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Structured optical fields embedded with polarization singularities (PSs) have attracted extensive attention due to
their capability to retain topological invariance during propagation. Many advances in PS research have been
made over the past 20 years in the areas of mathematical description, generation and detection technologies,
propagation dynamics, and applications. However, one of the most crucial and difficult tasks continues to
be manipulating PSs with multiple degrees of freedom, especially in three-dimensional (3D) tailored optical
fields. We propose and demonstrate the longitudinal PS lines obtained by superimposing Bessel-like modes with
orthogonal polarization states on composite vector optical fields (VOFs). The embedded PSs in the fields can be
manipulated to propagate robustly along arbitrary trajectories, or to annihilate, revive, and transform each other
at on-demand positions in 3D space, allowing complex PS’ topological morphology and intensity patterns to be
flexibly customized. Our findings could spur further research into singular optics and help with applications such
as micromanipulation, microstructure fabrication, and optical encryption. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.470931

1. INTRODUCTION

Singularities in topological systems have been studied in a va-
riety of disciplines, including quantum condensates [1,2], fluid
dynamics [3], superconductors [4], and field theory [5,6]. In
wave optics, singularities are introduced to describe the striking
feature that parameters characterizing optical fields cannot be
defined at specific positions, whereas the distribution of
amplitude, phase, or state of polarization (SOP) around the re-
spective singularity forms a specific geometric configuration,
namely topological morphology or skeleton of the structured
optical field [7–12]. To be specific, phase singularities in scalar
optical fields represent points of indeterminate phase in two-
dimensional (2D) space, leading to optical vortices in spatially
varying amplitude and phase structures. For vector optical
fields (VOFs), polarization singularities (PSs) are used to de-
scribe the singular feature that parameters determining the local
SOP cannot be defined. Generally, PSs in transverse planes are
isolated C-points, points of circular polarization where the ori-
entation of the polarization ellipse is undefined; V-points, null
intensity points with both indeterminate handedness and

orientation of the polarization ellipse; and L-lines, with the
handedness of the polarization ellipse on them being undefined
[10,11]. In addition, the description of PSs can be conveniently
extended to three-dimensional (3D) space, and then singular
points and lines evolve into singular lines and surfaces [12,13],
respectively. PSs embedded in VOFs, as opposed to phase
singularities, have a rich spatial distribution of SOP and topo-
logical morphology, such as lemon, star, monstar, Möbius
strips, links, and knots [10,14–17], which have been claimed
to inherit persistence even when perturbed during beam
propagation.

To date, significant progress has been made in PSs, including
methods for generation and detection, propagation dynamics,
and applications [18–21]. With increasing experimental
realization and advanced technologies for VOFs, such as
q-plates [22], spatial light modulators (SLMs) [23], and meta-
surfaces [24], complex PS configurations and PS arrays in 2D
space have been successfully created [25–31], revealing some
important topological properties such as sign rules, net-zero
topological charge, and singularity index conservation.Whereas,
as previously stated, PSs appear naturally as phenomena in 3D

Research Article Vol. 11, No. 1 / January 2023 / Photonics Research 121

2327-9125/23/010121-08 Journal © 2023 Chinese Laser Press

https://orcid.org/0000-0002-3990-6454
https://orcid.org/0000-0002-3990-6454
https://orcid.org/0000-0002-3990-6454
https://orcid.org/0000-0003-4414-2185
https://orcid.org/0000-0003-4414-2185
https://orcid.org/0000-0003-4414-2185
https://orcid.org/0000-0002-2070-3446
https://orcid.org/0000-0002-2070-3446
https://orcid.org/0000-0002-2070-3446
mailto:jpding@nju.edu.cn
mailto:jpding@nju.edu.cn
mailto:jpding@nju.edu.cn
https://doi.org/10.1364/PRJ.470931


space, a complete picture of evolution along the third spatial di-
mension is especially important. PS petal structures [32], dy-
namics of on-axis PSs and PSs in composite optical vortices
[22,33,34], Hilbert hotel-like behavior in the creation of PSs
[35], pseudo-topological properties arising from the invisible re-
distribution of both spin angular momentum (SAM) and orbital
angular momentum (OAM) states [36], linked and knotted
longitudinal PS lines [15,16], and self-imaging PS networks
[37] have recently been theoretically or experimentally investi-
gated. These studies demonstrated several novel phenomena and
investigated the physical implications of PSs during propagation.
However, due to the topological complexity of PSs and difficul-
ties in the experimental implementation of diverse structured
optical beams, research on actively manipulating the propaga-
tion and evolution of PSs, as well as customizing the on-demand
3D PS topological configuration, remains extremely scarce and
challenging.

