cab and F ccb.
The fluctuations for the estimations will reach the minimum
level when the noise channel is completely depolarizing.
Besides, the error bar of CAB is smaller than the error bar
of CCB. This shows that under the same estimation accuracy,
the sampling complexity, i.e., the amount of sampling sequen-
ces in total, of the CAB protocol is smaller than that of the
CCB protocol, especially when the discrepancy of the noise

channel is large. In Fig. 3(b), we take one of the eight noise
channels as an example and show the three fitting curves of
Eq. (10) for the CAB protocol. The resulting CAB fidelity
is F cab � 95.99%, which is very close to the theoretical value
of process fidelity F � 95.98%.

For the five-qubit error correcting encoding circuit, which is
a Clifford gate, we take the Pauli group Pn as the twirling gate
set. For the simplicity of simulation, we set the Pauli channel to
be a depolarizing channel Λdep�ρ� � pρ� �1 − p�I∕d where
p � 0.98. The setting of the amplitude damping and correla-
tion channels remains the same. Furthermore, we simulate the
CAB and XEB protocols to characterize the noisy five-qubit
encoding circuit. For each protocol, we run 40 independent

CA

CA

CA

(a)

(b)

Fig. 3. Simulation results for the controlled-�TX � gate with eight
different noise channels, each containing a N �μ, σ�-Pauli channel, an
amplitude damping channel, and a correlation channel. The param-
eters for the amplitude damping channels and correlation channels are
set to be the same for the eight channels. For the Pauli channel, the
error parameters are set to f�μ, σ�g = {(0.995, 0.001), (0.990, 0.002),
(0.980, 0.003), (0.970, 0.004), (0.960, 0.005), (0.950, 0.006),
(0.940, 0.007), (0.930, 0.008)}. (a) The fidelity estimations with dif-
ferent error rates in 40 independent simulations. The green dashed line
represents the theoretical fidelities. The two insert scatter plots show
the fluctuations of estimated fidelities over different simulations.
(b) Take the fifth simulation with a process fidelity of 95.98% as
an example. The fitting curves of Eq. (10) for Qk � IZ ,ZI ,ZZ.
The decay parameters derived from the curves are λIZ � 0.9580,
λZI � 0.9550, λZZ � 0.9577.

Fig. 4. Simulation results for the five-qubit quantum error cor-
recting encoding circuit with a noise channel composed of a depola-
rizing channel Λdep�ρ� � pρ� �1 − p�I∕d , where p � 0.98, an
amplitute damping channel, and a correlation channel. The theoretical
process fidelity is F � 94.70%. (a) Box plot of the CAB fidelities ver-
sus sampling number K with 40 independent simulations. The red
boxes represent the distributions of the CAB fidelity estimations with
respect to K . The orange points represent the distributions of CAB
fidelities. (b) Box plots of the CAB and XEB fidelities versus K with
40 independent simulations. The green dashed line represents the
theoretical process fidelity. The plots of CAB in (a) and (b) are the
same with different scaling.
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simulations. In each simulation, we take the sampling number
of gate sequences as K � 50, � � � ; 500 for each sequence length
m. The box plot of F cab versus K is shown in Fig. 4(a). We can
see that when K grows, the fluctuations of F cab become smaller.
When K is not too large, like K � 50, the fluctuation is
already small enough, which implies that the CAB protocol
works well with few sampling sequences needed.

In Fig. 4(b), we show the box plots of F cab and XEB fidel-
ities F xeb versus the sampling number K . It is clear to see that
compared with F xeb, F cab is much closer to the theoretical pro-
cess fidelity F � 94.7%. Meanwhile, the convergence of F cab is
much better than that of F xeb. This implies that the required K
for CAB is much smaller than that of XEB under the same
estimation accuracy.

To give a concrete example, we take 20 CAB simulations
and 20 XEB simulations under the same noise channel.
From the simulation results, we find that for CAB, when
K cab � 20, the standard deviation over the 20 simulations is
σcab � 3.25 × 10−4, while for XEB, when K xeb � 20,000,
the standard deviation is σxeb � 4.29 × 10−4. This shows that
to estimate the fidelities with standard deviations around
4 × 10−4, the required K xeb is over 1000 times larger than
K cab. Thus, we can conclude that the performance of CAB pro-
tocol is three orders of magnitude better than that of XEB
protocol in terms of the sampling complexity.

The simulation results reveal the strong scalability and reli-
ability of our protocols, especially the CAB protocol. The
fluctuation of estimated CAB fidelity is small even for
multi-qubit gates. We believe the CAB protocols can provide
fast feedback in experimental designs and promote the develop-
ment of universal fault-tolerant quantum computing.

6. CONCLUSION AND DISCUSSION

The characterization of large-scale individual quantum proc-
esses is crucial to the development of near-term quantum de-
vices. However, to the best of our knowledge, there are no
scalable and practical methods as of yet that could benchmark
multi-qubit universal gate-set currently. In this work, we
propose and demonstrate efficient and scalable randomized
benchmarking protocols—CCB and CAB that can individually
characterize a wide class of quantum gates including and be-
yond the Clifford set. The key technique of our protocols is
using the local reference gate-set for twirling, which avoid
the inaccuracy of the estimation caused by gate-compiling over-
head and gate-dependent noises. The method of local gauge
transformation offers a tool for characterizing non-Clifford
gates. The sampling and measurement complexity are indepen-
dent of the qubit number of gate, which means our bench-
marking protocols can be generalized to large-scale quantum
systems.

Our protocols maintain the simplicity and robustness of the
conventional RB method, and estimate the quantity of most
interest—process fidelity of the target gates. We believe our
protocols will promote the development of universal fault-
tolerant quantum computing. Furthermore, it would also
be interesting to extend our randomization and estimation
methods for characterizing other properties such as unitarity
and coherence, which we leave for future research.

APPENDIX A: PRELIMINARIES

1. Representation Theory
The representation theory works as a general analysis of every
representation for abstract groups. Informally, the representa-
tions of a group can reflect its block-diagonal structures. Let
G be a finite group and g ∈ G be a group element. The
representation of G is defined as follows.

Definition 1 (Group representation). Map ϕ is said to be
a representation of group G on a linear space V if it is a group
homomorphism from G to GL�V �:

ϕ∶G → GL�V �,
g ↦ ϕ�g�,∀ g ∈ G, (A1)

where GL�V � is the general linear group of V , such that
∀g1, g2 ∈ G:

ϕ�g1�ϕ�g2� � ϕ�g1g2�: (A2)

Given representation ϕ on V , a linear subspace W⊆V is
called invariant if ∀w ∈ W and ∀g ∈ G:

ϕ�g�w ∈ W : (A3)

The restriction of ϕ to the invariant subspace W is known
as a subrepresentation of G on W . One can further define the
irreducible representation (or irrep for short) as follows.

Definition 2 (Irreducible representation). Representation ϕ
of group G on linear space V is irreducible if it merely has trivial
subrepresentations, i.e., the invariant subspaces for V are only f0g
and V itself.

The Maschke’s theorem provides an interesting property
that each representation ϕ of a finite group G can be decom-
posed to the irreducible representations, ∀g ∈ G:

ϕ�g� ≃ ⊕
σ∈RG

σ�g�mσ , (A4)

where RG � fσg denotes the set of all the irreps of represen-
tation ϕ and mσ is the multiplicity of the equivalent irreps of σ.
In this paper, we will focus on the non-degenerate representa-
tion case, i.e., mσ � 1, ∀σ.

Definition 3 (Character function). Let σ be a representation
over group G, and the character of σ is the function χσ∶G → C
given by ∀g ∈ G:

χσ�g� � Tr�σ�g��: (A5)
With the character function, we introduce the generalized

projection formula used in character randomized benchmark-
ing [28].

Lemma 1 (Generalized projection formula [31]). Given a
finite group, G, and its representation, ϕ, denote σ to be an irre-
ducible representation contained in ϕ with its character function
χσ∶G → C. The projector onto the support space of σ can be
written as

Πσ �
d σ

jGj
X
g∈G

χσ�g�ϕ�g�, (A6)

where d σ is the dimension of σ, d σ � χ�e� with e being the
identity element in G.