In this paper, we employ nondiffraction Bessel beams as
orthogonal components to compose Bessel-like VOFs em-
bedded with PSs using our experiment setup, which consists
of a VOF generator and a far-field measurement system.
Leveraging our angular spectrum design proposed in Ref. [38],
we dynamically regulate the propagation and evolution of the
PSs by refreshing the computer-generated holograms (CGHs)
encoded on a phase-only SLM, allowing us to easily customize a
complex PS topological configuration and intensity pattern in
3D space.

2. THEORETICAL BASIS

To obtain the desired VOFs and manipulate the embedded
PSs, we resort to Bessel beams acting as orthogonal components
because of their diffraction-resilience. Furthermore, such beams
can be engineered to propagate with a tunable axial intensity
within a range of accessible spatial frequencies [39,40], or along
curved propagation trajectories, resulting in self-accelerating
Bessel-like beams [41,42]. To further enhance the applicability,
we recently proposed an approach to generate self-accelerating
zeroth-order Bessel beams with on-demand tailored intensity
profiles along arbitrary trajectories, and Bessel–Poincaré beams
propagating with embedded radial self-accelerating Stokes vor-
tices [38,43], which have the z-axial amplitude distribution of
U �z, r � 0� �

ffiffiffiffiffiffiffiffi
I�z�

p
exp�ikz0z� in the cylindrical coordi-

nates �r,φ, z�, and can be calculated from the angular spectrum
of the beam given by
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where k � 2π∕λ is the wave vector with λ being the wavelength
of the monochromatic light, kz and kr are the longitudinal and
radial wave vectors connected by kz �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2r

p
,

ffiffiffiffiffiffiffiffi
I�z�

p
corresponds to the z-axial intensity distribution, and rect �·�
represents the rectangle function. According to the Fourier
phase-shifting theorem, a light sheet within a tiny longitudinal
region �z, z � Δz� will undergo a translation from �0, 0, z� to
�h�z�, g�z�, z� if a complex exponential exp�ikxh�z� � ikyg�z��
is imposed on the angular spectrum. Here we extend such a
spatial spectrum method to a higher-order Bessel beam design,

and the corresponding angular spectrum formula in Ref. [38]
should be rewritten as
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(2)

where the subscripts i � R and L denote the respective right-
handed (RH) and left-handed (LH) circular polarization state,
respectively, and mi is the topological charge of the component
phase vortex. Equation (2) provides a feasible scheme for
controlling both the intensity and propagation trajectory of
higher-order Bessel modes, allowing for manipulation of the
propagation and evolution of the PSs embedded in the
composite Bessel-like field, as well as customization of the PS
topological morphology. By using the inverse Fourier transform
of Eq. (2), we can obtain the two orthogonal constituent
Bessel-like beams, i.e., EL and ER , needed to compose the de-
sired VOFs. Based on the Stokes polarimetry method, the
polarization distribution and PS topological morphology of
the field can be determined by measuring four Stokes param-
eters, which are constructed in terms of circularly polarized base
vectors as

S0 � jELj2 � jERj2,
S1 � 2Re�E�

REL�,
S2 � 2 Im�E�

REL�,
S3 � jELj2 − jERj2: (3)

Then local SOP of any optical field can be depicted
by a polarization ellipse with the ellipticity and azimuthal
angle expressed as χ � �1∕2� arcsin�S3∕S0� and ψ �
�1∕2� arctan�S2∕S1�, respectively. Generally, PSs are examined
in transverse planes, e.g., C-points and V-points, and can be
identified by constructing the Stokes complex field S12 �
S1 � iS2 with phase distribution ϕ12 � arctan�S2∕S1�.
Because C- and V-points appear in VOFs as phase vortices
in the Stokes field S12, the singular indices characterizing
the polarization variation surrounding PSs can be usefully sub-
sumed under a single integer Stokes index, defined by
σ12 � �Δϕ12�∕2π with Δϕ12 being the accumulated phase ac-
quired around a closed path embracing the S12 phase vortices in
the counterclockwise sense. The C-point index (IC ) and
V-point index (η, also called Poincaré–Hopf index) connected
to the Stokes index are described as IC � σ12∕2 and
η � σ12∕2, respectively. The polarization distribution sur-
rounding low-order V-points, i.e., η � 	1 (σ12 � 	2), forms
radial or azimuthal polarization patterns. Low-order C-point
indices, on the other hand, have three possible topologically
distinct polarization configurations, which manifest as
lemon or monstar for IC � 1∕2 (σ12 � 1), and star for
IC � −1∕2 (σ12 � −1).

3. EXPERIMENT AND RESULTS

The experimental setup is depicted in Fig. 1 and includes a 4-f
VOF generator system from our earlier research [23,44] as well
as a focusing component for producing a far field. The focal
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lengths of lenses L1, L2, and L3 are 400 mm, 300 mm, and
200 mm, respectively. We let a collimated and expanded lin-
early polarized laser beam of 532 nm wavelength be incident on
a phase-only SLM (HOLOEYE LETO, 6.4 μm pixel pitch,
1920 × 1080), which addresses the CGH produced from the
complex amplitude in Eq. (2) through a cosine-grating encod-
ing method to generate the constituent Bessel-like modes.
Then the two�1st order diffraction components are controlled
to pass through a filter and converted into mutually orthogonal
circularly polarized states by using an assembled quarter-wave
plate (QWP). A Ronchi grating is placed at the rear focal plane
of lens L2 to recorrect the diffraction direction of the two com-
ponents and compose the desired Bessel-like vector beams
embedded with PSs. Lens L3 is used to generate the far field,
and the unit consisting of a QWP and a polarization camera
(4D Technology PolarCam, 3.45 μm pixel pitch, 2464 × 2056)
mounted on a motorized stage can be positioned to detect and
image any cross section of the composite Bessel-like VOFs. As a
result, the four Stokes parameters are precisely measured, based
upon which the beam patterns and the phases of the Stokes
complex field S12 will be ultimately reconstructed to verify
all the predictions.

First, let us present our results regarding the manipulation of
propagation trajectories of the embedded PSs in the composite
field, which can be described by the displacement vector

s
⇀
i�z� � hi�z�x̂ � gi�z�ŷ, z ∈ �−f , f �, (4)

where x̂ and ŷ denote the unit vectors of the x and y directions,
respectively. To highlight the main point, the constituent
Bessel-like components are controlled to have a uniform con-
stant intensity and each with an imposed phase vortex of unit
strength, i.e., IL�z� � IR�z� � 1 and mL � mR � 1, from
which it is deduced that paired C-points, forming a lemon–star
polarization topology, can be launched from any location in the
Fourier plane (z � 0 mm). Then, the resultant C-lines will
evolve with propagation distance as they follow predesigned tra-
jectories in 3D space. As an example, in Fig. 2, we numerically
and experimentally demonstrate the design of the propagation
along spiral trajectories, where hL�z� � sin�ωLπ�z∕f � 1��,
gL�z� � cos�ωLπ�z∕f � 1��, hR�z� � sin�ωRπ�z∕f � 1��,
and gR�z� � cos�ωRπ�z∕f � 1�� with ωL � 3 and ωR � 4

being set, meaning that the two C-points propagate similarly
but with different angular velocities. It can be seen from
Figs. 2(a) and 2(b) that the intensity pattern features a high-
intensity central core with propagation-dependent structures
surrounded by numerous asymmetrical rings, which represent
composite Bessel-like fields rather than exact Bessel beams due
to the structured mainlobe and symmetry breakdown. The
propagation trajectories of the RH and LH C-points are plotted
by red and blue continuous lines (C-lines), as shown in
Fig. 2(c), respectively, along with a top-view image in the form
of overlapping circles. To confirm the initial composite field
with the lemon–star topological configuration, the polarization
distribution in the Fourier plane is mapped as an inset, where
the red and blue colors denote RH and LH polarization states,
respectively, while the white and black dots mark the positive
(�1∕2) and negative (−1∕2) C-points in the x−y planes. It is
found that by propagating throughout the given distance, three
and four complete windings for the LH and RH C-lines are
obtained, which are topologically equivalent to a PS braiding,
the winding numbers of which are directly controlled by the
values of ωL and ωR and can be arbitrarily regulated. Such a
result is in stark contrast to the common optical vortex braiding
limited to the Gouy phase [45], PSs in the coaxial superposition
of component phase vortices with orthogonal SOPs [46,47],
and the passive evolution of laterally shifted PSs traveling
through uniaxial crystals or in free space [13,48,49], which
may produce prospective applications in microstructure fabri-
cation. Figures 2(d) and 2(e) show the measured transverse
beam patterns and phases of the Stokes field S12 taken at
various positions, with the Stokes phase vortices marked by
white and black circles determining the positive and negative
C-points. It can be observed that the intensity mainlobe struc-
turally varies as the beam propagates, and the lemon–star
polarization configuration rotates with respect to the central
core of the beam, resulting in the braiding behavior of the
C-lines. The measured locations of the Stokes vortices are
found to be in good agreement with those of the C-points
marked on the C-lines in Fig. 2(c).