Next, we will introduce twirling over a group G.
Definition 4 (Twirling). For representation ϕ of group G on

linear space V , a random twirling for a linear map Λ∶V → V
over G is defined as
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ΛG � 1

jGj
X
g∈G

ϕ�g�†Λϕ�g�: (A7)

Using Schur’s Lemma [31], one can show the following
proposition.

Proposition 1. For any linear map Λ∶V → V , the twirling
over group G and its representation ϕ can be written as

ΛG �
X
σ∈RG

Tr�ΛΠσ�
Tr�Πσ�

Πσ , (A8)

where Πσ denotes the projector onto the support space of σ, and
RG denotes the set of all irreps of ϕ.

2. Representation for Quantum Channel
Here, we introduce the quantum channel and three frequently
used channel representations that our main results rely on.
Denote the Hilbert space for n qubits asH and the set of linear
operators on H as L�H�. Quantum channels are defined as
completely positive and trace-preserving (CPTP) linear maps
on L�H�. Given any quantum channel E∶L�H� → L�H�,
we can represent it in Kraus representation, ∀O ∈ L�H�:

E�O� �
Xm
l�1

K lOK
†
l , (A9)

where fK l g are the Kraus operators satisfyingXm
l�1

K †
l K l � I : (A10)

With the Kraus representation, the concatenation of the
quantum channels or quantum gates is given by

E2 ∘ E1�O� �
Xm2

l2�1

Xm1

l 1�1

K l2K l1OK
†
l1
K †

l 2
, (A11)

where fK 1g and fK 2g are the Kraus operators for E1 and E2,
respectively.

To describe a long quantum circuit, the Kraus representa-
tion is not convenient. Here, we introduce another widely used
representation—Liouville representation. The Liouville repre-
sentation is defined on a set of trace-orthonormal basis on
L�H�. Often, we use the normalized Pauli group, i.e., Pauli
group with a normalization factor. The n-qubit Pauli group
is given by

Pn � ⊗
n

i�1
fI i,X i, Y i,Z ig, (A12)

where X i, Y i,Z i are the single-qubit Pauli matrices. Then the
normalized Pauli group is given by�

σi �
1ffiffiffiffiffi
2n

p PijPi ∈ Pn

�
: (A13)

Each pair of elements �σi, σj� in this group satisfies the fol-
lowing constraints under the Hilbert–Schmidt inner product,
∀σi, σj ∈ Pn∕

ffiffiffiffiffi
2n

p
:

Tr�σ†i σj� � δij : (A14)

Any n-qubit operator can be decomposed over the 4n nor-
malized Pauli operators. We can rewrite the density operator O
on L�H� in a vector form:

jOii �
X
i∈Pn

Tr�σ†i O�σi. (A15)

Moreover, any quantum channel can be represented as a
matrix in the Liouville representation. To be specific, we can
represent an arbitrary channel Λ acting on an operator O as
follows:

jΛ�O�ii � ΛjOii: (A16)

We can see the element of this matrix is given by

Λij � hhσijΛjσjii � Tr�σiΛ�σj��: (A17)

Consequently, in the Liouville representation, the concat-
enation of two channels can be depicted as the product of
two matrices:

jΛ2 ∘ Λ1�O�ii � Λ2jΛ1�O�ii � Λ2Λ1jOii: (A18)

The measurement operator can also be vectorized with
the Liouville bra-notation according to the definition of the
Hilbert–Schmidt inner product. For example, the measure-
ment probability of a state ρ on a positive operator-valued
measure fF ig is given by

pi � hhF ijρii � Tr�F †
i ρ�: (A19)

We call such a Pauli–Liouville representation as the Pauli
transfer matrix (PTM) representation. An n-qubit quantum
channel can also be described in the χ-matrix representation:

Λ�ρ� � d
X
i, j

χijσiρσ
†
j : (A20)

The process matrix χ is uniquely determined by the ortho-
normal operator basis fσjg, where the first element is pro-
portional to the identity matrix σ0 � I∕

ffiffiffi
d

p
, and d� 2n is

the dimension of the quantum system. Often, we take the nor-
malized Pauli operators as the basis of the χ-matrix represen-
tation. If a channel is diagonal in this representation, we call
it Pauli channel.

3. Quantum Channel Fidelity
The process fidelity of a channel Λ can be defined with its
χ-matrix representation:

F �Λ� � χ00�Λ�: (A21)

Here, the quantity χ00 is independent of the choices of op-
erator basis fσjg. In the following, we set the operator basis
to be normalized Pauli group. Define the Pauli fidelity of a
quantum channel Λ,

λj � d −1Tr�PjΛ�Pj��, (A22)

which is the diagonal term of the PTM representation of Λ.
We can relate Pauli fidelities to the diagonal terms of χ-matrix
representation via Walsh–Hadamard transformation:

λj �
X
i

�−1�hi,jiχii : (A23)

Here, hi, ji � 0 if Pi commutes with Pj and hi, ji � 1
otherwise. Then, one can derive the process fidelity from
Eq. (A23):
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F�Λ� � χ00�Λ� �
1

d 2

X
j

λj, (A24)

which can be viewed as another definition of process fidelity.
There is a relation between the commonly used average

fidelity F ave and the process fidelity [32]:

F ave � �dF � 1�∕�d � 1�: (A25)

Average fidelity is defined as

F ave �
Z

dψTr�jψihψ jΛ�jψihψ j��, (A26)

where the integral is implemented over Haar measure. These
two fidelity measures are both well-defined metrics to quantify
the closeness of a channel to the identity.

4. Representation Theory in Randomized
Benchmarking
Now, we can use the representation theory to analyze the ran-
domized benchmarking (RB) procedures. Let us start from a
quick review of the standard RB protocol. Considering an
n-qubit gate set G, RB is performed via sampling random gate
sequences:

Srb � Gm�1Gm � � �G1, (A27)

where for 1 ≤ i ≤ m� 1, Gi denotes the quantum operation in
the PTM representation of a unitary matrix gi ∈ G. Here, for
1 ≤ i ≤ m, gi is randomly sampled from group G and
gm�1 � �gm � � � g2g1�−1. Then, one applies the random gate se-
quence Srb to the input state ρψ0 and performs measurement
Q0 for a sufficient number of times to estimate the average sur-
vival probability,

f �m� � E
G1 ���Gm

hhQ0jG̃m�1G̃m � � � G̃2G̃1jρψ0ii, (A28)

where G̃i denotes the noisy implementation of Gi, ρψ0 is the
noisy preparation of the initial state jψi, and measure-
ment Q0 also includes errors. Here, we employ the gate inde-
pendent noise assumption as used in most RB protocols.
That is, the noise channels attached to the gate set fGig are
the same, ∀i,

G̃i � ΛLGiΛR , (A29)

where ΛL and ΛR are left and right noise channels. The ran-
domization over the gate sequence Srb can be seen as perform-
ing twirling operation for the noise channels between Gi and
Gi�1. Denote Λ � ΛRΛL:

f �m� � hhQj� E
g∈G

G†ΛG�mjρψ ii, (A30)

where the right noise channel ΛR of the first gate is absorbed
into the state preparation error, jρψ ii � ΛRjρψ0ii and the left
noise channel ΛL of the last gate is absorbed into the measure-
ment error, hhQj � hhQ0jΛL. According to Proposition 1, one
can express f m in a more elegant manner,

f �m� �
X
σ∈RG

hhQjΠm
σ jρψ iiλmσ , (A31)

where Πσ denotes the projector onto the irreducible subspace
associated with σ, and λσ contains the trace information of the
channel Λ on the subspace:

λσ �
Tr�ΛΠσ�
Tr�Πσ�

: (A32)

Because the twirling operation will not change the trace
value of Λ, the process fidelity of Λ can be given by

F �Λ, I� � 4−n
X
σ

d σλσ , (A33)

where d σ is the dimension of the irrep σ with d σ � Tr�Πσ�.
Here, F �Λ, I� is also known as the entanglement fidelity, or
χ00. We call fλσg the quality parameters because they reflect
the noisy level of a channel.