To offer our approach more versatility, and in the meantime,
prompted by the growing interest in customizing on-
demand PSs topological morphology, we build an intriguing

Fig. 1. Experiment setup used to generate composite Bessel-like VOFs and manipulate propagation and evolution of the embedded PSs.
P, polarizer; SLM, spatial light modulator; BS, beam splitter; L1–L3, lenses; A-QWP, assembled quarter-wave plate; G, Ronchi grating.
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hexapetalous PS topological configuration by separately
manipulating propagation trajectories of the PSs. For this pur-
pose, trefoil propagation trajectories of the paired C-points with
the same scale but different azimuthal orientations are de-
signed, which are described as hL�z� � cos�3�z∕f � 1�π� ·
sin��z∕f � 1�π�, gL�z� � cos�3�z∕f � 1�π� cos��z∕f � 1�π�,
hR�z� � cos�3�z∕f � 1�π � 3π∕2� sin��z∕f � 1�π � 5π∕6�,
and gR�z� � cos�3�z∕f � 1�π � 3π∕2� cos��z∕f � 1�π�
5π∕6� in Eq. (4), while the other parameters are the same as

those taken in Fig. 2. The longitudinal and transverse beam
patterns, propagation trajectories and their top-view images,
and polarization distribution in the initial transverse plane
are demonstrated in Figs. 3(a)–3(c) accordingly. As expected,
the C-points manifest themselves in 3D space as azimuthally
dislocated trefoil propagation trajectories, as shown in Fig. 3(c),
resulting in the formation of the hexapetalous PS topological
configuration in the projection plane [see the bottom plane
pattern in Fig. 3(c)]. Experimental results are shown in

Fig. 2. Numerical and experimental demonstrations of the manipulated propagation trajectories of PSs in form of braiding. (a) Simulated side-
view propagation of the composite Bessel-like beam and (b) transverse beam patterns at three different positions. (c) The spiral propagation tra-
jectories of the C-points (i.e., C-lines, depicted by continuous lines) are accompanied by a top-view image at the bottom, and the polarization
distribution in the Fourier plane is indicated as an inset to suggest the initial field with lemon–star topological configuration, where the red and blue
colors denote RH and LH polarization states. (d) and (e) Measured transverse beam patterns and Stokes phases ϕ12 at different positions, where the
white and black circles represent the Stokes vortices, corresponding to positive and negative C-points marked by dots on the C-lines in (c),
respectively.

Fig. 3. Customization of the hexapetalous PSs topological configuration. (a) Simulated side-view propagation of the composite Bessel-like beam
and (b) transverse beam patterns at three different positions. (c) Dislocated trefoil propagation trajectories of the C-points and their top-view images,
together with an inset depicting the polarization distribution in the Fourier plane, where the red and blue colors denote RH and LH polarization
states. (d) and (e) Measured transverse beam patterns and Stokes phases ϕ12 at different positions, where the Stokes vortices are marked by white and
black circles, corresponding to positive and negative C-points marked by dots on the C-lines in (c), respectively.
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Figs. 3(d) and 3(e) to confirm the simulated ones presented in
Figs. 3(a)–3(c). In addition to the benefit of manipulating PS
propagation trajectories, our proposed approach can be viewed
as a flexible and easily implemented means of customizing com-
plex PS topological configurations in 3D space.

Next, we turn our attention to the evolution of PSs during
propagation. As is well known, PSs have drawn increasing at-
tention due to their stability and persistence in time or space,
which stems from the local structure organizing the topology of
the surrounding field. Several novel phenomena such as PS
splitting, creation, annihilation, and pseudo-topological evolu-
tion have been investigated recently [33,36,50,51], implying
that the topological morphology can also be destroyed even
during free-space propagation. Regardless of the strict scenario
for ensuring the persistence of PS topological configurations
during propagation and the underlying interaction between
them, the appearance of PSs is primarily determined by
orthogonal SAM states with differences in OAMs. In other
words, the spatial overlap or separation of the two constituent
parts determines whether PSs are generated or destroyed.
Inspired by this, we attempt to regulate the embedded C-points
to annihilate and revive at desired positions with beam propa-
gation. We define hL�z� � 0, hR�z� � sin�2π�z∕f � 1� �
π∕2�, and gL�z� � gR�z� � cos�2π�z∕f � 1� � π∕2� in
Eq. (4) to ensure the same displacement of the C-points along
the y direction, whereas different displacements along the x di-
rection are controlled by hR�z�, and the other parameters are
the same as those in Fig. 2. The longitudinal and transverse
beam patterns, evolution trajectories of the C-points accompa-
nied by Stokes phase slices taken at three different positions,
and the corresponding polarization distributions are shown
to illustrate the evolution of the beam intensity and C-points
during propagation in Figs. 4(a)–4(c), where the red and blue

colors represent RH and LH polarization states, respectively,
and the gray dots denote the annihilation points of the positive
(white dots) and negative (black dots) C-points, respectively. It
is shown that, at the initial position (z � 0 mm), there are no
PSs due to the overlapping of the orthogonal SAM states carry-
ing the same OAM, i.e., hR�z� � hL�z� and mL � mR � 1.
On the contrary, hR�z� ≠ hL�z� if only the beam propagates
a tiny distance away from the initial position, implying the
splitting of the OAM states; thus the paired C-points will
be created. Furthermore, it is found that the C-points, which
are caused by the preplanned periodic displacements, alter-
nately vanish and revive with propagating through a longi-
tudinal distance [cf. Fig. 4(c)]. Therefore, the annihilation
positions derived from the condition hR�z� � hL�z� can be
conveniently controlled. Figures 4(d) and 4(e) show the mea-
sured Stokes phases and transverse beam patterns at various po-
sitions between z � −150 mm and z � 150 mm in steps of
50 mm, where the dotted circles represent the annihilation
points and the white and black circles denote the Stokes vor-
tices, which correspond to the positive and negative C-points,
respectively. It is confirmed that the C-points can be regulated
to periodically annihilate at desired positions, such as
z � −100 mm, z � 0 mm, and z � 100 mm. Likewise, as
we can see from positions z � −150 mm and z � 50 mm,
or z � −50 mm and z � 150 mm, the specific PS topological
configuration can periodically revive. These results inevitably
lead us to the conclusion that by manipulating the propagation
trajectories of the PSs we can flexibly regulate and redistribute
the constituent SAM and OAM states, allowing us to achieve
the on-demand annihilation or revival of PS topological mor-
phology in 3D space.

The above examples have demonstrated the topological sta-
bility of PSs during propagation, as seen in Figs. 2–4, where a

Fig. 4. Numerical and experimental demonstrations of the manipulated evolution of PSs in 3D space. (a) Simulated side-view propagation of the
composite Bessel-like beam and (b) transverse beam patterns at three different positions. (c) The evolution trajectories (continuous lines) are ac-
companied by three slices of Stokes phase and polarization distributions at the same three positions as those in (b), where the red and blue colors
describe RH and LH polarization states, white and black dots denote positive and negative C-points, and gray dots represent the annihilation points
of the C-points, respectively. (d) and (e) Measured transverse beam patterns and Stokes phases at different positions, where the white and black circles
denote the Stokes vortices corresponding to the positive and negative C-points marked by dots on the lines in (c), and the dotted circles denote the
annihilation points.
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certain PS topological morphology remains invariant along the
predesigned propagation trajectory. Such performances are fa-
vorable to information transmission fidelity when PSs are uti-
lized as information carriers. However, another question arises:
can we switch the PS structure of an optical field during its
propagation? The answer is affirmative and is supported by
the final example. To this end, we carry out a piecewise
design, which integrates multiple component phase vortices
�mL,mR����1, �1�, ��1, −1�, ��1, �1�, and (−1, �1),
within their respective z ranges (−200 mm, −150 mm),
(−150 mm, −50 mm), (−50 mm, 50 mm), and (50 mm,
150 mm). The displacement equations are set to hR�z� �
hL�z� � 0 and gL,R�z� � 	 sin�2π�z∕f � 1� � π∕2� so that
during propagation, two C-points displace oppositely about
the optical axis solely in the y direction. The simulated and
experimentally measured results are demonstrated in Fig. 5,
where it is first shown that a chain-like intensity pattern in
the y−z plane is formed [Fig. 5(a)], and the transverse beam
patterns at three positions are presented in Fig. 5(b) to fur-
ther illustrate such an intensity distribution. The evolution tra-
jectories of PSs with three Stokes phase slices are shown in
Fig. 5(c), and the polarization distributions at six typical places
are shown as insets to highlight the variation of topological
morphology. It is found that, in regions (−150 mm, −50 mm),
(−50 mm, 50 mm), and (50 mm, 150 mm), the composite
beam displays three different PS topological configurations,
namely, lemon–lemon, star–lemon, and star–star, respectively,
resulting from the piecewise design of constituent phase vorti-
ces. Moreover, at the overlapping points, the PSs can not only
annihilate (gray dots), but can also be fused into different