In the conventional RB protocol, the n-qubit Clifford group
Cn is often picked as the target gate set, which we call Clifford
RB. Any Clifford operation C ∈ Cn satisfies fCPiC−1 for
all ig � Pn, which is a transformation permuting Pauli opera-
tors. Note that in the PTM representation, Cn has only one
nontrivial irrep. Thus, we only need to solve one single quality
parameter. This is rather convenient, but it is hard to extend the
conventional RB scheme to other groups with multiple non-
trivial irreps due to the multi-variable fitting problem, as shown
in Eq. (A31), which has poor confidence intervals for fΛσg.

To solve the fitting problem, in the following discussions,
we employ the technique of character randomized bench-
marking, which utilizes the generalized projection formula of
Lemma 1 in the character theory.

APPENDIX B: BENCHMARKING PROTOCOLS

1. Character Cycle Benchmarking
Here, we present further technical details of the CCB protocol.
As shown in Lemma 1, we can rewrite the projection equation
of Eq. (A6) for a quantum operation group fGg in the PTM
representation:

Πσ �
d σ

jGj
X
g∈G

χσ�g�G: (B1)

Then one can add an additional gate, as a character gate, to
construct the projector for extracting the quality parameter
λσ associated with irrep σ. In CCB, we estimate the process
fidelity of a target gate U ∈ Cn via the twirling group G � Pn,
which has 4n irreps supported by the Pauli operator fPjg. The
schematic circuit is given in Fig. 1(a) in the main text. The
detailed procedures of CCB protocol are given in Box 2.

Note that in the CCB procedures, P�0� is the character gate,
which we will merge into the gate P�1� in practical implemen-
tation. In addition, P�0� is not included in computing the in-
verse gate U inv. The average Pj-weighted survival probability of
Eq. (B4) can be further evaluated by

f i�m� � d jhhQjj
��

E
Pt∈Pn

P−1
t U−1ΛUPt

�
×
�

E
Pr∈Pn

P−1
r ΛPr

��
m
�

E
P∈Pn

χj�P�P
�
jρψ jii. (B7)
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According to Proposition 1, we have

ΛP ≡ E
Pr∈Pn

P−1
r ΛPr �

X
Pr∈Pn

hhPr jΛjPriiΠPr
,

ΛU
P ≡ E

Pt∈Pn

P−1
t U−1ΛUPr

�
X
Pt∈Pn

hhPt jU−1ΛUjPtiiΠPt
� U−1ΛPU,

(B8)

where ΠPr
� jPriihhPr j and ΠPt

� jPtiihhPt j are the pro-
jectors onto the support spaces of Pr and Pt in the PTM
representation, respectively. Then Eq. (B7) can be further sim-
plified to

f i�m� � hhQjj�ΛU
PΛP�m�d j E

P∈Pn

χj�P�P�jρsii: (B9)

According to the generalized projection formula of Lemma 1,
we have

Πj �
d j

4n

X
P∈Pn

χj�P�P, (B10)

where ∀j, the dimension of the subspace associated with the Pj is
d j � 1. Substituting Eq. (B10) and Eq. (B8) into Eq. (B9),
we have

f j�m� � hhQjj
�X

Pt∈Pn

hhPt jU−1ΛUjPtiiΠPt

×
X
Pr∈Pn

hhPr jΛjPriiΠPr

�
m
Πjjρsii

� hhQjjΠjjρs�hhPjjU−1ΛUjPjiihhPjjΛjPjii�m. (B11)

By fitting the survival probability f j�m� to the function of
Eq. (B5), one can obtain the fitting parameters,

λj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhPjjU−1ΛUjPjiihhPjjΛjPjii

q
,

Aj � hhQjjΠjjρsii: (B12)

Note that quality parameter λj is one of the Pauli fidelities

of channel
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U−1ΛPUΛP

p
. Then we can use the CCB protocol

to sample Pauli operators fPjg and estimate process fidelity

F �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U−1ΛPUΛP

p
, I�, which is close to F�Λ, I�, as we will

see in Section B.2.

2. CCB Fidelity
Here, we will explain the physical meaning of the estimated
process fidelity in the CCB protocol. As shown in Section B.1,
the process fidelity we estimate in the CCB protocol is called
the CCB fidelity:

F ccb�Λ� � F�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�U−1ΛPU�ΛP

p
, I�: (B13)

Here, ΛP is the noise channel Λ twirled by the Pauli gate set
defined in Eq. (B8). To compute the deviation between
F ccb�Λ� and F�Λ, I�, we employ the rearrangement inequality.

Lemma 2 (Rearrangement inequality [33]). Consider two
sets of n real numbers fx1, x2, � � � , xng, fy1, y2, � � � , yng, and
x1 ≤ x2 ≤ � � � ≤ xn, y1 ≤ y2 ≤ � � � ≤ yn, one has

xny1 � � � � � x1yn ≤ xτ�1�y1 � � � � � xτ�n�yn

≤ x1y1 � � � � � xnyn, (B14)

where fxτ�i�g is an arbitrary permutation of fxig.

Box 2. Procedures for character cycle benchmarking
1. Sample a Pauli operator, Pj ∈ Pn, and initialize the state, jψ ji, such that jψ ji � Pjjψ ji.
2. Sample a gate sequence, �P�0�,P�1�,P�2�, � � � ,P�2m��, where P�i��0 ≤ i ≤ 2m� are sampled uniformly at random from Pauli

group Pn.
3. Apply the gate sequence,

Sccb � U inv ∘ U−1 ∘ P�2m� ∘ U ∘ P�2m−1� ∘ … ∘ U−1 ∘ P�1� ∘ U ∘ P�1� ∘ P�0�, (B2)

where the inverse gate U inv � P�1� ∘ U−1 ∘ … ∘ P�2m� ∘ U is a local gate.
4. Measure in Pj basis and compute the Pj-weighted survival probability,

f j�m,Sccb� � χj�P�0��d jTr�QjS�ρψ j
��, (B3)

where the dimension of the representation associated with Pj is d j � 1, the corresponding character is χj�P�0�� � 1 if Pj com-
mutes with P�0� and −1 otherwise, and Qj and ρψ j

are the noisy implementations of the state preparation and measurement,
respectively.

5. Repeat Steps 2 to 4 for a sufficient number of sequences and estimate the average value

f j�m� � E
Sccb

f j�m,Sccb�: (B4)

6. Repeat Steps 2 to 5 for different m and fit to the function

f j�m� � Ajλ
2m
j , (B5)

where Aj and λj are fitting parameters.
7. Sample M Pauli operators fPjg in Step 1, and for each Pj, repeat Steps 2 to 6. Finally estimate the CCB fidelity:

F ccb �
1

M
Σ
fPjg

λj : (B6)
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Any Clifford unitary U ∈ Cn satisfies, ∀i,
UPiU −1 � Pu�i�, (B15)

where Pi ∈ Pn and the index permutation u�i� is determined
by the operationU . Thus, the diagonal terms of the Pauli chan-
nel U−1ΛPU are a permutation of those in channel ΛP.

Denote fωig as the Pauli fidelities of ΛP and fωu�i�g as the
Pauli fidelities of the channel U−1ΛPU. Here, we assume ∀i,
ωi ≥ 0 throughout the paper. In practice, the values of ωi
are normally close to 1 for a high-fidelity gate implementation.
Using the rearrangement inequality, one has

ωu�1�ω1 � � � � � ωu�4n�ω4n ≤ ω2
1 � � � � � ω2

4n : (B16)

Then one can further derive thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωu�1�ω1

p � � � � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωu�4n�ω4n

p ≤ ω1 � � � � � ω4n : (B17)

From the definition of the process fidelity and CCB fidelity,
one can conclude that

F ccb�Λ� ≤ F�Λ, I�: (B18)

3. CCB with Local Gauge Freedom
In this section, we give a detailed analysis of the CCB protocol
with local gauge freedom. As shown in Fig. 5(a), we insert local
gates L and L−1 between the twirling gates Pi and the target
gates U , U −1. We define the local gate as L� ⊗n

i�1 Li, where
Li can be an arbitrary single-qubit gate. Note that the local gates
can be absorbed into Pi,U ,U −1, as shown in Fig. 5(b), and
thus they do not need to be implemented individually.
Likewise, the initial character gate LP�0� and the twirling gate
LP�1�L−1 can be treated as single gates in experiments as well.

For simplicity, we assume that the local twirling gates are
noiseless and the noises of LUL−1 and LU −1L−1 are the same.
Now, we can analyze the relationship between the sequence

length of gate layers and the survival probability. Given the
noise channel of the target gate Λ, the averaged Pj-weighted
survival probability is given by

f j�m� � d jhhQjj� E
Pt∈Pn

P−1
t L−1LU−1L−1ΛLUL−1LPt�m

× L−1L� E
Pr∈Pn

P−1
r L−1ΛLPr�L−1L� E

P∈Pn

χj�P�P�jρsii

� d jhhQjj� E
Pt∈Pn

P−1
t U−1ΛLUPt�m� E

Pr∈Pn

P−1
r ΛLPr�

× � E
P∈Pn

χj�P�P�jρsii, (B19)

where ΛL � L−1ΛL. Equation (B19) is equivalent to Eq. (B7),
except for substituting Λ with ΛL. That means running the
CCB protocol with the circuit in Fig. 5 would provide an es-
timation of the process fidelity F �ΛL, I�, which is equivalent to
F �Λ, I�:

F �ΛL, I� � d −2Tr�ΛL� � d −2Tr�Λ� � F�Λ, I�: (B20)

This accounts for the validity of the CCB protocol with local
gauge freedom.

In the Pauli–Liouville representation, the off-diagonal terms
of channel Λ vanish after the Pauli twirling. When apply-
ing LPnL−1 for twirling, the off-diagonal terms of Λ in
the L-transformed Pauli–Liouville representation, defined on
LPnL−1∕

ffiffiffi
d

p
, would vanish. Here, the local gauge transforma-

tion merely changes the representation of Λ, while maintain-
ing the exponential decay form of the survival probability.
From another point of view, the CCB protocol with local gauge
freedom is characterizing the diagonal terms of χ-matrix of the
noise channel under basis LPnL−1 instead of Pn. As the average
fidelity is irrelevant to the representation basis, all the analysis
in previous subsections still applies.

Fig. 5. Illustrations of the CCB circuit with local gauge transformation. Circuit (a) is equivalent to the original CCB circuit in the main text if all
of gates are ideal. The orange boxes represent the target gate U and its inverse gate U−1. The blue boxes represent the random Pauli gates. The green
boxes represent the inserted local gates L and L−1, where L� ⊗n

i�1 Li . The yellow box denote the inverse gate for the m inner gate layers in the light
blue box. In practice, we implement gates in circuit (b) while absorbing local gates L and L−1 into twirling and target gates. Here, the target gate after
gauge transformation becomes LUL−1.
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4. Character-Average Benchmarking
Here, we will provide more details of the CAB protocol. The
CAB protocol can be seen as an improvement based on the
CCB protocol, which adds an additional local Clifford gate
C ∈ C⊗n

1 to the beginning and C−1 to the end of the inner
gate sequence, respectively, as shown in Fig. 1(b) in the main
text. The detailed procedures of CAB protocol are given in
Box 1 in the main text.

Let us first analyze the irreps of C⊗n
1 in the PTM represen-

tation. According to Eq. (A5), the PTM representation of
one-qubit Clifford group C1 is the direct sum of the trivial rep-
resentation, I , associated with the identity element, and a non-
trivial irrep, ϒ, supported by the subspace defined on the Pauli
matrices fX ,Y ,Z g. For an n-qubit local Clifford group C⊗n

1 ,
there are 2n irreps:

Rn � fI ,ϒg⊗n: (B21)
According to Proposition 1, the twirling over C⊗n

1 can be
written as

ΛC �
X
σk∈Rn

Tr�ΛΠσk �
Tr�Πσk�

Πσk , (B22)

where Πσk denotes the projector onto the support space of σk in
the PTM representation, Tr�Πσk� � 3π�σk� is the dimension of
σk, and π�σk� is the counting of ϒ in σk. In the following, we
will sometimes abuse the irrep notation and treat σk as the Pauli
operator set that defines the support space of the irrep σk in the
PTM representation.

It is obvious to see that channel ΛC is a partially depolarizing
channel, which has the same diagonal values in the subspace
associated with the irrep σk for each k. We call the diagonal
parameter as the local Clifford eigenvalue.

Definition 5 (Local Clifford eigenvalue). The twirling channel
ΛC over n-qubit local Clifford group C⊗

1 has 2n quality parameters
fγkg, which are defined as the local Clifford eigenvalues:

γk �
Tr�ΛΠσk �
Tr�Πσk �

� 1

jσkj
X
Pj∈σk

hhPjjΛjPjii, (B23)

where γk can be seen as an average value of the Pauli fidel-
ities fhhPjjΛjPjiijPj ∈ σkg.

We will give a concrete example to show how C⊗n
1 twirls

an arbitrary channel. For a two-qubit local Clifford group
C1 ⊗ C1, let us denote its irreps as

σ1 �fI ⊗ Ig� fIIg,
σ2 �fI ⊗ϒg� fIX ,IY ,IZ g,
σ3 �fϒ⊗ Ig� fX I ,Y I ,ZIg,
σ4 �fϒ⊗ϒg� fXX ,XY ,XZ ,Y X ,Y Y ,Y Z ,ZX ,ZY ,ZZ g,

(B24)

and the dimensions of these irreps are

Tr�Πσ1� � jσ1j � 30,

Tr�Πσ2� � jσ2j � 31,

Tr�Πσ3� � jσ3j � 31,

Tr�Πσ4� � jσ4j � 32: (B25)

Then the twirling of C⊗2
1 over a channel, Λ, according to

Eq. (B22), is given by

ΛC � Tr�ΛΠσ1�Πσ1 �
Tr�ΛΠσ2�

3
Πσ2 �

Tr�ΛΠσ3�
3

Πσ3

� Tr�ΛΠσ4�
9

Πσ4 , (B26)

which has four local Clifford eigenvalues fTr�ΛΠσ1�,
Tr�ΛΠσ2�∕3,Tr�ΛΠσ3�∕3,Tr�ΛΠσ4�∕9g.

Now return to the n-qubit case. The randomization over an
inner gate layer in CAB is the same as CCB and generates a
composite Pauli channel:

Λin � U−1ΛPUΛP, (B27)

where ΛP is a Pauli twirling channel defined in Eq. (B8). The
initial and last random local Clifford gates C, C−1 in CAB together
perform a local Clifford twirling over the inner Pauli channel:

ΛC�m� � E
C∈C⊗n

1

C−1Λm
inC

�
X
σk∈Rn

Tr�Λm
inΠσk �

Tr�Πσk �
Πσk : (B28)

Note that ΛC�m� is a partially depolarizing channel, as we
mentioned above. Thus one can extract local Clifford eigenval-
ues via performing corresponding measurement observables
P ∈ σk. In the CAB protocol, by measuring in Z⊗n basis,
we can infer the measurement results of the 2n observables
fI ,Z g⊗n, which span all the irrep spaces in Rn. We assume
that the measurement Z⊗n is performed with negligible errors
that will not influence the fidelity estimations too much. If one
wants to completely remove the SPAM errors, an additional
character gate from the gate set fI ,Zg⊗n can be added to
the beginning of the CAB gate sequence, which is similar to
the CCB protocol.