higher-order modes; e.g., at position z � −50 mm, the paired
positive C-points (white dots) are transformed into a positive
V-point (green dot), around which the beam is radially and
linearly polarized. Meanwhile, a negative V-point (yellow
point) with a spider-like linear polarization configuration ap-
pears at position z � 150 mm, due to the fact that the signs
of the paired C-points are changed to be negative before the
fusion point. Figures 5(d) and 5(e) show the measured trans-
verse beam patterns and phases of the Stokes field S12 at differ-
ent positions, where the white, black, green, and yellow circles
represent the Stokes vortices corresponding to the positive
(�1∕2) C-points, negative (−1∕2) C-points, positive (�1)
V-point, and negative (−1) V-point, marked on the lines in
Fig. 5(c), respectively, while the dotted circles reflect the anni-
hilation of PSs. Obviously, the piecewise design of PS topologi-
cal configurations, the annihilation and transformation of
C-points, and the periodic variations of transverse intensity
corresponding to the longitudinal chain-like pattern are
completely confirmed.

4. CONCLUSION AND DISCUSSION

In summary, we have presented a convenient approach to pur-
posefully and actively manipulate the propagation and evolu-
tion of PSs in composite Bessel-like VOFs. Based on our
experiment setup comprising a VOF generator and a far-field
measurement system, we generated the initial Bessel-like beams
embedded with PSs and performed a thorough investigation on
how the propagation trajectories of the PSs are flexibly manip-
ulated by our proposed approach. The use of the SLM in our

Fig. 5. Piecewise design of the z-axis evolution of PS topological morphology. (a) Simulated side-view propagation of the composite Bessel-like
beam and (b) transverse beam patterns at three typical positions. (c) Evolution trajectories (continuous lines) with three slices of Stokes phase and
polarization distributions at six characteristic positions, where the red and blue colors describe RH and LH polarization states, white and black dots
denote positive and negative C-points, green and yellow dots denote positive and negative V-points, and gray dots represent the annihilation points
of PSs, respectively. (d) and (e) Measured transverse beam patterns and Stokes phases at different positions. In (e), the white, black, green, and yellow
circles represent the Stokes vortices corresponding to the positive C-points, negative C-points, positive V-point, and negative V-point, respectively,
while the dotted circles denote the annihilation points.
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method also enables the dynamic steering and reconfigurability
of PSs at will. We first verified the feasibility of the approach by
designing a PS braiding, whose winding numbers can be arbi-
trarily controlled. In addition, an interesting hexapetalous PSs
topological configuration is customized by prescribing two dis-
located trefoil propagation trajectories to the paired C-points to
display the versatility of the approach. Second, we highlighted
the importance of the persistence of PS topological morphology
during the propagation process, elucidated the physical mecha-
nism that the formation or destruction of a specific PS results
from the overlapping or separation of the constituent SAM and
OAM states, and further demonstrated how to regulate the evo-
lution of PSs, e.g., annihilation and revival at desired positions
with tunable longitudinal periods. Finally, to break through the
persistence of PS topology upon propagation and manipulate
the evolution with multiple degrees of freedom, we carry out a
piecewise design from several combinations of component
phase vortices to arbitrarily regulate the PS topological mor-
phology, annihilation, and transformation between them. It
should be stressed that while 3D PS topological morphology
types such as knots, links, and Möbius strips directly reflect
the spatial evolution of the complex PSs, controlling PS propa-
gation and evolution and customizing desired 3D PS topologi-
cal morphology are still challenging and deserve more research
efforts. Our approach provides a new way for harnessing
and exploiting PSs and may facilitate applications of singular
optics in fields such as information processing and optical
communication.
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