The survival probability of Eq. (9) in the main text can be
derived as for Pauli operator Qk ∈ fI ,Z g⊗n:

f k�m� � hhQkjΛC�m�jρsii, (B29)

which contains fidelity information for irrep σk such that
Qk ∈ σk. Substituting Eqs. (B8) and (B28) to Eq. (B29),
we have

f k�m� �
		

Qk





ΠQk
Πσk

Tr�Λm
inΠσk �

Tr�Πσk �





ρs
��

� hhQkjρsii
X
Pj∈σk

�hhPjjU−1ΛUjPjiihhPjjΛjPjii�m
Tr�Πσk �

� hhQkjρsii
X
Pj∈σk

λ2mj
Tr�Πσk�

, (B30)

where λj is the Pauli fidelity of the channel
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U−1ΛPUΛP

p
de-

fined in Eq. (B12). By fitting the survival probability f k�m� to
the function f k�m� � Akμ

2m
k , one can solve the quality param-

eters fμkg and estimate the CAB fidelity as

F cab� 4−n
X
σk∈Rn

d σkμk, (B31)

where d σk � Tr�Πσk � is the dimension of irrep σk.
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Note that our fitting method averages multi-exponential de-
cays fλ2mj g into one exponential decay μ2mk , which leads to
μk ≥ avePj∈σkλj, as proven in Section B.5. We will further prove
that the CAB fidelity is the upper bound of the CCB fidelity in
Section B.5.

5. Fitting Analysis for CAB
Here, we will analyze the fitting results in the CAB protocol
and explain the CAB fidelity F cab in detail. As shown in
Eq. (B30), the survival probability in CAB is given by

f k�m� �
hhQkjρsii

jσkj
X
Pj∈σk

λ2mj , (B32)

where jσkj � Tr�Πσk �. Fit f k�m� to the function,

f k�m� � Akμ
2m
k , (B33)

with Ak > 0, μk > 0. Take the natural logarithm for both sides
in Eq. (B34),

y � β0 � β1m, (B34)

where

y � ln f k�m�,
β0 � ln Ak,

β1 � 2 ln μk: (B35)

Next, we will employ the least-squares estimation for the linear
regression of Eq. (B34). Set fm1,m2, � � � ,mqg as inputs, and
assume m1 < m2 < � � � < mq without loss of generality. The
regression matrix M and the observed values Y are given by

M �

0
BBB@

1 m1

1 m2

..

. ..
.

1 mq

1
CCCA, Y �

0
BBB@

y1
y2
..
.

yq

1
CCCA: (B36)

Using the least-squares estimation, one can solve the opti-
mum parameters for the model

β̂ �
�
β̂0
β̂1

�
� �MTM �−1MTY : (B37)

The fitting parameter of interest in CAB is μk:

μk � exp

�
β̂1
2

�
, (B38)

where

β̂1 �
q
Pq

i�1 miyi −
Pq

i�1 mi
Pq

i�1 yi
q
Pq

i�1 m
2
i − �

Pq
i�1 mi�2

: (B39)

Then, we have the following lemma.
Lemma 3. Denote fμkg as the fitting parameters we solve in

the CAB protocol, given in Eq. (B38). For each μk, we have

μk ≥
1

jσkj
X
Pj∈σk

λj, (B40)

and the CAB fidelity is the upper bound of the CCB fidelity,

F cab�Λ� ≥ F ccb�Λ�: (B41)

Proof. For a simple linear regression using the least-squares
estimation, there are some observations above the fitting curve,

while the others are below the curve. Then one can conclude
that there exist two adjacent observations whose slope in be-
tween is smaller than the fitting slope of the curve. Thus for
the simple linear regression in CAB, the fitting slope holds

β̂1 ≥ min
i

�
yi�1 − yi
mi�1 − mi

�
: (B42)

According to the Chebyshev sum inequality [33], ∀i,
1

jσkj
X
Pj∈σk

λ2mi�1

j � 1

jσkj
X
Pj∈σk

λ2mi
j λ2�mi�1−mi�

j

≥
�

1

jσkj
X
Pj∈σk

λ2mi
j

��
1

jσkj
X
Pj∈σk

λ2�mi�1−mi�
j

�
:

(B43)

According to Eq. (B43), we can further derive that

yi�1 − yi � ln

�P
Pj∈σk λ

2mi�1

jP
Pj∈σk λ

2mi
j

�

≥ ln

�
1

jσkj
X
Pj∈σk

λ2�mi�1−mi�
j

�

≥ 2�mi�1 − mi� ln
�

1

jσkj
X
Pj∈σk

λj

�
, (B44)

where the last inequality comes from the convexity of func-
tion x2�mi�1−mi�.

Substituting Eq. (B44) into Eq. (B42), we have

β̂1 ≥ 2 ln

�
1

jσkj
X
Pj∈σk

λj

�
: (B45)

Since β̂1 � 2 ln μk, we can conclude that

μk ≥
1

jσkj
X
Pj∈σk

λj : (B46)

Besides, the dimensions of irreps of the local Clifford gate
C⊗n

1 satisfies X
σk∈Rn

jσkj �
X
σk∈Rn

Tr�Πσk � � 4n: (B47)

Thus,

F cab� 4−n
X
σk∈Rn

jσkjμk ≥ 4−n
X
σk∈Rn

X
Pj∈σk

λj � F ccb�Λ�, (B48)

which completes the proof.

APPENDIX C: STATISTICAL ANALYSIS

Here, we analyze the statistical fluctuation of the CCB protocol
with finite sampling. Recall that the CCB fidelity is given by
Eq. (B13),

F ccb�Λ� �
1

4n

X
j

λj, (C1)

where λj is the Pauli fidelity of channel
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U−1ΛPUΛP

p
related

to the Pauli operator Pj. It is impractical to solve all the Pauli
fidelities using the character RB method when qubit number n
becomes large. One can sample a finite number of Pauli irreps
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to estimate the process fidelity of the channel. The reliability of
these estimates is expressed by the confidence levels.

In the CCB protocol, the Pauli fidelity is obtained by fitting
the survival probability and the gate sequence length, which is
very hard for the statistical analysis. For simplicity, we take two
points in the fitting diagram to analyze the fluctuation of the
slope. In what follows, we use the notation where x̂ is an es-
timator of a quantity, x̄, where the bar denotes that either an
expected value or a sample average has been taken over realiza-
tions of random variable x.

We begin by describing the CCB protocol in a statisti-
cal way.

1. Choose Pauli operator Pj ∈ Pn.
2. Choose positive integer m1.
3. Choose random gate sequence s1 from gate set Sm1

and
obtain an estimate of the Pj-weighted probability, f̂ j�m1, s1�.

4. Repeat Step 3 K 1 times to estimate

f̂ j�m1� �
1

K 1

X
s1

f̂ j�m1, s1�, (C2)

where the K 1 gate sequences form a gate sequence set,
S1 ⊂ Sm1

.
5. Choose another bigger positive integer, m2 > m1.
6. Choose random gate sequence s2 from gate sequence set

Sm2
and obtain an estimate of the Pj-weighted probability,

f̂ j�m2, s2�.
7. Repeat Step 6 K 2 times to estimate

f̂ j�m2� �
1

K 2

X
s2

f̂ j�m2, s2�, (C3)

where the K 2 gate sequences form a gate sequence set,
S2 ⊂ Sm2

.
8. Estimate the Pauli fidelity

λ̂j �
0
@f̂ j�m2�
f̂ j�m1�

1
A 1

m2−m1

: (C4)

9. Sample M Pauli operators fPjg in Step 1, and for each
Pj, repeat Steps 2–8. Finally, estimate the CCB fidelity

F̂ ccb �
1

M

X
fPjg

λ̂j : (C5)

The main statistical errors are divided into two parts in the
above protocol. The first comes from the sampling randomness
of the Pauli fidelity estimation λ̂j for each Pj in Eq. (C4). The
second comes from the sampling randomness of the Pauli op-
erators fPjg in Eq. (C5). We shall calculate the confidence lev-
els for these two sampling randomness, respectively.

We first calculate the bias of the Pauli fidelity estimation:

Δλj∶ � j E
S1,S2

�λ̂j� − λ̄jj, (C6)

where λ̄j denotes the theoretical value of the Pauli fidelity,

λ̄j �
0
@f̄ j�m2�
f̄ j�m1�

1
A 1

m2−m1

: (C7)

Here, the expectations of the probability estimators are
taken over the gate sequences,

f̄ j�m1� � E
s1∈Sm1

�f̂ j�m1, s1��,

f̄ j�m2� � E
s2∈Sm2

�f̂ j�m2, s2��: (C8)

To calculate the expectation value of the ratio estimator in
Eq. (C6), we take the expectations over the gate sequence sets
S1, S2 on both sides of Eq. (C4),

E
S1, S2

�λ̂j� � E
S2
�f̂ j�m2�

1
m2−m1 �E

S1
�f̂ j�m1�−

1
m2−m1 �: (C9)

The expectations for f̂ j�m1� and f̂ j�m2� can be separated
since the random variables s1 and s2 are independent. By
denoting

b̂∶ � f̂ j�m2�, b̄∶ � f̄ j�m2�,
â∶ � f̂ j�m1�, ā∶ � f̄ j�m1�,

t∶ � 1

m2 − m1

, (C10)

we have

E
S1, S2

�λ̂j� � E
S1
�â−t �E

S2
�b̂t �: (C11)

Supposing that

δa∶ � â − ā
ā

≪ 1,

δb∶ � b̂ − b̄
b̄

≪ 1, (C12)

and using the second-order approximation of the Taylor expan-
sion at δa � 0, δb � 0 for â−t , b̂t, respectively, we have

â−t � ā−t�1� δa�−t
� ā−t�1 − tδa � t�t � 1�δ2a �O�δ3a��,

b̂t � b̄t�1� δb�t
� b̄t�1� tδb � t�t − 1�δ2b �O�δ3b��: (C13)

Take expectations over s1, s2 for Eq. (C13),

E
S1
�â−t � � ā−t�1� t�t � 1�Var�â�

ā2
�O�δ3a��,

E
S2
�b̂t � � b̄t�1� t�t − 1�Var�b̂�

b̄2
�O�δ3b��: (C14)

Then the expectation value of the ratio estimator is given by

E
S1, S2

�λ̂j� �
�
b̄
ā

�t�
1� t�t � 1�Var�â�

ā2

��
1� t�t − 1�Var�b̂�

b̄2

�
�O�δ3a , δ3b�

� λ̄j

�
1� t�t � 1�Var�â�

ā2
� t�t − 1�Var�b̂�

b̄2

�
�O�δ3a , δ3b�: (C15)

Substituting Eq. (C15) into Eq. (C6), we can derive the bias
of the Pauli fidelity estimation,
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Δλj � λ̄j

�
t�t � 1�Var�â�

ā2
� t�t − 1�Var�b̂�

b̄2

�
�O�δ3a , δ3b�:

(C16)

Recall that the assumptions of Eq. (D17) are established
with specific failure probabilities. To calculate the confidence
intervals for the aforementioned assumptions, we apply
Bernstein’s inequality.

Lemma 4 (Bernstein’s inequality [34]). Consider a set of n in-
dependent random variables fX 1, � � � ,X ng with ∀i,X i ≤ b. Let
X � 1

n

P
i X i, denote V2 � n−1

Pn
i�1 Var�X i�, then ∀ϵ > 0,

Pr�jX − E�X �j > ϵ� ≤ 2 exp

�
−

nϵ2∕2
V2 � bϵ∕3

�
: (C17)

Assuming that ∀m, f̂ j�m� ≤ 1, we derive the following
proposition.

Proposition 2. Let f̂ j�m� be the estimator of Pj-weighted
probability f̄ j�m� for fixed K , m, and j. Then ∀ϵ > 0,

Pr�jf̂ j�m� − f̄ j�m�j > ϵ� ≤ 2 exp

�
−

K ϵ2∕2
Var�f̂ j�m, s�� � ϵ∕3

�
:

(C18)
Then for the estimators â and b̂, we can derive the corre-

sponding confidence intervals

Pr�jâ − āj > ϵ1� ≤ 2 exp

�
−

K 1ϵ
2
1∕2

Var�f̂ j�m1, s1�� � ϵ1∕3

�

∶ � ϒa�K 1, ϵ1�,

Pr�jb̂ − b̄j > ϵ2� ≤ 2 exp

�
−

K 2ϵ
2
2

Var�f̂ j�m2, s2�� � ϵ2∕3

�

∶ � ϒb�K 2, ϵ2�: (C19)

Substituting Eq. (C19) into Eq. (C16), we obtain the
following lemma.

Lemma 5. For any given Pauli operator Pj ∈ Pn and some
fixed m1,m2,K 1,K 2, the bias of the Pauli fidelity estimation
is upper bounded by

Δλj ≤
1

�m2 − m1�2





 1� m2 − m1

K 1f̄ 2
j �m1�

Var�f̂ j�m1, s1��

� 1 − m2 � m1

K 2f̄ 2
j �m2�

Var�f̂ j�m2, s2��





�O�ϵ31, ϵ32�

∶ � ϵb�m1,m2;K 1,K 2; ϵ1, ϵ2�, (C20)

with a failure probability bounded by ϒj�K 1,K 2; ϵ1, ϵ2� �
ϒa�K 1, ϵ1� � ϒb�K 2, ϵ2�.

The notation ϵb�m1,m2;K 1,K 2; ϵ1, ϵ2� is abbreviated as ϵb
in the following analysis. Next, we compute the confidence in-
terval for the CCB fidelity F̂ ccb defined in Eq. (C5). We denote

F̄ 0
ccb �

1

M

X
fPjg

λ̄j, F̄ ccb �
1

4n

X
j

λ̄j : (C21)

Assume the Pauli fidelity 0 ≤ λ̄j ≤ 1 for all Pj. One can
apply the Hoeffding’s inequality directly.

Lemma 6 (Hoeffding’s inequality [35]). Consider a set of n
independent random variables fX 1, � � � ,X ng and ∀i, ai ≤
X i ≤ bi. Let X � 1

n

P
i X i, then ∀ϵ > 0,

Pr�jX − E�X �j > ϵ� ≤ 2 exp

�
−

2n2ϵ2Pn
i�1 �bi − ai�2

�
: (C22)

Then we can derive that ∀ϵM > 0,

Pr�jF̄ ccb − F̄ 0
ccbj > ϵM � ≤ 2 exp�−2Mϵ2M �: (C23)

According to Lemma 5, we have

Pr�jF̂ ccb − F̄ 0
ccbj > ϵb� ≤ Mϒj�K 1,K 2; ϵ1, ϵ2�, (C24)

where F̂ ccb is the estimator of F̄ ccb, as defined in Eq. (C5). By
combining Eqs. (C23) and (C24) and applying the union
bound, we can compute the confidence interval for the process
fidelity estimator

Pr�jF̂ ccb − F̄ ccbj > ϵM � ϵb� ≤ 2 exp�−Mϵ2M∕2�
�Mϒj�K 1,K 2; ϵ1, ϵ2�: (C25)

Let us assume that

0 ≤ Var�f̂ j�m1, s1�� ≤ 1, 0 ≤ Var�f̂ j�m2, s2�� ≤ 1, (C26)

and then Eq. (C25) can be simplified to

Pr�jF̂ ccb − F̄ ccbj> ϵM � ϵb�≤ 2 exp�−Mϵ2M∕2�

� 2M exp

�
−
K 1ϵ

2
1∕2

1� ϵ1∕3

�
� 2M exp

�
−
K 2ϵ

2
2∕2

1� ϵ2∕3

�
: (C27)

We further assume that
1

2
< f̄ j�m1� < 1, (C28)

and then we can derive the following theorem.
Theorem 2. Consider a CCB implementation with sampling

numbers K 1,K 2 at sequence lengths m1,m2 with estimation errors
ϵ1, ϵ2, respectively, and the expected survival probability f̄ j�m1�
that satisfies ∀j, 1=2 < f̄ j�m1� < 1. The estimated CCB fidel-
ity, F̂ ccb, is given by the average over M Pauli fidelities fλjg. The
confidence probability for the CCB fidelity falling into the esti-
mated interval �F̂ ccb − ϵM − ϵb, F̂ ccb � ϵM � ϵb� is greater than
1 − δ:

Pr�jF̂ ccb − F̄ ccbj ≤ ϵM � ϵb� ≥ 1 − δ, (C29)

with

ϵb ≤
4

K 1

1

m2 − m1

�
1

m2 − m1

� 1

�
�O�ϵ31, ϵ32�, (C30)

and

2 exp�−2Mϵ2M � � 2M exp

�
−
K 1ϵ

2
1∕2

1� ϵ1∕3

�

� 2M exp

�
−
K 2ϵ

2
2∕2

1� ϵ2∕3

�
� δ: (C31)

A simplified informal version of the above theorem is
presented in the main text as Theorem 1.

APPENDIX D: SIMULATION

Here, we will present the noise model for the simulation in the
main text and give more details on the two-qubit controlled-
�TX � gate and the five-qubit error correcting circuit. In
addition, we compare a CAB process and an interleaved char-
acter randomized benchmarking (ICRB) process [28,36] for
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benchmarking the two-qubit CZ gate. We provide its simula-
tion details and the results at the end of this part.

1. Error Model
The noise channel, Λt , we consider here for the target gate is
composed of a Pauli channel Λ0, an amplitude damping
channel Λ1, and a qubit–qubit correlation channel Λ2, Λt �
Λ0 ∘ Λ1 ∘ Λ2. We consider the noise channelΛref for the twirling
gate setPn is a gate-independent Pauli channel, which is negligible
compared with Λt .

1. Stochastic Pauli channel Λ0.
Pauli channel Λ0 can be written as

Λ0�ρ� �
X
i
piPiρP−1

i , (D1)

where pi is the Pauli error rate related to the Pauli operator Pi.
As for Λ0, it is equivalent to say that operator Pi ∈ Pn applies
on the density matrix ρ with probability pi. We can further
rewrite Λ0 in the PTM representation,

Λ0 �
X
i

λijPiiihhPij, (D2)

where λi is the Pauli fidelity. Pauli channel Λ0 in the simulation
contains dephasing errors and cross-talk errors. In reality, the
fidelity of error channel Λt is mainly determined by Λ0.

2. Amplitude-damping channel Λ1.
Each qubit in the simulation is subject to an amplitude

damping channel,

Λ1 � ⊗
n

i�1
Λd

i , (D3)

where Λd
i is the single-qubit damping channel for qubit i,

Λd
i � K �0�

i ρK �0�†
i � K �1�

i ρK �1�†
i ,

K �0�
i �

�
1 0

0
ffiffiffiffiffiffiffiffiffiffiffi
1 − αi

p
�
,

K �1�
i �

�
0

ffiffiffiffi
αi

p

0 0

�
, (D4)

with damping parameter αi.
3. Qubit–qubit correlation channel Λ2.
The qubit–qubit correlation channel Λ2 is a coherent error

channel in the simulation,

Λ2 � ⊗
i<j
eiβijSWAPij , (D5)

where βij is the correlation parameter describing the interacting
strength between qubits i and j.

2. Simulations for the Controlled-�TX� Gate
The controlled-�TX � gate can be decomposed as

CTX � �I ⊗
ffiffiffiffi
T

p
�CNOT�I ⊗

ffiffiffiffi
T

p
−1�: (D6)

Then, we can take I ⊗
ffiffiffiffi
T

p
as the local gauge transforma-

tion, and the twirling gate set turns to

Pctx � �I ⊗
ffiffiffiffi
T

p
�P2�I ⊗

ffiffiffiffi
T

p
−1�: (D7)

Consider noise channel Λt � Λ0 ∘ Λ1 ∘ Λ2 in Section D.1
for the noisy controlled-�TX � gate. We randomly sample
the Pauli fidelities of Λ0 from a normal distribution N �μ, σ�,

denoted as a N �μ, σ�-Pauli channel, where μ and σ are the
mean value and standard deviation. The parameters for Λ1

are set to α1 � α2 � 0.005. The parameter for Λ2 is set to
β12 � 0.01. In the following discussions, we label the noise
channel for the controlled-�TX � with Λt�μ, σ�, since Λ1

and Λ2 remain the same in all the simulations.
We simulate the CAB and CCB protocols for the noisy

controlled-�TX � gate with eight different noise channels
fΛt�μi, σi�g, and the noisy implementations of CTX and
CTX−1 are given by

CT̃X � CTX ∘ Λt�μ, σ�, CTX̃−1 � CTX−1 ∘ Λt�μ, σ�:
(D8)

The error parameters are taken as f�μi, σi�g � {(0.995,
0.001), (0.990, 0.002), (0.980, 0.003), (0.970, 0.004),
(0.960, 0.005), (0.950, 0.006), (0.940, 0.007), (0.930,
0.008)}. Take the N �0.998,0.001�-Pauli channel as the noise
channel of the twirling gate set Λref and then denote the noisy
implementation of the twirling gate set as

P̃ctx � Λref ∘ Pctx: (D9)

Take theN �0.998,0.001�-Pauli channel as the SPAM error
channel Λspam and then denote the noisy implementations of
the initial state jψi and measurement Q as

ρψ � Λspam�jψihψ j�, Q̃ � Q ∘ Λspam: (D10)

The simulation procedures for CAB run as follows.

1. For each noise channel Λt�μi, σi�, select a set of
sequence length fmg � f1, 2, � � � ,mmaxg, where mmax satisfies
μmmax
i ≈ μi∕3.
2. For each sequence length m, sample K � 50 ran-

dom gate sequences f�C , P�1�
ctx , � � � , P�2m�

ctx �g, where C and
P�i�
ctx �1 ≤ i ≤ 2m� are sampled uniformly at random from

C⊗2
1 and Pctx, respectively. For each gate sequence, the noisy

implementation in PTM is given by

S̃cab � ΛrefC−1ΛrefU invCTX
−1ΛtΛrefP

�2m�
ctx …P�2�

ctx

× CTXΛtΛrefP
�1�
ctxC, (D11)

where the inverse gate is given by U inv �
�CTX−1P�2m�

ctx � � �CTX−1P�2�
ctxCTXP

�1�
ctx �−1.

3. Compute the survival probability over the K � 50 gate
sequences for each measurement observable Qk ∈ fII , IZ ,
ZI ,ZZ g:

f k�m� �
1

K

X
Scab

hhQ̃kjS̃cabjρψ ii, (D12)

where jψi � j0i⊗2.
4. For each Qk, fit f k�m� to the function

f k�m� � Akμ
2m
k : (D13)

5. Estimate the CAB fidelity as

F cab �
1

16
�μI I � 3μIZ � 3μZI � 9μZZ �: (D14)

The simulation procedures for CCB run as follows.
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1. For each noise channel Λt�μi, σi�, select a set of
sequence length fmg � f1, 2, � � � ,mmaxg, where mmax satisfies
μmmax
i ≈ μi∕3.
2. Sample M � 10 operators fPjg uniformly at random

from Pctx.
3. For each Pj at each sequence length m, sample K � 50

random gate sequences f�P�0�
ctx , P

�1�
ctx , � � � , P�2m�

ctx �g, where P�i�
ctx

are sampled uniformly at random from Pctx. For each gate
sequence, the noisy implementation in PTM is given by

S̃cab�ΛrefU invCTX
−1ΛtΛrefP

�2m�
ctx …P�2�

ctxCTXΛtΛrefP
�1�
ctxP

�0�
ctx ,

(D15)

where the inverse gate is given by U inv �
�CTX−1P�2m�

ctx � � �CTX−1P�2�
ctxCTXP

�1�
ctx �−1.

4. Compute the survival probability over the K � 50 gate
sequences for each measurement Pj,

f j�m� �
1

K

X
Sccb

χj�P�0��hhPjjΛspamS̃ccbjρψ ii, (D16)

where χj�P�0�� � 1 if P�0� commutes with Pj and −1 otherwise,
and jψi is the �1 eigenstate of Pj.

5. Fit f j�m� to the function

f j�m� � Ajλ
2m
j : (D17)

6. Estimate the CCB fidelity as

F ccb �
1

M

X
fPjg

λj : (D18)

3. Simulations for the Five-Qubit Error Correcting
Circuit
Here, we take the five-qubit stabilizer encoding circuit shown
in Fig. 6 as the target gate U , which only contains Clifford
gates.

The noise channel we consider here has the form
Λt � Λ0 ∘ Λ1 ∘ Λ2, as presented in Section D.1. We set the
N �0.98,0�-Pauli channel as Λ0, which can be seen as a depo-
larizing channel, Λdep�ρ� � pρ� �1 − p�I∕d where p � 0.98.
The error parameters fαig and fβijg are sampled uniformly at
random from the intervals [0, 0.02] and [0, 0.01], respectively.
Then the noisy implementation of the target gate is given by

Ũ � U ∘ Λt : (D19)

Since the five-qubit encoding circuit is a Clifford gate, we
take the five-qubit Pauli group P5 as the twirling gate set. For
simplicity, we ignore the errors from the SPAM and twirling
gates, Λspam � I and Λref � I .

The simulation procedures for CAB run as follows.

1. For the five-qubit noise channel Λt , select a set of
sequence lengths, fmg � f1, 2, � � � , 20g.

2. For each sequence length m, sample K random gate se-
quences f�C ,P�1�, � � � ,P�2m��g, where C and P�i� are sampled
uniformly at random from C⊗5

1 and P5, respectively. For each
gate sequence, the noisy implementation in PTM is given by

S̃cab � C−1U invU−1ΛtP�2m�…P�2�UΛtP�1�C, (D20)

where the inverse gate is given by U inv �
�U−1P�2m� � � �U−1P�2�UP�1��−1.

3. Compute the survival probability over the K gate se-
quences for each measurement observable Qk ∈ fI ,Zg⊗5,

f k�m� �
1

K

X
Scab

hhQ̃kjS̃cabjρψ ii, (D21)

where jρψ i � j0i⊗5.
4. For each Qk, fit f k�m� to the function

f k�m� � Akμ
2m
k : (D22)

5. Estimate the CAB fidelity as

F cab �
1

45

X
k

d kμk, (D23)

where dk is the dimension of the kth irrep, defined in
Eq. (B31).

Note that the target gate is a Clifford gate. In the simulation,
we obtain the inverse gate, U inv �∘20i�1 U

−1P2iUP2i−1, by con-
sidering the permutation relation of a Clifford gate acting on
Pauli operators. Furthermore, the survival probability for
observable Qk can be obtained from the Z basis measurement
result. To be specific, Qk can be expressed as the linear combi-
nation of jzihzj, Qk �

P
z tkz jzihzj, where z ∈ f0,1g5. Then

the survival probability in Eq. (D21) is given by

f k�m� �
1

K

X
Scab

hhQ̃kjS̃cabjρψ ii

� 1

K

X
Scab

Tr�QkS̃cab�j0ih0j��

� 1

K

X
Scab

X
z

tkzTr�jzihzjS̃cab�j0ih0j��, (D24)

where Scab represents the channel of Scab.
For comparison, we also simulate the XEB protocol to

benchmark the fidelity of the five-qubit error correcting circuit
with the same noise channel. The simulation procedures for
XEB run as follows.

1. For the five-qubit noise channel Λt , select a set of
sequence lengths, fmg � f1, 2, � � � , 20g.

2. For each sequence length m, sample K random gate
sequences f�C �1�, � � � ,C �2m��g, where C �i� are sampled uni-
formly at random from C⊗5

1 . For each gate sequence, the noisy
implementation in PTM is given by

S̃xeb � UΛtC�2m� � � �ΛtC�2�UΛtC�1�: (D25)

3. Compute the Z basis measurement result for each gate
sequence Sxeb, for z ∈ f0,1g5,Fig. 6. Five-qubit stabilizer encoding circuit.
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f xeb�m, z� � hhzjS̃xebjρψ ii, (D26)

where jψi � j0i⊗5.
4. Compute the ideal Z basis measurement result if the

gate is ideal for each gate sequence, for z ∈ f0,1g5,
f 0
xeb�m, z� � hhzjUC�2m� � � � C�2�UC�1�jρψ ii: (D27)

5. Compute the average XEB fidelity over the K gate
sequences:

f xeb�m� �
1

K

X
Sxeb

2n
P

zf xeb�m, z�f 0
xeb�m, z� − 1

2n
P

zf xeb�m, z�2 − 1
: (D28)

6. Fit f xeb�m� to the function

f xeb�m� � Axebp2m � Bxeb: (D29)

The estimation of process fidelity with XEB is given
by p� �1 − p�∕d 2.

4. Comparison between CAB and ICRB for
Benchmarking a CZ Gate
In this part, we present the comparison of CAB and ICRB for
benchmarking a CZ gate. The noise model is the same as the
one in Appendix D.1, including a Pauli channel, amplitude
damping channel, and a qubit–qubit correlation channel.
Specifically, we set the N �0.99,0�-Pauli channel as Λ0. For
the amplitude damping channel Λ1 and the qubit–qubit cor-
relation channel Λ2, the error parameters fαig and fβijg are
sampled uniformly at random from the intervals [0, 0.01]
and [0, 0.01], respectively. Then the noisy implementation
of CZ gate is set asfCZ � CZ ∘ Λ2 ∘ Λ1 ∘ Λ0: (D30)

The fidelity of the generated noise channel Λ2 ∘ Λ1 ∘ Λ0

is 0.9864 in our simulation, matching the fidelity of a real
CZ gate in experiments. We consider an error probability
of 0.02 for state preparation. That is, for each qubit, the
actual prepared state is 0.98j0ih0j � 0.02j1ih1j for j0i and
is 0.02j0ih0j � 0.98j1ih1j for j1i. For simplicity, we set the
measurement to be perfect computational basis measurement.

The simulation of the CAB process is similar to previous
cases. The only difference is that we consider the effect of finite
number of measurements in this case. That means, after com-
puting the computational basis measurement probability for
one sequence, we use this probability to generate a measure-
ment frequency associated with a fixed number of single-shot
measurements. Then the measurement frequency is used to
compute the survival probability as well as fidelity. For simu-
lating ICRB [28,36], we consider the same measurement set-
ting and take the same number of single-shot measurements for
one-sample sequence.

In this simulation, the circuit depth of CAB is set to
f1,2,5,10,20,50g, corresponding to an overall CZ gate num-
ber f2,4,10,20,40,100g. To ensure that the numbers of
implemented CZ gates in the two protocols are identical,
the circuit depth of ICRB is set to f2,4,10,20,40,100g. The
sample complexity for each circuit depth is taken from
f5,10,25,50,100,200g, and the number of single shots for
one sample sequence is taken from f100,200g. Then the
amount of single-shot measurements for CAB is

the number of circuit depths

× sample complexity for one depth

× single shots for one sequence: (D31)

Due to the additional sample complexity brought by the
character gate, the amount of single-shot measurements for
ICRB is

2n × the number of circuit depths

× sample complexity for one depth

× single shots for one sequence: (D32)

It can be seen that the factor 2n associated with the character
gate is an exponential overhead. We separately simulate 50 ex-
periments for each setting and compute the mean and standard
deviation of the fidelity of these 50 experiments. The simula-

Fig. 7. Simulation results of CAB and ICRB for benchmarking a
CZ gate. (a) The error bar of the fidelity obtained from 50 experiments
via CAB and ICRB protocols. The x-axis represents the amount of
single-shot measurements, and the y-axis represents the fidelity. The
term “shot" represents the number of single shots associated with one
sample sequence. One can see that CAB and ICRB can both obtain an
accurate estimation of the process fidelity of a CZ gate. (b) The stan-
dard deviation of the fidelity obtained from 50 experiments via CAB
and ICRB protocols. The x-axis represents the amount of single-shot
measurements, and the y-axis represents the standard deviation of the
fidelity. The figure shows that CAB has an advantage over ICRB with
regard to standard deviation.

98 Vol. 11, No. 1 / January 2023 / Photonics Research Research Article



tion results of the two protocols are presented in Fig. 7. The
results show that CAB and ICRB have a similar accuracy in
benchmarking CZ, and CAB is a little better than ICRB in
the sense of standard deviation. That means, to estimate the
process fidelity of CZ within a given precision, the amount of
single-shot measurements for CAB is less than that for ICRB,
showing an advantage of CAB in benchmarking experiments.
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